• Like
  • Save
Medical Genetics.doc
Upcoming SlideShare
Loading in...5
×
 

Medical Genetics.doc

on

  • 602 views

 

Statistics

Views

Total Views
602
Views on SlideShare
602
Embed Views
0

Actions

Likes
0
Downloads
8
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft Word

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Medical Genetics.doc Medical Genetics.doc Document Transcript

    • Outline of Medical Genetics Chapter 1: Introduction 1.1. What is Medical Genetics? 1.2. Why is knowledge of Medical Genetics important for today’s health care practitioner? 1.3. A brief history 1.4. Types of genetic diseases 1.5. The clinical impact of genetic disease Chapter 2: Basic Disciplines in Genetics 2.1 Law of Segregation 2.2 Law of Independent Assortment 2.3 Law of linkage and crossing-over 2.4 Law of sex-linked inheritance Chapter 3: Chromosomal Basis of Heredity 3.1. The Human Chromosomes -Number of human chromosomes -The human karyotype 3.2. The life cycle of a somatic cell -Mitosis -Meiosis 3.3. Human gametogenesis and fertilization
    • Chapter 4: The Human Genome: Structure and function of Genes and Chromosomes 4.1 DNA Structure: a brief review 4.2 The Central Dogma: DNA RNA Protein 4.3 Fundamentals of gene expression 4.4 Structure of human chromosomes 4.5 Organization of the human genome 4.6 Variation in gene expression and its relevance to medicine Chapter 5: Tools of Human Molecular Genetics 5.1 Analysis of Individual DNA and RNA Sequences -molecular cloning -a brief review: enzymes; vectors -construction of libraries -polymerase chain reaction (PCR) 5.2 Methods of Nucleic Acid Analysis -southern blotting -allele-specific oligonucleotide (ASO) analysis -Northern blotting -In Situ Hybridization to Chromosomes -Methods of Protein Analysis: Western blotting 5.3 DNA Sequence Analysis Chapter 6:
    • Patterns of Single Gene Inheritance 6.1 Terminology 6.2 Genetic disorders with classical Mendelian inheritance -Autosomal recessive inheritance -Patterns of autosomal dominant inheritance -X-linked inheritance -Patterns of pseudoautosomal inheritance 6.3 Atypical patterns of Inheritance 6.4 Determining inheritance pattern based on a pedigree 6.5 Genetic heterogeneity 6.6 Estimating recurrence risks Chapter 7: Genetic Variation in Individuals: Mutation and Polymorphism 7.1. Mutation 7.2. The Molecular Basis of Mutations and Their Detection 7.3. Human Genetic Diversity 7.4. Inherited Variation and Polymorphism in Proteins 7.5. Inherited Variation and Polymorphism in DNA 7.6. Uses of Polymorphisms in Medical Genetics Chapter 8: Genetic Variation in Populations: population genetics 8.1 Genetic Diversity in Human Populations 8.2 Phenotypes, Genotypes, and Gene Frequencies 8.3 The Hardy-Weinberg Law
    • 8.4 Frequency of X-Linked Genes and Genotypes 8.5 Factors That Disturb Hardy-Weinberg Equilibrium -exception to random mating: stratification; assortative mating; consanguinity -exception to constant allele frequency -genetic drift and gene flow 8.6 Conclusion Chapter 9: Gene Mapping and the Human Genome Project 9.1 Physical Mapping of Human Genes 9.2 Mapping Human Genes by Linkage Analysis 9.3 Application of Human Gene Mapping 9.4 The Human Genome Project Chapter 10: Principles of Clinical Cytogenetics 10.1 Introduction to Cytogenetics -Clinical indications for chromosome analysis -Chromosome identification 10.2 Chromosomal Abnormalities -Numerical abnormalities -Structural abnormalities 10.3 Parent-of-Origin Effects -Genomic Imprinting -Cytogenetics of Hydatidiform Moles and Ovarian Teratomas
    • -Confined Placental Mosaicism 10.4 Studies of chromosomes in human meiosis 10.5 Mendelian disorders with cytogenetic effects 10.6 Cytogenetic analysis in cancer Chapter11: Clinical Cytogenetics: Disorders of the Autosomes and the Sex Chromosomes 11.1 Autosomal Disorders -Down Syndrome -Trisomy18 -Trisomy13 -Cri Du Chat Syndrome -Microdeletion Syndromes 11.2 The Sex Chromosomes and their Abnormalities -The Y chromosome and Sex Determination -The X chromosome and X-inactivation -Cytogenetic abnormalities of the sex chromosomes -Klinefelter syndrome -47,XYY syndrome -Trisomy X -Turner syndrome Chapter 12: Principles of Molecular Disease: Lessons from the Hemoglobinopathies
    • 12.1 The effect of mutation on protein function -Loss-of-function Mutations -Gain-of-function Mutations -Novel Property Mutations -Mutation Associated with Heterochronic or Ectopic Gene Expression 12.2 How Mutations Disrupt the Formation of Biologically Normal Proteins 12.3 Hemoglobins and Their Diseases -Structure and Function of Hemoglobin -Developmental Expression of Globin Genes and Globin Swintching 12.4 Genetic Disorders of Hemoglobin -Hemoglobin Structural Variants -Hemolytic Anemias -Sickle Cell Disease -Thalassemia: An Imbalance of Globin-Chain Synthesis -The Alpha-Thalassemias -The Beta- Thalassemias Chapter 13: Genetic Disorders with Complex Inheritance 13.1 Genetic analysis of qualitative disease traits and quantitative traits 13.2 Diseases with complex inheritance 13.3 Heritability and the threshold model 13.4 Estimating recurrence risks Chapter 14: Genetics Counseling
    • 14.1 The process of Genetics Counseling 14.2 Case Management in Genetic Counseling