Lecture 11 Mendelian Genetics

589 views
529 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
589
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
20
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • As humans have altered ecosystems and caused species extinctions world-wide, a critical question is the extent to which such biotic modifications influence ecosystem-level processes.
  • Darwin’s thoughts are based on many prior thinkers. We will briefly look at a few of those whose prior work made an impression on Darwin.
  • Darwin’s thoughts are based on many prior thinkers. We will briefly look at a few of those whose prior work made an impression on Darwin.
  • Lecture 11 Mendelian Genetics

    1. 1. Mendelian Genetics <ul><li>Reading: Chap. 14 </li></ul><ul><li>I. Intro </li></ul><ul><ul><li>A. Motivating question </li></ul></ul><ul><ul><li>B. Mendel </li></ul></ul><ul><li>II. Mendel’s findings </li></ul><ul><ul><li>A. Law of segregation </li></ul></ul><ul><ul><li>B. Law of independent assortment </li></ul></ul><ul><li>III. Complications </li></ul><ul><li>IV. Examples from human genetics </li></ul>
    2. 2. Terms and Concepts <ul><li>- character, trait, alleles </li></ul><ul><li>- P, F1, F2 </li></ul><ul><li>- dominant/recessive </li></ul><ul><li>- law of segregation </li></ul><ul><li>- law of independent assortment </li></ul><ul><li>- homozygous/heterozygous </li></ul><ul><li>- phenotype/genotype </li></ul><ul><li>- testcross </li></ul><ul><li>Rules of probability </li></ul><ul><li>Complications: </li></ul><ul><ul><li>- complete, incomplete and co- dominance </li></ul></ul><ul><ul><li>- multiple alleles </li></ul></ul><ul><ul><li>- pleiotropy </li></ul></ul><ul><ul><li>- Epistasis </li></ul></ul><ul><ul><li>- quantitative characters: polygenic inheritance </li></ul></ul>
    3. 3. Motivating question: Radiation of the Galápagos finches <ul><li>Beak sizes </li></ul><ul><li>Food availability </li></ul><ul><li>Range overlap </li></ul><ul><li>Probable ancestors </li></ul>
    4. 4. Galápagos Islands
    5. 5. What Darwin knew (and inferred): <ul><li>Patterns of distribution </li></ul><ul><li>Mechanism of natural selection </li></ul><ul><ul><li>heritable traits </li></ul></ul><ul><ul><li>“struggle for existence” </li></ul></ul><ul><ul><li>higher fitness --> more offspring </li></ul></ul><ul><ul><li>Shift in average traits in population </li></ul></ul>
    6. 6. What he didn’t know: <ul><li>How did heritability work? </li></ul><ul><li>What exactly was passed down from parents to offspring? </li></ul><ul><li>Blending vs. particulate? </li></ul><ul><li>No idea about: Genes, chromosomes, DNA, mitosis and meiosis </li></ul>
    7. 7. Gregor Mendel Fig 22.1 Austrian contemporary of Darwin Published shortly after Darwin - but work was “buried”
    8. 8. Who was Mendel? <ul><li>- Austrian monk </li></ul><ul><li>- Background in agriculture (grew up on a farm) </li></ul><ul><li>- Failed his teacher’s exam </li></ul><ul><li>- University of Vienna: math, causes of variation in plants </li></ul><ul><li>- Teaching at the Brünn Modern School </li></ul>
    9. 9. What did he do? <ul><li>Pea breeding </li></ul><ul><li>Testing mechanisms of inheritance </li></ul><ul><li>Used many different characters </li></ul><ul><li>Published results in 1865 </li></ul>
    10. 10. Why did his experiments succeed? Control over fertilization Multiple generations: P, F 1 , F 2 True breeding parents “ Either/or” characters
    11. 11. II. What did Mendel find? <ul><li>A. Law of segregation (of alleles) </li></ul><ul><li>B. Law of independent assortment (of traits) </li></ul>
    12. 12. A1. Mendel’s experiments: Simple cross P - true breeding parents with different traits for same character. F 1 - Cross two of same generation F 2 - evaluate resulting traits: 3 to 1
    13. 13. Mendel tested many traits 3 to 1!!! Did Mendel fudge?
    14. 14. <ul><li>- one factor from each parent </li></ul><ul><li>- dominant vs. recessive </li></ul><ul><li>- particulate inheritance: can get pure traits back </li></ul>A2. Mendel’s interpretation
    15. 15. <ul><li>homozygous vs. heterozygous </li></ul>Genotype vs. phenotype
    16. 16. <ul><li>When hybrid plants produce gametes, the two parental factors segregate: half the gametes get one type, half get the other type. </li></ul>3. Law of segregation All possible combinations, random combinations
    17. 17. 4. Rules of probability <ul><li>- multiplicity </li></ul><ul><li>- additivity </li></ul>
    18. 18. OK, prove it! The testcross <ul><li>Dominant phenotype: what genotype? </li></ul><ul><li>Predictions follow from particulate inheritance </li></ul>
    19. 19. 5. What do we know now?
    20. 20. Chromosomes, genes, and alleles P p Alleles segregate on the homologous chromosomes
    21. 21. How does the law of segregation relate to meiosis? Fig. 13.6 Homologous chromosomes separate after doubling Sister chromatids separate
    22. 22. B. Law of independent assortment <ul><li>What about two or more characters? Are they inherited together or independently? </li></ul>
    23. 23. 1. Two traits: an example Together Independent
    24. 24. Law of independent assortment (of characters) <ul><li>“Independent segregation of each pair of alleles (i.e., genes coding for each character) during gamete formation.” </li></ul>
    25. 25. Rules of probability Yellow round: YYRR YYRr YyRR YyRr (1/4*1/4) + (1/2*1/4)+(1/2*1/4)+(1/2*1/2) = 9/16 From YyRr x YyRr Green round: yyRR yyRr (1/4*1/4) + (1/4*1/2) = 3/16 Yellow wrinkled: YYrr Yyrr (1/4*1/4) + (1/2*1/4) = 3/16 Green wrinkled: yyrr (1/4*1/4) = 1/16
    26. 26. 2. What we know now: <ul><li>Mendel’s independent assortment referred to characters. </li></ul>fig. 13.9 How does this relate to independent assortment of chromosomes in meiosis?
    27. 27. What if genes for two traits are on the same chromosome? <ul><li>Independent or linked? </li></ul><ul><li>Linked, except for…? </li></ul><ul><ul><li>Crossing over </li></ul></ul><ul><ul><li>Depends how close they are: genes further apart are more likely to behave as indpendent. </li></ul></ul>
    28. 28. Mendel got lucky…twice <ul><li>(not that way - he was a monk!) </li></ul><ul><li>1. Genes for traits he studied were either on separate chromosomes, or </li></ul><ul><li>2. Far enough apart on the same chromosome that they assorted independently </li></ul>
    29. 29. III. Complications <ul><li>A. Dominance, Incomplete dominance and Codominance </li></ul>
    30. 30. A1. Incomplete dominance in snapdragon <ul><li>- Phenotype is intermediate </li></ul><ul><li>- NOT blending </li></ul>Fig. 14.9
    31. 31. A2. Codominance - M, N, MN blood groups MM NN MN BOTH traits expressed
    32. 32. B. Complications: Multiple alleles <ul><li>ABO blood groups </li></ul>fig. 14.10 Dominant Dominant Codominant Recessive
    33. 33. C. Complications: Pleiotropy <ul><li>- One gene affects many characters </li></ul><ul><li>- Sickling allele of hemoglobin </li></ul>fig. 14.15
    34. 34. D. Complications: Polygenic Inheritance and Quantitative Characters <ul><li>- One trait determined by multiple genes </li></ul><ul><li>- Converse of pleiotropy </li></ul><ul><li>- e.g., skin color: at least 3 genes </li></ul>fig. 14.12
    35. 35. E. Complications: Epistasis <ul><li>- Expression of one gene depends on another </li></ul><ul><li>- Mouse coat color: </li></ul><ul><li>B - black coat </li></ul><ul><li>b - brown coat </li></ul><ul><li>C - pigment </li></ul><ul><li>c - no pigment </li></ul>fig. 14.11
    36. 36. IV. Examples from human genetics <ul><li>Several excellent examples in the book. </li></ul><ul><li>- Simple traits, geneologies </li></ul><ul><li>- Genetic disorders (Tay-Sach’s disease, Huntington’s disease, cystic fibrosis, etc.) </li></ul><ul><li>Understand how they work, but don’t need to memorize the details of each. </li></ul><ul><li>Why might mating between close offspring lead to increased incidence of genetic disorders? </li></ul>
    37. 37. Where do we go from here? <ul><li>Have: </li></ul><ul><li>Mechanism for natural selection </li></ul><ul><li>Mechanism for heritability </li></ul><ul><li>Not yet: </li></ul><ul><li>Understanding of meiosis, maintenance of genetic variability </li></ul><ul><li>“ Molecular carrier” of heritable information </li></ul>
    38. 38. The modern synthesis Fig 22.1 Darwin Mendel Population genetics DNA

    ×