Physical Object Tagging
and Decoding
Amnon Dekel
Embedded Computing Seminar
Fall 2005
Prof. Scott Kirkpatrick
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar2
Outline
• Introduction
• Object Tagging Methods
• Object ID Acquisit...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar3
Introduction
• Tagging
– The act of creating a linkage between a
phy...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar4
Introduction
• Why Tag?
– Because the “Brave new world” of
Ubiquitou...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar5
Introduction
• Why Tag?
– Enable Context discovery
– Enable Categori...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar6
Introduction
• Why Tag?
– Context discovery
• Location (physical and...
Object Tagging
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar8
Object Tagging
• Two main methods
–Passive Tags
–Active Tags
Note: I...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar9
Passive Visual Tags
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar10
Passive Visual Tags
• Passive Visual Code Tags: Many Types
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar11
Passive Visual Tags
• Passive Tagging:
– “Dumb” Tags which do not r...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar12
Passive Visual Tags
• 1 D Bar Codes:
– Provide a simple and inexpen...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar13
Passive Visual Tags
• 1 D Bar Codes:
– The different symbologies ha...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar14
Passive Visual Tags
• 1 D Bar Codes:
http://www.taltech.com/TALtech...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar15
Passive Visual Tags
1 D Bar Code Usage
Code Standard Uses
UPC (Univ...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar16
Passive Visual Tags
• 1D Barcode History:
– 1948: Woodland and Silv...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar17
Passive Visual Tags
• 2D Bar Codes: use 2 dimensions to get more
st...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar18
Passive Visual Tags
• 2D Bar Codes: use 2 dimensions to get more
st...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar19
Passive Visual Tags
• The 2D “standards”:
– QR Code
– Data Matrix
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar20
Passive Visual Tags
• QR Code
– 1994: Released by Denso wave
– The ...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar21
Passive Visual Tags
• QR Code
– Uses three position detection patte...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar22
Passive Visual Tags
• QR Code
– 40 versions
http://www.denso-wave.c...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar23
Passive Visual Tags
• Micro QR Code
– Micro qr code sacrifices
stor...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar24
Passive Visual Tags
• Data Matrix Code:
– Invented by RVSI Acuity C...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar25
Passive Visual Tags
• Data Matrix Code:
– Uses two solid borders as...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar26
Passive Visual Tags
• Additional 2D codes
Multi-Colored Matrix
Info...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar27
Active Tags
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar28
Active Tags
• Active Tagging is the use of objects that can
respond...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar29
Active Tags
• RFID
Radio Frequency IDentification
– An RFID tag is ...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar30
Active Tags
• RFID History
– 1939: Watson-Watt: IFF (identification...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar31
Active Tags
• RFID Frequencies
From: FDIS 2004 presentation: Prospe...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar32
Active Tags
From: http://www.rfid-handbook.de/rfid/frequencies.html...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar33
Active Tags
• RFID Frequencies
– Each frequency range has its advan...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar34
Active Tags
• Interference?
– EPC standard UHF tags operate in the ...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar35
Active Tags
• RFID Identification Speed:
– ISO 18000-3 Mode 2:
• 20...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar36
Active Tags
• RFID Reader Costs
– Industrial readers cost
in the or...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar37
Active Tags
• NFC: Near Field Communications
– A standards-based, s...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar38
Active Tags
• NFC: Near Field Communications
– NFC technology evolv...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar39
Active Tags
• NFC: Interference?
Standard: ECMA-352:1st Edition / D...
Object ID Acquisition
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar41
Object ID Acquisition
• Now that the information is in the world,
H...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar42
Object ID Acquisition
• Now that the information is in the world, H...
Data Entry in the Field
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar44
Data Entry in the Field
• So the world is tagged and we can access
...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar45
Data Entry in the Field
• Why?
– Enable commercial transactions
• W...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar46
Data Entry in the Field
• Transactions:
– On board application uses...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar47
Data Entry in the Field
Commerce Server
In Store
Security
1. Visual...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar48
Data Entry in the Field
• Bi-Direction Content Services:
– On board...
Applications
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar50
Applications
• Visual Tags
– 1D:
• Item Number
• Manufacturer
• i.e...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar51
Applications
• Demo1 : Visual Tags
• Demo2 : NFC
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar52
Scenarios of Interest (to me)
• Shopping
• Moving Personal Media
… ...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar53
Shopping
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar54
Information Overload!
I can’t remember
what I want!
So many options...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar55
• What can I do? I can use:
–A piece of paper
–Call my partner
–Rem...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar56
• Have my (Smart) Phone help me
• Remind me
• Give me more info on ...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar57
Shopping
• Have my (Smart) Phone help me
– Give me more info on a p...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar58
Moving Personal Media
• Now that our cell phones are rapidly
becomi...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar59
Moving Personal Media
• What do we want to move?
– Our Media
• Phot...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar60
Moving Personal Media
• Moving our media is relatively easy, isn’t
...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar61
Moving Personal Media
• Using Wireless data networking along with o...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar62
Moving Personal Media
I want to move my photo to my TV
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar63
Moving Personal Media
I Zap my TV (with my camera or my NFC app)
Ca...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar64
Moving Personal Media
I Zap my TV (with my camera or my NFC app)
Ca...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar65
Moving Personal Media
I send my photo to my TV
Send Photo to my TV
...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar66
Moving Personal Media
Enjoy!
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar67
Moving Personal Media
Yes- I know-
the architecture could be design...
Summary
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar69
Summary
• Two main forms of Object tagging
– Passive Tags (Visual C...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar70
Summary
• Object Tagging will have a big effect on
our future
– (in...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar71
Summary
• Problems that still need to be overcome:
– Tag manufactur...
Jan 18 2006 Amnon Dekel - Embedded Computing Seminar72
Questions
• Amnon Dekel
amnoid at cs dot huji dot ac dot il
Upcoming SlideShare
Loading in …5
×

Physical Object Tagging and Decoding

805 views
747 views

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
805
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
7
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Physical Object Tagging and Decoding

  1. 1. Physical Object Tagging and Decoding Amnon Dekel Embedded Computing Seminar Fall 2005 Prof. Scott Kirkpatrick
  2. 2. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar2 Outline • Introduction • Object Tagging Methods • Object ID Acquisition in the Field • Data Entry in the Field • Some Applications
  3. 3. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar3 Introduction • Tagging – The act of creating a linkage between a physical object and a symbolic representation of that object Physical Object Tag Symbolic representation
  4. 4. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar4 Introduction • Why Tag? – Because the “Brave new world” of Ubiquitous/Pervasive computing needs a way to identify the world and what is happening in it
  5. 5. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar5 Introduction • Why Tag? – Enable Context discovery – Enable Categorization – Minimize errors – Minimize ambiguity – Enable linkages between objects • Physical to physical • Physical to symbolic (services)
  6. 6. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar6 Introduction • Why Tag? – Context discovery • Location (physical and symbolic) • Task (where in the process, service management) • Change (relative to planned) • Behavior Patterns (learn, react)
  7. 7. Object Tagging
  8. 8. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar8 Object Tagging • Two main methods –Passive Tags –Active Tags Note: I use a slightly different meaning than the existing Active/Passive
  9. 9. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar9 Passive Visual Tags
  10. 10. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar10 Passive Visual Tags • Passive Visual Code Tags: Many Types
  11. 11. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar11 Passive Visual Tags • Passive Tagging: – “Dumb” Tags which do not react to their surroundings – Stick and Forget – Very Cheap – Need Line of Site – Range • Normal use: Up to ~1.5 M • Range can grow by enlarging the tag
  12. 12. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar12 Passive Visual Tags • 1 D Bar Codes: – Provide a simple and inexpensive method of encoding information that is easily read by inexpensive electronic readers. – Allows data to be collected rapidly and with extreme accuracy. – Consists of a series of parallel, adjacent bars and spaces. – Predefined bar and space patterns or "symbologies" are used to encode small strings of character data into a printed symbol. – Can be thought of as a printed type of the Morse code with narrow bars (and spaces) -> dots, and wide bars -> dashes http://www.taltech.com/TALtech_web/resources/intro_to_bc/bcbascs.htm
  13. 13. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar13 Passive Visual Tags • 1 D Bar Codes: – The different symbologies have different capabilities for encoding data. For example the • UPC symbology used to identify retail products always contains 12 numeric digits • The general purpose Code 39 or Code 128 bar code symbologies can encode variable length alphanumeric data up to about 30 characters in length. These types of bar codes are called "linear symbologies" because they are made up of a series of lines of different widths. – Most commercially available bar code scanners are able to read all of the different linear bar code symbologies therefore you do not need different readers for different types of bar codes. http://www.taltech.com/TALtech_web/resources/intro_to_bc/bcbascs.htm
  14. 14. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar14 Passive Visual Tags • 1 D Bar Codes: http://www.taltech.com/TALtech_web/resources/intro_to_bc/bcbascs.htm 30 Chars  12 Digits 
  15. 15. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar15 Passive Visual Tags 1 D Bar Code Usage Code Standard Uses UPC (Universal Product Code) Retail stores for sales checkout; inventory, etc. Code 39 Identification, inventory, and tracking shipments POSTNET Encoding zip codes on U.S. mail European Article Number (EAN) A superset of the UPC that allows extra digits for country identification Japanese Article Number (JAN) Similar to the EAN, used in Japan Bookland Based on ISBN numbers and used on book covers ISSN bar code Based on ISSN numbers, used on periodicals outside the U.S. Code 128 Used in preference to Code 39 because it is more compact Interleaved 2 of 5 Used in the shipping and warehouse industries Codabar Used by Federal Express, in libraries, and blood banks MICR (Magnetic Ink Character Recognition) A special font used for the numbers on the bottom of bank checks OCR-A The optical character recognition format used on book covers for the human readable version of the ISBN number OCR-B Used for human readable version of the UPC, EAN, JAN, Bookland, and ISSN bar codes and for optional human-readable digits with Code 39 and Interleaved 2 of 5 symbols See: http://searchcio.techtarget.com/sDefinition/0,,sid19_gci213536,00.html
  16. 16. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar16 Passive Visual Tags • 1D Barcode History: – 1948: Woodland and Silver build prototype system • Used ink and 500 watt light – 1952: US Patent 2,612,994 – 1966: First commercial product • The National Association of Food Chains (NAFC) put out a call to equipment manufacturers for systems that would speed the checkout process – 1967: RCA installs reader in Cincinnati – standards needed – 1970: Logicon: UGPIC standard, Sylvania Railroad Car scanning – 1973: UPC standard – 1974: First UPC scanner (NCR), first checkout: Packet of gum – 1981: LOGMARS (Code 39) for the DoD – 1984: Barcodes are mandated by Wal-Mart (remind you of something?) http://www.barcoding.com/Information/barcode_history.shtml
  17. 17. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar17 Passive Visual Tags • 2D Bar Codes: use 2 dimensions to get more storage capacity http://www.taltech.com/TALtech_web/resources/intro_to_bc/bcbascs.htm
  18. 18. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar18 Passive Visual Tags • 2D Bar Codes: use 2 dimensions to get more storage capacity – New "2-Dimensional" bar code symbologies like PDF417, Aztec Code, Data Matrix and QR Code are also now available that can encode several thousand bytes of data in a single bar code symbol including text or binary data. – The newer 2D bar code symbologies typically require special bar code readers that are designed specifically for reading them. http://www.taltech.com/TALtech_web/resources/intro_to_bc/bcbascs.htm
  19. 19. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar19 Passive Visual Tags • The 2D “standards”: – QR Code – Data Matrix
  20. 20. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar20 Passive Visual Tags • QR Code – 1994: Released by Denso wave – The specification is disclosed and the patent right owned by denso wave isn’t exercised. – Has been approved by various standards bodies over the years, • i.e. approved iso standard (ISO/IEC18004) and available for purchase in their store http://www.engadgeted.net/archives/2005/09/18/matrix-codes-visual-code-recognition-on-cellphones/
  21. 21. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar21 Passive Visual Tags • QR Code – Uses three position detection patterns located at corners of the symbol – a data area and a quiet zone outside of the symbol. – The symbol size ranges from 21×21 to 177×177 modules (increases in steps of 4 modules per side) – it supports four error correction levels using Reed-Solomon code. – QR codes can store up to 7089 numeric characters, 4296 alphanumeric characters or 2953 bytes http://www.engadgeted.net/archives/2005/09/18/matrix-codes-visual-code-recognition-on-cellphones/ Position detection
  22. 22. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar22 Passive Visual Tags • QR Code – 40 versions http://www.denso-wave.com/qrcode/qrgene2-e.html Version Modules ECC Level Data bits Numeric Alfanumeric Binary Kanji 1 21x21 7% 152 41 25 17 10 * 15% 128 34 20 14 8 25% 104 27 16 11 7 30% 72 17 10 7 4 40 177x177 7% 23,648 7,089 4,296 2,953 1,817 * 15% 18,672 5,596 3,391 2,331 1,435 25% 13,328 3,993 2,420 1,663 1,024 30% 10,208 3,057 1,852 1,273 784
  23. 23. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar23 Passive Visual Tags • Micro QR Code – Micro qr code sacrifices storage capacity (35 Num, 21 ANum, 15 Binary) for a smaller print footprint. – It has only one position detection pattern, – supports fewer levels of error correction – ranges in symbol size from 11×11 to 17×17 modules. http://www.denso-wave.com/qrcode/microqr-e.html
  24. 24. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar24 Passive Visual Tags • Data Matrix Code: – Invented by RVSI Acuity Cimatrix – Has been placed in the public domain – Is an approved iso standard (ISO/IEC16022) and available for purchase in their store http://www.engadgeted.net/archives/2005/09/18/matrix-codes-visual-code-recognition-on-cellphones/
  25. 25. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar25 Passive Visual Tags • Data Matrix Code: – Uses two solid borders as handles for alignment – Two broken borders on the opposite corner as syncs for module sampling – Uses a data area and a quiet zone outside of the symbol. – Additional handles and borders are added with growing matrix dimensions. (size ranges from 10×10 to 144×144) – Supports Reed-Solomon error correction. – Can store up to 3116 numeric chars, 2335 alphanumeric chars or 1555 bytes. http://www.engadgeted.net/archives/2005/09/18/matrix-codes-visual-code-recognition-on-cellphones/
  26. 26. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar26 Passive Visual Tags • Additional 2D codes Multi-Colored Matrix Info Density is not clear, but Supposedly large Maxi (UPS) Code 93 Alphanumeric chars 138 Numeric chars Aztec 3000 chars 3750 digits PDF417 2725 chars Circular bar-codes No Data Available More Info: http://www.taltech.com/TALtech_web/resources/intro_to_bc/bcsymbol.htm
  27. 27. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar27 Active Tags
  28. 28. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar28 Active Tags • Active Tagging is the use of objects that can respond to electromagnetic pulses and return data to a query system – RFID • Passive • Active • NFC
  29. 29. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar29 Active Tags • RFID Radio Frequency IDentification – An RFID tag is a small object that can be attached to or incorporated into a product, animal, or person. – RFID tags contain silicon chips and antennas to enable them to receive and respond to radio-frequency queries from an RFID transceiver. – Passive tags require no internal power source, whereas active tags require a power source. – IMPORTANT: An EPC RFID tag used for Wal-Mart Chip Antenna http://en.wikipedia.org/wiki/Rfid No need for Line of Sight Communication!
  30. 30. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar30 Active Tags • RFID History – 1939: Watson-Watt: IFF (identification Friend of Foe) for RADAR – 1948: Stockman, H. Communication by Means of Reflected Power. Proceedings of the IRE, pp 1196-1204, October 1948. – 1973: first Patents: • Active tag with rewritable memory • Passive transponder used to unlock a door without a key – Mid 1980s: First Industrial Systems: • Active System for tracking Dangerous materials • Passive RFID system (125 kHz radio waves) to track cows – Since: • Move up the spectrum to the unregulated 13.56MHz wavelength and above • Greater range, capacity and data transfer rates (IBM UHF RFID Patents) • Access control, anti-theft, smart cards… • 1999: Auto-ID Center set up at MIT  RFID into the supply chain (simple ID on chip is used to access information online) ->move the data Off the chip (and thus make it cheaper). – The grail: the 1cent tag http://en.wikipedia.org/wiki/Rfid http://www.rfidjournal.com/article/articleview/1338/1/129/
  31. 31. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar31 Active Tags • RFID Frequencies From: FDIS 2004 presentation: Prospects for RFID Technologies More Info: The RFID Handbook cars
  32. 32. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar32 Active Tags From: http://www.rfid-handbook.de/rfid/frequencies.html More Info: The RFID Handbook • RFID Frequencies
  33. 33. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar33 Active Tags • RFID Frequencies – Each frequency range has its advantages and disadvantages. • Europe use 868 MHz. for its UHF applications while the US uses 915 MHz. for its UHF applications. • Japan does not allow the use of the UHF frequency for RFID applications. • Low Frequency tags (LF) are less costly to manufacturer than Ultra High Frequency (UHF) tags. • UHF tags offer better read/write range and can transfer data faster then other tags. • HF tags work best at close range but are more effective at penetrating non-metal objects especially objects with high water content. Source: http://www.controlelectric.com/RFID/Types_of_RFID.html
  34. 34. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar34 Active Tags • Interference? – EPC standard UHF tags operate in the 850-950 MHz frequency band. There is an interference with 802.xx wireless LAN standards. – Older WAN standards operating in the 915 MHz band can cause interference and may have to be replaced as interference can occur. – Effective site surveys are required prior to the implementation of RFID equipment to understand the current radio frequency environment of the location you wish to install RFID technology. http://www2.cio.com/ask%5Cexpert/2004/questions/question1910.html
  35. 35. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar35 Active Tags • RFID Identification Speed: – ISO 18000-3 Mode 2: • 200 static Items/sec (theoretic speed) • Magellan has shown a demo of 100 items/sec. – ISO 18000-3 Mode 5: • 500 static Items/sec (not implemented because of prohibitive equipment costs) Also: Magellan: http://www.rfidjournal.com/article/articleview/445/1/1/. From: http://www.teco.edu/~krohn/collaborative.pdf
  36. 36. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar36 Active Tags • RFID Reader Costs – Industrial readers cost in the order of $2,000- 6,000, but small scale systems are starting to arrive: • Home systems: $450 (iAutomate) • Compact Flash Reader: $150 (Syscan) • Phidget RFID Reader: $60 (Phidget) • Press Release: $20 Reader (View)
  37. 37. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar37 Active Tags • NFC: Near Field Communications – A standards-based, short-range wireless connectivity technology that enables simple and safe two-way interactions among electronic devices, allowing consumers to perform contact-less transactions, access digital content and connect devices with a single touch See: http://www.semiconductors.philips.com/news/content/file_1053.html Near Field Communication Interface and Protocol -2
  38. 38. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar38 Active Tags • NFC: Near Field Communications – NFC technology evolved from a combination of RFID and interconnection technologies. – Passive RFID Tags inside Nokia Phones (3300, 3500, 6360) – NFC operates in the 13.56 MHz frequency range, over a distance of typically a few centimeters. – NFC technology is standardized in ISO 18092, ECMA 340, and ETSI TS 102 190. – NFC is also compatible to the broadly established contactless smart card infrastructure based on ISO 14443 A, i.e. Philips MIFARE® technology, as well as Sony’s FeliCa™ card. – March 2004: Nokia, Philips and Sony establish the Near Field Communication (NFC) Forum See: http://www.semiconductors.philips.com/news/content/file_1053.html Near Field Communication Interface and Protocol -2
  39. 39. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar39 Active Tags • NFC: Interference? Standard: ECMA-352:1st Edition / December 2003 – OPERATING FREQUENCY (fc) • 13.56 MHZ +/- 7 kHz. – 6 External RF field threshold value • NFCIP-2 devices shall detect external RF fields at the OPERATING FREQUENCY with a value higher than HTHRESHOLD while performing external RF field detection. • The value of HTHRESHOLD = 0,1875 A/m. – 7 RF Field detection • In order to not disturb any communication on the OPERATING FREQUENCY, an NFCIP-2 device shall not switch on its RF field when it detects an external RF field, as specified in Clause 6. Near Field Communication Interface and Protocol -2
  40. 40. Object ID Acquisition
  41. 41. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar41 Object ID Acquisition • Now that the information is in the world, How do we access it? – Passive Tags: • Single Purpose Scanners • Multi-Purpose Visual Recognition Systems click
  42. 42. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar42 Object ID Acquisition • Now that the information is in the world, How do we access it? – Active Tags: • RFID Readers • Near Field Communications (NFC)
  43. 43. Data Entry in the Field
  44. 44. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar44 Data Entry in the Field • So the world is tagged and we can access those tags and use them in a variety of ways. • The missing piece for a full cycle is to enable data entry in the field
  45. 45. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar45 Data Entry in the Field • Why? – Enable commercial transactions • Which drives e-commerce in the field – Enable bi-directional content services
  46. 46. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar46 Data Entry in the Field • Transactions: – On board application uses ObjectID to carry out a transaction (Buy, Rent, etc) • NFC: – Swipe your phone to the object (decode ObjectID) – Send Transaction data commerce server (with ObjectID) – Commerce Server notifies in store security system • Visual Tags: – Capture and decode ObjectID – Send Transaction data commerce server (with ObjectID) – Commerce Server notifies in store security system *
  47. 47. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar47 Data Entry in the Field Commerce Server In Store Security 1. Visual ObjectID Decoding 1. NFC ObjectID transfer 2. Transaction3. Notify
  48. 48. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar48 Data Entry in the Field • Bi-Direction Content Services: – On board application uses ObjectID to enable you to communicate with a content service. • Get product information • Compare products • Collaborative Filtering • Personal Annotation – Up-channel Technique: • “Keying”: Click on Links or Text entry (Yuck!) • Send ObjectID query • Capture and Upload (Voice, Photo, Video) • Visual Gesture recognition (gesture represent simple responses- i.e. Yes, No…)
  49. 49. Applications
  50. 50. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar50 Applications • Visual Tags – 1D: • Item Number • Manufacturer • i.e. ISBN – 2D: • Web URL • Object Information • Gaming • Rich location information • Physical Address • Orientation Information • Active Advertising • Active Tags – Supply Chain Management – Real Time Location Tracking – Access Control – People Tracking – Baggage tracking – Parcel Tracking – Cloths Labels – Animals – Vehicle ID – Electronic Locks – Patients – Communication ID’s
  51. 51. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar51 Applications • Demo1 : Visual Tags • Demo2 : NFC
  52. 52. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar52 Scenarios of Interest (to me) • Shopping • Moving Personal Media … and how Tagging Technologies can be used to help me Browse and Annotate the world
  53. 53. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar53 Shopping
  54. 54. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar54 Information Overload! I can’t remember what I want! So many options! Shopping
  55. 55. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar55 • What can I do? I can use: –A piece of paper –Call my partner –Remember by heart –Or… Shopping
  56. 56. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar56 • Have my (Smart) Phone help me • Remind me • Give me more info on a product • Tell me what others think of a product • Suggest things to me (collaborative filtering) Shopping
  57. 57. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar57 Shopping • Have my (Smart) Phone help me – Give me more info on a product • Visual decoding or NFC technology directs me to a product information page – Tell me what others think of a product • Visual decoding or NFC technology directs me to a product opinion page – Suggest things to me (collaborative filtering) • Visual decoding or NFC technology directs me to a product suggestion page (People who bought this also…) Shopping
  58. 58. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar58 Moving Personal Media • Now that our cell phones are rapidly becoming our cameras and recorders, how can we use Tagging technology to enable them to become more integrated into our media environment?
  59. 59. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar59 Moving Personal Media • What do we want to move? – Our Media • Photos • Audio (personal recordings, music) • Video – Our Data – Our Location – Our Point of View
  60. 60. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar60 Moving Personal Media • Moving our media is relatively easy, isn’t it? – Install software on PC – Install cable, or – open wireless port – Start communication session – Move or Synch data – … • Too many steps, too complicated, too many points of failure and actual failure
  61. 61. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar61 Moving Personal Media • Using Wireless data networking along with object recognition we can make this as easy as point and click: – Point at the object you want to transfer your media to – Click • Your Camera-Phone decodes the ID of the object • The ID is translated to an address online • Your Camera-Phone transfers the media to the object over the net • Voila: your media is now shown on the device (TV, Computer, iPod, etc)
  62. 62. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar62 Moving Personal Media I want to move my photo to my TV
  63. 63. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar63 Moving Personal Media I Zap my TV (with my camera or my NFC app) Capture and decode ObjectID Xxxxx Xxxxx Xxxxx
  64. 64. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar64 Moving Personal Media I Zap my TV (with my camera or my NFC app) Capture and decode ObjectID 122.345.234.345.678.112
  65. 65. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar65 Moving Personal Media I send my photo to my TV Send Photo to my TV 122.345.234.345.678.112
  66. 66. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar66 Moving Personal Media Enjoy!
  67. 67. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar67 Moving Personal Media Yes- I know- the architecture could be designed to be very different i.e. direct communication between the devices, etc… But the concept remains the same 1.Capture code 2.Decode Address 3.Transfer
  68. 68. Summary
  69. 69. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar69 Summary • Two main forms of Object tagging – Passive Tags (Visual Codes) • Cheap • Needs line of sight (Most probably a transitional technology except in a few specific cases) – Active Tags (Electromagnetic Transfer) • Getting cheaper (2004 ~$0.30 in large volumes) • No need for line of site • Starting to be integrated into consumer devices (NFC)
  70. 70. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar70 Summary • Object Tagging will have a big effect on our future – (including our privacy, or lack of it) – Many possible applications – Big potential: • Connecting the physical world with rich information resources of the online world • Enabling the ease of Ecommerce in the physical world • Adding the gigantic physical world market to the Online Ecommerce ecosystem
  71. 71. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar71 Summary • Problems that still need to be overcome: – Tag manufacturing costs still too high • Goal: 1 cent RFID tags in volume (~2007) – Conflicting and interfering systems – Integration of NFC (or similar) technology in a ubiquitous fashion – Privacy concerns – Culture
  72. 72. Jan 18 2006 Amnon Dekel - Embedded Computing Seminar72 Questions • Amnon Dekel amnoid at cs dot huji dot ac dot il

×