• Save
4.15 - "Technologies of Biomass Gasification" - Aleksander Sobolewski, Sławomir Stelmach, Tomasz Iluk [EN]
Upcoming SlideShare
Loading in...5
×
 

4.15 - "Technologies of Biomass Gasification" - Aleksander Sobolewski, Sławomir Stelmach, Tomasz Iluk [EN]

on

  • 1,180 views

 

Statistics

Views

Total Views
1,180
Views on SlideShare
1,180
Embed Views
0

Actions

Likes
2
Downloads
0
Comments
1

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment
  • Aby zmienić liczbę całkowitą slajdów wyświetlaną w stopce slajdu należy po zakończeniu prezentacji wejść do menu WIDOK -> WZORZEC -> WZORZEC SLAJDÓW i wstawić odpowiednią liczbę a następnie kliknąć ZAMKNIJ WIDOK WZORCA
  • Aby zmienić liczbę całkowitą slajdów wyświetlaną w stopce slajdu należy po zakończeniu prezentacji wejść do menu WIDOK -> WZORZEC -> WZORZEC SLAJDÓW i wstawić odpowiednią liczbę a następnie kliknąć ZAMKNIJ WIDOK WZORCA
  • Aby zmienić liczbę całkowitą slajdów wyświetlaną w stopce slajdu należy po zakończeniu prezentacji wejść do menu WIDOK -> WZORZEC -> WZORZEC SLAJDÓW i wstawić odpowiednią liczbę a następnie kliknąć ZAMKNIJ WIDOK WZORCA
  • Aby zmienić liczbę całkowitą slajdów wyświetlaną w stopce slajdu należy po zakończeniu prezentacji wejść do menu WIDOK -> WZORZEC -> WZORZEC SLAJDÓW i wstawić odpowiednią liczbę a następnie kliknąć ZAMKNIJ WIDOK WZORCA
  • Aby zmienić liczbę całkowitą slajdów wyświetlaną w stopce slajdu należy po zakończeniu prezentacji wejść do menu WIDOK -> WZORZEC -> WZORZEC SLAJDÓW i wstawić odpowiednią liczbę a następnie kliknąć ZAMKNIJ WIDOK WZORCA
  • Aby zmienić liczbę całkowitą slajdów wyświetlaną w stopce slajdu należy po zakończeniu prezentacji wejść do menu WIDOK -> WZORZEC -> WZORZEC SLAJDÓW i wstawić odpowiednią liczbę a następnie kliknąć ZAMKNIJ WIDOK WZORCA
  • Aby zmienić liczbę całkowitą slajdów wyświetlaną w stopce slajdu należy po zakończeniu prezentacji wejść do menu WIDOK -> WZORZEC -> WZORZEC SLAJDÓW i wstawić odpowiednią liczbę a następnie kliknąć ZAMKNIJ WIDOK WZORCA
  • Aby zmienić liczbę całkowitą slajdów wyświetlaną w stopce slajdu należy po zakończeniu prezentacji wejść do menu WIDOK -> WZORZEC -> WZORZEC SLAJDÓW i wstawić odpowiednią liczbę a następnie kliknąć ZAMKNIJ WIDOK WZORCA
  • Aby zmienić liczbę całkowitą slajdów wyświetlaną w stopce slajdu należy po zakończeniu prezentacji wejść do menu WIDOK -> WZORZEC -> WZORZEC SLAJDÓW i wstawić odpowiednią liczbę a następnie kliknąć ZAMKNIJ WIDOK WZORCA
  • Aby zmienić liczbę całkowitą slajdów wyświetlaną w stopce slajdu należy po zakończeniu prezentacji wejść do menu WIDOK -> WZORZEC -> WZORZEC SLAJDÓW i wstawić odpowiednią liczbę a następnie kliknąć ZAMKNIJ WIDOK WZORCA
  • Aby zmienić liczbę całkowitą slajdów wyświetlaną w stopce slajdu należy po zakończeniu prezentacji wejść do menu WIDOK -> WZORZEC -> WZORZEC SLAJDÓW i wstawić odpowiednią liczbę a następnie kliknąć ZAMKNIJ WIDOK WZORCA
  • Aby zmienić liczbę całkowitą slajdów wyświetlaną w stopce slajdu należy po zakończeniu prezentacji wejść do menu WIDOK -> WZORZEC -> WZORZEC SLAJDÓW i wstawić odpowiednią liczbę a następnie kliknąć ZAMKNIJ WIDOK WZORCA
  • Aby zmienić liczbę całkowitą slajdów wyświetlaną w stopce slajdu należy po zakończeniu prezentacji wejść do menu WIDOK -> WZORZEC -> WZORZEC SLAJDÓW i wstawić odpowiednią liczbę a następnie kliknąć ZAMKNIJ WIDOK WZORCA
  • Aby zmienić liczbę całkowitą slajdów wyświetlaną w stopce slajdu należy po zakończeniu prezentacji wejść do menu WIDOK -> WZORZEC -> WZORZEC SLAJDÓW i wstawić odpowiednią liczbę a następnie kliknąć ZAMKNIJ WIDOK WZORCA
  • Aby zmienić liczbę całkowitą slajdów wyświetlaną w stopce slajdu należy po zakończeniu prezentacji wejść do menu WIDOK -> WZORZEC -> WZORZEC SLAJDÓW i wstawić odpowiednią liczbę a następnie kliknąć ZAMKNIJ WIDOK WZORCA
  • Aby zmienić liczbę całkowitą slajdów wyświetlaną w stopce slajdu należy po zakończeniu prezentacji wejść do menu WIDOK -> WZORZEC -> WZORZEC SLAJDÓW i wstawić odpowiednią liczbę a następnie kliknąć ZAMKNIJ WIDOK WZORCA
  • Aby zmienić liczbę całkowitą slajdów wyświetlaną w stopce slajdu należy po zakończeniu prezentacji wejść do menu WIDOK -> WZORZEC -> WZORZEC SLAJDÓW i wstawić odpowiednią liczbę a następnie kliknąć ZAMKNIJ WIDOK WZORCA
  • Aby zmienić liczbę całkowitą slajdów wyświetlaną w stopce slajdu należy po zakończeniu prezentacji wejść do menu WIDOK -> WZORZEC -> WZORZEC SLAJDÓW i wstawić odpowiednią liczbę a następnie kliknąć ZAMKNIJ WIDOK WZORCA
  • Aby zmienić liczbę całkowitą slajdów wyświetlaną w stopce slajdu należy po zakończeniu prezentacji wejść do menu WIDOK -> WZORZEC -> WZORZEC SLAJDÓW i wstawić odpowiednią liczbę a następnie kliknąć ZAMKNIJ WIDOK WZORCA
  • Aby zmienić liczbę całkowitą slajdów wyświetlaną w stopce slajdu należy po zakończeniu prezentacji wejść do menu WIDOK -> WZORZEC -> WZORZEC SLAJDÓW i wstawić odpowiednią liczbę a następnie kliknąć ZAMKNIJ WIDOK WZORCA

4.15 - "Technologies of Biomass Gasification" - Aleksander Sobolewski, Sławomir Stelmach, Tomasz Iluk [EN] 4.15 - "Technologies of Biomass Gasification" - Aleksander Sobolewski, Sławomir Stelmach, Tomasz Iluk [EN] Presentation Transcript

  • TECHNOLOGIES OF BIOMASS GASIFICATION Aleksander Sobolewski, Sławomir Stelmach, Tomasz Iluk Institute for Chemical Processing of Coal Zamkowa 1 St., 41-803 Zabrze, Poland
  • Scope of presentation 1. Information about IChPW. 2. What is gasification ? 3. Global situation with regard to solid fuel gasification. 4. Gasification of biomass - why? 5. Biomass gasification reactors. 6. Examples of small-scale biomass gasification technologies. 7. Example of large-scale biomass gasification technolog y . 8. Problems associated with biomass gasification. 9. Summary.
  • Information about IChPW … . to deliver the innovation knowledge to support improvement in competitiveness of the enterprises from the carbochemistry, energy, mining and processing of waste sectors, that makes it possible to use efficiently fossil, renewable and alternative fuels. R&D governmental organisation 224 employees 171 scientists & researchers Fuels Cokemaking Waste Processing Heat & Power Production View slide
  • Slovakia Czech Republic Russia Warszawa Gdansk Wroclaw Poznan Kombinat Koksochemiczny „Zabrze” (Coke plant „Jadwiga”) Coke plant BO-CARBO Coke plant at Huta T. Sendzimira K rakow Coke plant „Walbrzych” Coke plant - „Czestochowa” Steel Works Coke plant „Zdzieszowice” B a l t i c S e a Kombinat Koksochemiczny „Zabrze” (Coke plant „Radlin”) Coke plant „Przyjazn” Bytom Dabrowa Gornicza Cokemaking industry (high temperature pyrolysis/slow heating rate) Zdzieszowice Walbrzych Czestochowa Nowa Huta Radlin Zabrze Institute for Chemical Processing of Coal Zabrze - Poland View slide
  • Power industry Slovakia Russia Warszawa Gdańsk Wrocław Poznań B a l t i c S e a ZE Ostrołęka Elektrownia Opole Elektrownia Połaniec EC Żerań Elektrownia Konin Elektrownia Stalowa Wola K raków Elektrownia Skawina KOGENERACJA SA Elektrownia Dolna Odra Elektrownia Szczecin Elektrownia Rybnik EC Knurów EC Dębieńsko Elektrownia Siersza Elektrownia Jaworzno Elektrownia Łaziska Institute for Chemical Processing of Coal Zabrze - Poland
  • G asification : past, current and future research activity in the Institute 2011 2012 R&D Programme: Advanced Technologies for Energy Generation Workpackage: Development of integrated technologies for production of fuels and energy from biomass, agricultural waste and other materials CLEAN COAL TECHNOLOGY CENTER R&D Programme: Advanced Technologies for Energy Generation Workpackage: Development of coal gasification technology for high production of fuels and energy
  • Gasification The basic gasification process can be described in a simplified way by the following chemical equations: C(fuel) + O 2 = CO 2 + heat (exothermic reaction) C + H 2 O(steam) = CO + H 2 (endothermic reaction) C + CO 2 = 2CO (endothermic reaction) C + 2H 2 = CH 4 (endothermic reaction) CO + H 2 O = CO 2 + H 2 (exothermic reaction) CO + 3H 2 = CH 4 + H 2 O (exothermic reaction) T hermochemical process of oxidising transformation of solid fuels (less frequently liquid ones as well) into a gaseous energy carrier (combustible gas)
  • Gasification compared to other processes
  • World gasification capacity source: http://www.netl.doe.gov
  • Gasification of biomass - why?
    • provides a diversification of energy sources
    • is an interesting alternative to increase the share of RES in electricity and heat production
    • can lower greenhouse gas emissions
    • inhomogeneous fuel can be converted into a homogenous gas with a considerably higher level of applicability
    • gives the possibility to use wastes (e.g. waste wood, agricultural residues, sewage sludge etc.)
    • in countries with limited resources of fossil fuels may constitute an interesting alternative of energy production
    • faster production of a useful gas in comparison with biochemical biomass conversion methods
    • some of the technical solutions allow to obtain emission levels equivalent to natural gas combustion
  • Types of reactors Updraft gasifier Downdraft gasifier Fluidized-bed gasifier Circulating fluidized-bed gasifier
  • General characteristics of biomass gasification reactors Parameter Downdraft gasifier Updraft gasifier Circulating fluidized-bed gasifier
    • Fuel (biomass)
    • moisture content (%)
    • ash content (%, daf)
    • particles size (mm)
    < 25 <6 20-100 < 60 <25 5-100 < 25 <25 <20
    • Gas
    • temperature ( o C)
    • LHV (kJ/m n 3 )
    • tars content (g/ m n 3 )
    • dust (g/ m n 3 )
    • composition (% v/v)
    • H 2
    • CO
    • CO 2
    • CH 4
    800 4-6 0,01-6 0,1-8 15-21 10-22 11-13 1-5 200-400 4-6 1-150 0,1-3 10-14 15-20 8-10 2-3 850 5-6,5 2-30 8-100 15-22 13-15 13-15 2-4 Estimated technology scale (MW th ) 1 10 100 Flexibility due to the change of scale poor good very good
  • Examples of small scale biomass gasification technologies Zabrze – Poland
    • Basic characteristics:
    • wood chips feed – 0,5 Mg/day
    • main gas components:
      • CO – 25%
      • H 2 – 7,5%
      • CH 4 – 2%
      • CO 2 – 9,5%
    • gas heating value – 4,5 MJ/m 3 n
  • Examples of small scale biomass gasification technologies Louka – Czech Republik
    • Basic characteristics:
    • wood chips feed – 5 Mg/day
    • main gas components:
      • CO – 20%
      • H 2 – 16%
      • CH 4 – 1%
      • CO 2 – 10%
    • gas heating value – 5,2 MJ/m 3 n
    J. Najser, T. Ochodek, R. Chłond, Energy Market 6(85) (2009) 68-74 .
  • Examples of small scale biomass gasification technologies Güssing - Austria http://www.repotec.at, 05.2011
    • Basic characteristics:
    • wood chips feed – 50 Mg/day
    • overall efficiency – 81%
    • main gas components:
      • CO – 26%
      • H 2 – 40%
      • CH 4 – 10%
      • CO 2 – 19%
    • gas heating value – 12 MJ/m 3 n
  • Example of large scale biomass gasification technologies Skive - Denmark J. Patel, http://www.forestprod.org/smallwood04patel.pdf
    • Basic characteristics:
    • wood pellets feed – 110 Mg/day
    • overall efficiency – 87%
    • main gas components:
      • CO – 22%
      • H 2 – 20%
      • CH 4 – 5%
      • CO 2 – 10%
      • N 2 – 42%
    • gas heating value – 5,5 MJ/m 3 n
  • Biomass co-gasification with coal 1 – reactor, 2 – riser, 3 – expander, 4 – cyclone, 5 – recirculated char tank, 6 – heat carrier (char) dispenser, 7 – cyclones battery, 8 – fine char tank, 9 – gas combustion chamber, 10 – fuel tank, 11 – feeding screw dispenser, 12 – feeding screw, 13 – fuel gas cylinders, 14 – gas flare Gas composition
  • Problems associated with biomass gasification
    • It is necessary to ensure continuous supply of biomass. Biomass has a variable composition and low calorific value per unit volume (transportation problems). Usually there are also difficulties in ensuring a constant supply of uniform composition feed, humidity and assortment in the long term.
    • Usually preparation of biomass is required (shredding, drying, compaction).
    Gas Fuel Contamination Consequences Dust Erosion, emissions into the atmosphere Tars Deposition on the inner parts of the installation, filters clogging Alkali metals High-temperature corrosion Chlorine, sulfur Corrosion, emissions into the atmosphere Parametr Downdraft reactor Updraft reactor Requirements Engine Turbine LHV , MJ/m 3 n 4 -6 4 -6 >4,0 >4,0 Tars , g/m 3 n 1-15 0, 5 -6 0,100 (0,050) < 0,005 Dust , g/m 3 n 0,1-3 0,1 - 8 0,050 (0,005) < 0,001 Alkali metals , ppm bd bd 1 -2 0,2 - 1
  • Summary
    • P rocesses known for many years like pyrolysis and gasification of biomass ( mainly wood but also other biomass sorts ) have aroused an increased interest during recent years.
    • I ntensive activities in the world are aimed at continuous development and dissemination of biomass gasification technology ; this development is directed to both fluidized bed gasification (large scale) and fixed -b ed (small scale) gasification technologies .
    • B iomass gasification in small capacity systems seems likely to have a greater prevalence of development ( transport logistics , storage issues ).
    • Biomass gasification technologies can foster economic development of the rural areas , allow to generate electricity and heat based on local sources of biomass.
    • Technologies of biomass gasification, due to many mentioned advantages, deserve wide dissemination .
  • INSTYTUT CHEMICZNEJ PRZERÓBKI WĘGLA (Institute For Chemical Processing Of Coal) ul. Zamkowa 1; 41-803 Zabrze, Poland Phone: +48 32 271 00 41 Fax: +48 32 271 08 09 Tax ID No. (NIP): 648-000-87-65 Nat. Business Reg. No. (REGON): 000025945 E-mail: [email_address] Internet: www.ichpw.zabrze.pl