Estadistica Descriptiva
Upcoming SlideShare
Loading in...5
×
 

Estadistica Descriptiva

on

  • 11,096 views

 

Statistics

Views

Total Views
11,096
Views on SlideShare
11,092
Embed Views
4

Actions

Likes
0
Downloads
91
Comments
0

2 Embeds 4

http://formacion.educa.madrid.org 3
http://www.slideshare.net 1

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Estadistica Descriptiva Estadistica Descriptiva Presentation Transcript

  • Tema 1: Introducción
  • 1.1 Estadística Descriptiva
    • Conceptos generales.
    • Medidas de centralización.
    • Medidas de dispersión.
    • Medidas de posición.
    • Medidas de forma.
  • 1. Conceptos generales . Estadística (“Estado”): parte de las Matemáticas que se encarga de RECOGER y ANALIZAR datos. Muestreo Diseño de experimentos Estadística Descriptiva Estadística Inferencial Análisis Multivariante Regresión …
  • Muestra POBLACION Razones para tomar muestras: tiempo, dinero, accesibilidad, … PARADOJICAMENTE , para conocer a la población no hace falta estudiar a TODA la población…
  •           EN DOS SEMANAS RECORTA 4 PUNTOS El PP se sitúa a dos puntos del PSOE en intención de voto, según una encuesta publicada en El País El PP se encuentra a dos puntos del PSOE en intención directa de voto, según un sondeo del Instituto Opina que publica este domingo el diario El País. Agrega el periódico que el PP ha logrado recortar en dos semanas cuatro puntos en intención de voto respecto a los socialistas, quienes tenían un 44 por ciento de intención de voto, frente al 38 por ciento del PP, según la anterior encuesta de Opina, publicada el 25 de septiembre en ése mismo diario. L D (Agencias) El sondeo publicado este domingo, hecho sobre una muestra de 1.300 entrevistas hechas desde el 4 al 6 de octubre en todo el territorio español, desvela que el PP gana dos puntos y el PSOE los pierde, "con lo que la diferencia se reduce drásticamente y supone la ventaja socialista más reducida desde las elecciones generales"..   Aunque los diarios La Vanguardia y El Periódico de Cataluña recogen otra encuesta que revela que el PSC y CiU mantienen un empate técnico, aunque en los porcentajes de intención de voto el PSC continuaría por delante. En ambas encuestas, tanto el presidente de la Generalidad, Pasqual Maragall , como el líder de la oposición, Artur Mas , mejoran sustancialmente su valoración respecto a encuestas anteriores, aunque Maragall saca 19,3 puntos en la pugna por la presidencia de la Generalidad.   Así, la encuesta de La Vanguardia elaborada por el Instituto Noxa entre los días 3 y 6 de octubre a 1.000 entrevistados , otorga al PSC 44 escaños y una intención de voto del 32,5 por ciento, mientras que CiU pasaría de los actuales 46 escaños a 43 y mantendría una intención de voto del 29,2 por ciento. ERC mantendría su estatus de tercera fuerza política con 23 escaños, al igual que el PP, aunque según la encuesta crece la intención de voto respecto a las elecciones de 2003 y alcanza el 12,7 por ciento. ICV-EA también subiría y podría alcanzar los 10 escaños. Por su parte, la encuesta de El Periódico realizada durante los mismos días por la empresa Gesop a 800 entrevistados sitúa a PSC y CiU con un voto estimado del 32 por ciento en ambos casos, aunque la intención de voto directa otorga al PSC un 31,5 por ciento y a CiU un 22,3 por ciento.
  • VARIABLE ESTADISTICA Cuantitativas Cualitativas Discretas Continuas la cualidad que deseamos estudiar en la población
    • Intención de voto.
    • Número de hijos
    • Longitud del ala de un pájaro
    • Número de ejemplares de una especie en un continente.
    • Tiempo de recuperación de un ecosistema.
    • Número del despacho de distintos profesores.
    • …… .
    • La recogida de los datos se denomina muestreo . Tipos
    • de muestreo:
    • 1.- Muestreo aleatorio simple
    • Todos los individuos tienen a priori la misma probabi-
    • lidad de ser escogidos.
    • - La selección de la muestra se realiza AL AZAR
    • (para evitar sesgo)
    • 2.- Muestreo estratificado
    • Se aplica cuando en la población se distinguen
    • estratos que son relevantes para el estudio. Se escogen
    • aleatoriamente individuos en cada estrato, proporcional-
    • mente al tamaño del estrato.
  • 3.- Muestreo sistemático. Se aplica cuando los individuos de la población apare- cen ordenados en una lista, de modo que individuos de características similares están próximos en ella. Si se desea escoger a n individuos de una población de tamaño N, se determina el nº k más próximo a N/n, se escoge un individuo al azar de entre los k primeros, y los demás se escogen de la lista a partir del anterior, a intervalos regulares.
  • 4.- Muestreo polietápico o por conglomerados. Se divide previamente la población en unidades, siguien- do un cierto criterio, y se seleccionan aleatoriamente al- gunas de estas unidades. Sobre cada unidad, se realiza algún muestreo de los tipos anteriores (por ejemplo, para realizar un muestreo en una gran ciudad, se subdivide primero por barrios…)
  • Una vez diseñada la muestra, recogemos los datos; después, la información proporcionada por ellos debe ORDENARSE Tablas y gráficas estadísticas (datos agrupados y no agrupados)
  • Ejemplo 1: x i n i ó % i 17 18 19 21 22 DIAGRAMA DE BARRAS TABLAS Y GRAFICAS ESTADISTICAS
  • Ejemplo 2: x i n i ó % i 3.75 5.95 8.15 10.35…. HISTOGRAMA
  • Ejemplo 1: DIAGRAMA DE SECTORES
  • 2. Medidas de centralización . 1.- Media. 2.- Moda: el valor (unimodal) o valores (bimodal, etc.) con mayor frecuencia. 3.- Mediana: el valor que deja la mitad de los datos por debajo, una vez ordenados de menor a mayor. Estadístico ROBUSTO.
  • 3. Medidas de dispersión o variabilidad . La DISPERSION (o variabilidad) de un conjunto de datos es una medida de la distancia entre los datos, y su media. Poca dispersión = Datos homogéneos = Media muy representativa Mucha dispersión = Datos heterogéneos = Media poco representativa
  • Ejemplo : En una investigación sobre deficiencias medioambientales encon- tradas en plantas industriales, se seleccionaron aleatoriamente 25 plantas de dos comunidades diferentes. Se obtuvieron los siguientes datos sobre el número de deficiencias encontradas: La media es 4, en cada comunidad; pero ¿en cuál de ellas la variable es más dispersa?
  • 1 2 3 4 5 6 7 1 2 3 4 5 6 7 Ejemplo : En una investigación sobre deficiencias medioambientales encon- tradas en plantas industriales, se seleccionaron aleatoriamente 25 plantas de dos comunidades diferentes. Se obtuvieron los siguientes datos sobre el número de deficiencias encontradas: + disp.
  • ¿Cómo podemos medir la dispersión? 1.- Rango: dif. entre el mayor y el menor de los datos. 2.- Varianza: 3.- Desviación típica:
  • Propiedades de la varianza y la desviación típica: 1.- La varianza no puede ser negativa. 2.- A igualdad de medias, cuanto mayor sea la dispersión, mayor es la varianza (y la desv. típica). 3.- Si dos conjuntos de datos poseen medias similares, es más disperso aquel que tenga mayor varianza (desv. típica). 4.- El recíproco no es necesariamente cierto, porque la varianza (desv. típica) depende también del tamaño de los datos. Coeficiente de variación (CV) 5.- Al menos el 100(1-1/k 2 ) de los datos está entre la media, y ±k veces la desviación típica (por ejemplo, al menos el 75% de los datos está entre la media y 2 veces la desv. típica).
  • ¿Cómo podemos medir la dispersión? 1.- Rango. 2.- Varianza. 3.- Desviación típica. 4.- Coeficiente de variación: A mayor CV, mayor dispersión, y viceversa. 5.- Cuasivarianza, cuasidesviación típica (Util para estimar la varianza poblacional)
  • 4. Medidas de posición . 50% 25% q 1 q 3 M 75% q 1 : primer cuartil M : mediana q 3 : tercer cuartil Diagrama de caja y bigotes + Datos atípicos: Statgraphics
  • 10% 65% 89% p 10 =d 1 p 65 p 89 Deciles, percentiles
  • 5. Medidas de forma . Parámetros que permiten evaluar ciertas características del diagrama de barras/histograma ( simetría, apuntamiento ). Momento de orden r con respecto a la media:
  • Coeficiente de asimetría: Un conjunto de datos es simétrico, si lo es su histograma/diagrama de barras 1 2 3 4 5 6 7 1 2 3 4 5 6 7 Simetría Asimetría negativa (a la izqda.) Asimetría positiva (a la dcha.)
  • Coeficiente de asimetría: Coeficiente de asimetría de Fisher: A F >0: Asimetría positiva (a la dcha.) A F =0: Simetría A F <0: Asimetría negativa (a la izqda.)
  • Coeficiente de apuntamiento o curtosis: Previamente: curva normal N( µ, σ ) o campana de Gauss Un conjunto de datos es normal si su polígono de frecuencias se ajusta a esta curva.
  • Normal Leptocúrtica : más apuntada g 2 >0 Mesocúrtica : normal g 2 =0 Platicúrtica : más aplanada g 2 <0 Coeficiente de apuntamiento o curtosis:
  • Aceptamos que un conjunto de datos es “ aproximadamente normal ”cuando los coeficientes de asimetría y de curtosis tipificados están entre -2 y 2.