My Presentation

1,118 views
1,048 views

Published on

It's my project.

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,118
On SlideShare
0
From Embeds
0
Number of Embeds
16
Actions
Shares
0
Downloads
11
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • My Presentation

    1. 1. Kodchakorn Bokam Nutnaree Tamprateep Patcharaporn Chalopagorn
    2. 2. Introduction
    3. 3. Products
    4. 4. Para Rubber Taxonomic C l a ssification Class : Angiospermae Subclass : Dicotyledoneae Order : Euphorbiales Family : Euphorbiaceae Genus : Hevea Species : brasiliensis Scientific name : Hevea brasiliensis Muell Arg. Common name : Para Rubber
    5. 5. HDPE is the high density version of PE plastic . Because it has little branching , giving it stronger intermolecular forces and tensile strength than lower density polyethylene . So It is harder, stronger, more opaque and a little heavier than LDPE, but less ductile . HDPE
    6. 6. HDPE HDPE is lighter than water, and can be moulded and joined together HDPE is resistant to many different solvents and has a wide variety of applications
    7. 7. Objective To study about appropriate ratio to produce particle board from Para rubber wood flour, coconut flour, and recycled plastic.
    8. 8. - Advisors Mr.Sorachai Sae-lim Dr.Chanchai Thongpin Ass . Prof . Dr.Chakrit Sirisinha Acknowledge - The Thailand Research Fund , ( TRF ) - Young Scientist competition , ( YSC2008 )
    9. 9. Experiment 1. Production of wood plastic composites 2. Testing - Prepare material - Mixing & Molding composites Method -Impact test -Flexural test -Tensile test -Melt flow index 3. Fill coconut flour
    10. 10. 1. Production of wood plastic composites
    11. 11. 1.1 Preparing Materials
    12. 12. Dry at 75 degree to control moisture less than 5% Crush with grinder Use Screened wood flour > 200 mesh Recycled Plastic Para Wood Flour Preparing Materials
    13. 13. 1.2 Mixing & Molding
    14. 14. Mixing & Molding Method Mix wood flour and recycled plastic by internal mixer Molding specimen by injection molding ASTM test
    15. 15. Ratio <ul><li>Pure recycled plastic </li></ul><ul><li>10 % wood flour by weight </li></ul><ul><li>20 % wood flour by weight </li></ul><ul><li>40 % wood flour by weight </li></ul>
    16. 16. Result of molding <ul><li>Pure recycled plastic </li></ul><ul><li>10 % wood flour by weight </li></ul><ul><li>20 % wood flour by weight </li></ul>100 % Recycled plastic 10 % Wood 20 % Wood
    17. 17. 2. Testing
    18. 18. ASTM standards used
    19. 19. Result : 2.1 Tensile Test 886.989 19.890 19.097 20% W ood 592.627 191.235 23.672 10% W ood 589.788 40.836 23.989 P ure Tensile Modulus (MPa) Tensile Elongation (%) Tensile Strength (MPa) Formula
    20. 20. Result : 2.2 Flexural Test 1.203 1.230 1.297 Flexural Strength (MPa) 3280.284 20% W ood 1678.083 10% W ood 1435.756 P ure Flexural Modulus (MPa) Formula
    21. 21. Result : 2.3 Impact Test
    22. 22. Result : 2.4 Melt index test 0.5732 ± 0.056 20 % Wood (g) 0.8790 ± 0.086 10 % Wood (g) 0.7478 ± 0.038 0 % Wood (g) Melt Index (g/10min) Formula
    23. 23. Result : 2.4 Melt index test
    24. 24. 3. Fill coconut flour
    25. 25. Dry at 75 degree to control moisture less than 5% Coconut Flour Crush with grinder Preparing materials
    26. 26. Result : 3.1 Tensile Test 578.399 191.235 23.692 10% W ood 540.640 87.342 24.217 5%5% W ood- C oconut Tensile Modulus (MPa) Tensile Elongation (%) Tensile Strength (MPa) Formula
    27. 27. Result : 3.2 Flexural Test 1.157 2.293 Flexural Strength (MPa) 1095.891 5%5% W ood- C oconut 1609.318 10% W ood Flexural Modulus (MPa) Formula
    28. 28. Result : 3.3 Impact Test
    29. 29. Result : 3.4 Melt index test 0.8790 ± 0.086 10 % Wood (g) 0.6008 ± 0.077 5 % 5% Wood-Coconut (g) Melt Index (g/10min) Formula
    30. 30. Result : 3.4 Melt index test
    31. 31. <ul><li>เมื่อเพิ่มปริมาณขี้เลื่อยไม้ยางพารา </li></ul><ul><li>ความแข็งแรงดึง (Tensile Strength) มีแนวโน้ม ลดลง </li></ul><ul><li>ร้อยละการดึงยืด ณ จุดขาด (Tensile Elongation) มีแนวโน้ม ลดลง </li></ul><ul><li>มอดูลัส (Tensile Modulus) มีแนวโน้ม เพิ่มขึ้น </li></ul><ul><li>ความแข็งแรงโค้งงอ (Flexural Strength) มีแนวโน้ม ลดลง </li></ul><ul><li>มอดูลัสโค้งงอ (Flexural Modulus) มีแนวโน้ม สูงขึ้น </li></ul><ul><li>ความแข็งแรงกระแทก (Impact Strength) มีแนวโน้ม สูงขึ้น </li></ul><ul><li>ดัชนีการไหล (Melt Flow Index) มีแนวโน้ม ลดลง </li></ul>Conclusion
    32. 32. <ul><li>เมื่อผสมขุยมะพร้าว </li></ul><ul><li>ความแข็งแรงดึง (Tensile Strength) มีแนวโน้ม เพิ่มขึ้น </li></ul><ul><li>ร้อยละการดึงยืด ณ จุดขาด (Tensile Elongation) มีแนวโน้ม ลดลง </li></ul><ul><li>มอดูลัส (Tensile Modulus) มีแนวโน้ม ลดลง </li></ul><ul><li>ความแข็งแรงโค้งงอ (Flexural Strength) มีแนวโน้ม เพิ่มขึ้น </li></ul><ul><li>มอดูลัสโค้งงอ (Flexural Modulus) มีแนวโน้ม ลดลง </li></ul><ul><li>ความแข็งแรงกระแทก (Impact Strength) มีแนวโน้ม สูงขึ้น </li></ul><ul><li>ดัชนีการไหล (Melt Flow Index) มีแนวโน้ม ลดลง </li></ul>Conclusion
    33. 33. References Nicole M.Stark.1997 . Effect of Species and Particle Size on Properties of Wood- Flour-Filled Polypropylene Composites. USDA Forest Products Lab. 10-16 American Society for Testing and Materials. 2006. ASTM (online). Available : http://www.astm.org/ [5 January 2550] Craig Clemons. (2002). Wood-Plastic Composites in the United States . [Online].Available: http :// www.fpl.fs.fed.us / documnts /pdf2002/clemo02b.pdf Science Magazine . 2005 . Properties of high-density polyethylene using durian and rubber sawdusts as fillers. 23(2-3): 132-146

    ×