Enfermedad de la sustancia blanca Imagenología
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
762
On Slideshare
762
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
17
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide
  • Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria
  • Recurrenteremitentemost common (70% of cases)patients exhibit periodic symptoms with complete recovery (early on)secondary progressiveapproximately 85% of patients with relapsing-remitting MS eventually enter a secondarily progressive phaseprimary progressiveuncommon (10% of cases) patients do not have remissions, with neurological deterioration being relentlessprogressive with relapsesbenign MS 15 - 50% of casesdefined as patients who remain functionally active for over 15 years
  • MRIMRI has revolutionised the diagnosis and surveillance of patients with MS. Not only can an MRI confirm the diagnosis (see McDonald MRI criteria for multiple sclerosis), but follow-up scans can assess response to treatment and try and determine the disease pattern. T1lesions are typically iso to hypo intense (chronic)callososeptal interface may have multiple small hypo intense lesions (Venus necklace) or the corpus callosum may merely appear thinned 11 T2 : lesions are typically hyper intenseFLAIR :lesions are typically hyper intensewhen arranged perpendicular to lateral ventricles, extending radially outward (best seen on parasagittal images) they are termed Dawson fingersT1 C+ (Gd) :active lesions show enhancementenhancement is often incomplete around the periphery (open ring sign)DWI / ADC : active plaques may demonstrate restricted diffusion 10-11MR spectroscopy : may show reduced NAA peaks within plaques
  • Dedos de Dawson
  • Young woman with a known MS disease cames for a routine MRI. Previous exams were brought only in printed form.Patient Data:Age: 22Gender: FemaleRace: Caucasian
  • Young woman with a known MS disease cames for a routine MRI. Previous exams were brought only in printed form.Patient Data:Age: 22Gender: FemaleRace: Caucasian
  • Presentation:Known MS. F/up.Patient Data:Age: 45Gender: FemaleRace: Caucasian
  • Case Discussion:Necrosis and atrophy with cystic changes are common in chronic MS lesions, as shown here.MRI shows multiplewhitematter / corpus callosal / callososeptalhyperintense plaques (T2 and FLAIR) in thispatientwithmultiplesclerosis. Some of these are iso-intense to CSF and hypointenseon T1 & FLAIR, compatible withcysticchanges (left cerebral hemisphere) in chronic MS lesions.
  • Case Discussion:Necrosis and atrophy with cystic changes are common in chronic MS lesions, as shown here.MRI shows multiplewhitematter / corpus callosal / callososeptalhyperintense plaques (T2 and FLAIR) in thispatientwithmultiplesclerosis. Some of these are iso-intense to CSF and hypointenseon T1 & FLAIR, compatible withcysticchanges (left cerebral hemisphere) in chronic MS lesions.
  • restricted diffusion on the above image represents Intramyelinic Edema of Acute (Cytotoxic) Plaques in Multiple Sclerosis patient. Old MS plaques show on DWI and ADC 
  • Imaging of Multiple Sclerosis: Role in NeurotherapeuticsNeuroRXVolume 2, Issue 2, April 2005, Pages 277–303
  • Imaging of Multiple Sclerosis: Role in NeurotherapeuticsNeuroRXVolume 2, Issue 2, April 2005, Pages 277–303
  • Sagittal T1 weighted image in a 51 year-old woman with a 20 year history of MS showing multiple low signal lesions or “black holes” in the corpus callosum and pericallosal white matter.
  • EM primaria progresiva
  • This young woman presented with progressive left hemiparesis after having had a viral infection a week earlier.Case Discussion:This MRI demonstrates bilateral asymmetric lesions with open ring enhancement  characteristic of demyelination. Note that restricted diffusion is not seen centrally (usually seen in cerebral abscesses), but at the advancing rim of demyelination. She was treated with steroids, and rapidly improved.Followup three weeks later demonstrate the initially larger lesions to have reduced in size and others, which were small on the original scan to have progressed, but no new lesions having appeared.Findings are consistent with ADEM.  Although monophasic (compared to multiple sclerosis)  not all lesions mature at the same rate within the illness.
  • Case Discussion:This MRI demonstrates bilateral asymmetric lesions with open ring enhancement  characteristic of demyelination. Note that restricted diffusion is not seen centrally (usually seen in cerebral abscesses), but at the advancing rim of demyelination. She was treated with steroids, and rapidly improved.Followup three weeks later demonstrate the initially larger lesions to have reduced in size and others, which were small on the original scan to have progressed, but no new lesions having appeared.Findings are consistent with ADEM.  Although monophasic (compared to multiple sclerosis)  not all lesions mature at the same rate within the illness.
  • Case Discussion:This MRI demonstrates bilateral asymmetric lesions with open ring enhancement  characteristic of demyelination. Note that restricted diffusion is not seen centrally (usually seen in cerebral abscesses), but at the advancing rim of demyelination. She was treated with steroids, and rapidly improved.Followup three weeks later demonstrate the initially larger lesions to have reduced in size and others, which were small on the original scan to have progressed, but no new lesions having appeared.Findings are consistent with ADEM.  Although monophasic (compared to multiple sclerosis)  not all lesions mature at the same rate within the illness.
  • 38 year old female with multifocal neurological deficits; history of upper respiratory infection 2 weeks prior.Case Discussion:Multifocal signal abnormalities; cord expansion in the cervical spinal cord.Final Diagnosis: ADEMDxDif: Mielinolisis central pontina
  • Predilección posterior; inervación simpática dispersa, pobre autoregulación.
  • Crisishipertensiva
  • Case Discussion: This patient presented encephalopathic and very hypertensive. The bilateral occipital high signal on FLAIR was considered consistent with PRES. Followup scan two weeks later, after blood pressure control and resolution of symptoms demonstrated resolution of radiological findings also.
  • Presentation:Headache, confusion, seizures and visual loss.Patient Data:Age: 43Gender: MaleCase Discussion:Posterior reversible encephalopathy syndrome (PRES) is a neurotoxic state that occurs secondary to the inability of posterior circulation to auto-regulate in response to acute changes in blood pressure. Hyperperfusion with resultant disruption of the blood brain barrier results in vasogenicoedema, but no infarction, most commonly in the parieto-occipital regions. 
  • Fig 1. FLAIR-weighted sagattal MRI. Many foci or hypersignalin the white substance subcortical of preference in broadcastcrown and semioval centers.A 43-year old man with an antecedent history of chronic renalinsufficiency of unknown etiology received a cadaveric kidneytransplant in 2004. His immunosuppressive treatment was antithy-mocyte-globulin induction with mycophenolatemofetil (MMF),CsA, and prednisone. Four months later, he was hospitalized dueto pneumonia, and received fluorquinolones for 14 days. Duringthe stay, the blood CsA (C0) level was 659 ng/mL. Ten days afterdischarge, he experienced headache, meningism and bilateral sixthnerve palsy. Cerebrospinal fluid showed a clear liquid with 270 cellsincluding 60% polymorphonuclears and 40% mononuclear cellsand a glucose of 54 mg/dL. Gram stain, culture IFI-CMV, PCR-TBC, and india ink were all negative. Fig 3. T2-weighted axial MRI. Zones of corticosubcorticalhypersignal at occipital and left frontal level.A 16-year-old manwithlivercirrhosisduetochronicautoimmunehepatitis received a cadavericorthotopiclivertransplant in March2003. Immunosuppressivetreatmentincludedprednisone, CsA,and MMF. In thepostoperativeperiod, he developedgeneralizedtonic-clonicseizures. Bloodpressurewas normal. Electroencepha-logramwasinconclusive. Bloodcholesterolwas 250 mg/dL. Cere-brospinal fluid showed a clearliquidwith 25 cells, protein of 198mg/dL, and glucose of 60 mg/dL. Culturewasnegative. BloodCsAC0 levelwas 405 ng/mL.The MRI revealedalterations compatiblewith reversible posterior leukoencephalopathy (Fig 3). CsAwasreplacedwithtacrolimus and thepatientrecovered.
  • Ligada a X-Adrenoleucodistrofia-Adrenoleucomieloneuropatía-Enfermedad de Pelizaeus-MerzbacherAR-Enf. De Krabbé-EnfCanavan-Leucodistrofiametacromática-Sx de Cockayne-Sx de Aicardi-Goutieres-Adrenoleucodistrofía neonatalDesconocido-AlexanderAicardi syndrome is a rare genetic malformation syndrome characterized by the partial or complete absence of a key structure in the brain called the corpus callosum, the presence of retinal abnormalities, and seizures in the form of infantile spasms. Aicardi syndrome is theorized to be caused by a defect on the X chromosome as it has thus far only been observed in girls or in boys with Klinefelter syndrome. Confirmation of this theory awaits the discovery of the gene which causes Aicardi syndrome. Symptoms typically appear before a baby reaches about 5 months of age.
  • RM de cabeza y columna Scott W. Atlas, Marcus T. Alley 3ra Ed.
  • RM niño de dos días de edad.A: T1, mielinización en troco cerebral dorsal, radiaciones ópticas, brazos posteriores de las cápsulas internas, núcleo ventral lateral del tálamo, corona radiada central y región prerrolándica
  • Niño de 6 mesesMayor parte de la sustancia blanca, excepto fibras U suborticales
  • Regiónperiatrail
  • PRIMER OF DIAGNOSTIC IMAGING, FIFTH EDITION
  • Acumulo de sulfátidosSERAM Radiología esencialcharacterized by motor signs of peripheral neuropathy followed by deterioration in intellect, speech, and coordination. Within 2 years of onset, gait disturbance, quadriplegia, blindness, and decerebrate posturing may be seen. Disease progression is inexorable, and death occurs 6 months to 4 years after onset of symptoms Within 2 years of onset, gait disturbance, quadriplegia, blindness, and decerebrate posturing may be seen. Disease progression is inexorable, and death occurs 6 months to 4 years after onset of symptoms (5).
  • At T2-weighted MR imaging, metachromaticleukodystrophy manifests as symmetric confluent areas of high signal intensity in the periventricular white matter with sparing of the subcortical U fibers (Fig 1a). No enhancement is evident at computed tomography (CT) or MR imaging (Fig 1b). The tigroid and “leopard skin” patterns of demyelination, which suggest sparing of the perivascular white matter, can be seen in the periventricular white matter and centrumsemiovale (Fig 2). The corpus callosum, internal capsule, and corticospinal tracts are also frequently involved (Fig 3). The cerebellar white matter may appear hyperintense at T2-weighted MR imaging. In the later stage of metachromaticleukodystrophy, corticosubcortical atrophy often occurs, particularly when the subcortical white matter is involved (Fig 4).
  • Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.Metachromaticleukodystrophy. (a) T2-weighted MR image demonstrates bilateral confluent areas of high signal intensity in the periventricular white matter. Note the classic sparing of the subcortical U fibers (arrowheads). (b) Contrast material-enhanced MR image shows lack of enhancement in the demyelinated white matter, a finding that is characteristic of metachromaticleukodystrophy.
  • Metachromaticleukodystrophy. (a) T2-weighted MR image shows numerous linear tubular structures with low signal intensity in a radiating (“tigroid”) pattern within the demyelinated deep white matter. (b)T2-weighted MR image shows a punctate (leopard skin) pattern in the demyelinatedcentrumsemiovale, a finding that suggests sparing of the white matter. (c) On a contrast-enhanced T1-weighted MR image, the tigroid pattern seen in a appears as numerous punctate foci of enhancement (arrows) within the demyelinated white matter, which is unenhanced
  • Metachromaticleukodystrophy. (a) T2-weighted MR image shows numerous linear tubular structures with low signal intensity in a radiating (“tigroid”) pattern within the demyelinated deep white matter. (b)T2-weighted MR image shows a punctate (leopard skin) pattern in the demyelinatedcentrumsemiovale, a finding that suggests sparing of the white matter. (c) On a contrast-enhanced T1-weighted MR image, the tigroid pattern seen in a appears as numerous punctate foci of enhancement (arrows) within the demyelinated white matter, which is unenhanced and has low signal intensity (leopard skin pattern).
  • Metachromaticleukodystrophy with involvement of the corticospinal tract. (a) T2-weighted MR image shows bilateral high-signal-intensity areas in the periventricular white matter with posterior predominance. The corpus callosum is also involved (arrows). (b) T2-weighted MR image obtained at a lower level shows involvement of the descending pyramidal tracts of the medulla (arrows) and deep cerebellar white matter.
  • Figure 4a.  Evolution of metachromaticleukodystrophy. (a) T2-weighted MR image shows bilateral confluent areas of high signal intensity in the periventricular white matter with sparing of the subcortical U fibers. (b)Follow-up MR image obtained 2 years later still demonstrates bilateral high-signal-intensity areas, but now with involvement of the subcortical U fibers (arrows). Mild ventricular dilatation with widening of the sulci suggests diffuse cortical atrophy.
  • Deficiency of galactocerebrosideβ-galactosidase, anenzymethat degrades cerebroside, a normal con-stituent of myelincerebrosides accumulate in the lysosomes of macrophages within thewhite matter, forming the globoid cells characteristic of the diseaseThe infantile form is the most common and manifests as hyperirritability, increased muscle tone, fever, and developmental arrest and regres-sion. Disease progression is characterized by cognitive decline, myoclonus and opisthotonus, and nystagmus. Typically, Krabbe disease is rapidly progressive and fatal (5).
  • CT performed during the initial stage of the disease may demonstrate symmetric high-attenuation foci in the thalami, caudate nuclei, corona radiata, posterior limbs of the internal capsule, and brainstem (11–13). The centrumsemiovale, periventricular white matter, and deep gray matter demonstrate high signal intensity at T2-weighted MR imaging (Fig 5). The subcortical U fibers are spared until late in the disease course. Abnormal areas of hyperintensity may be seen in the cerebellum and pyramidal tract early in the disease course (11,12). Severe progressive atrophy occurs as the disease advances. Mild enhancement has been described at MR imaging at the junction of the subcortical U fibers with the underlying abnormal white matter despite the absence of an inflammatory reaction in the pathologic specimen (14). Optic nerve hypertrophy may also occur in Krabbe disease (13).
  • Figure 5.  Krabbe disease in a 2-year-old boy. T2-weighted MR image demonstrates symmetric high-signal-intensity areas in the deep white matter. The internal and external capsules are also involved (arrowheads). Note the bilateral areas of abnormal signal intensity in the thalami (arrows).
  • Case Discussion:3 year old child with delayed milestones.CT reveals hyperdense thalami and brain atrophy. Patient found to have Krabbe's disease.
  • Mucopolysaccharidosis is caused by a deficiency of the various lysosomal enzymes involved in the degradation of glycosaminoglycans presentes en cada una de nuestras células que ayudan a construir los huesos, cartílagos, tendones, córneas, la piel, el tejido conectivo y el tejido hematopoyéticoClasificaciónExisten varios tipos de mucopolisacaridosis; entre los más representativos están:Mucopolisacaridosis tipo I, también denominada gargolismo o enfermedad de Hurler. Existe un defecto de la enzima α-1-iduronidasa. Estos niños pueden vivir hasta la adolescencia y presentan talla baja, deformidades óseas, retraso mental, hepatomegalia, alteraciones oculares y facies de gárgola.Mucopolisacaridosis tipo II o Enfermedad de Hunter. Existe un déficit de la enzima denomindasulfatasa del iduronato. Produce también alteraciones en el desarrollo físico y mental del niño.Mucopolisacaridosis tipo III o síndrome de Sanfilippo.Mucopolisacaridosis tipo IV o síndrome de Morquio.Mucopolisacaridosis tipo VI o síndrome de Maroteaux-Lamy.Mucopolisacaridosis tipo VII o síndrome de Sly.
  • CT and MR imaging usually reveal delayed myelination, atrophy, varying degrees of hydrocephalus, and white matter changes. These changes manifest as diffuse low-attenuation areas within the cerebral hemispheric white matter at CT and as focal and diffuse areas of low signal intensity on T1-weighted MR images and high signal intensity on T2-weighted images (Fig 6). The sharply defined foci are commonly present in the corpus callosum, basal ganglia, and cerebral white matter. They are isointense relative to cerebrospinal fluid with all imaging sequences and probably represent mucopolysaccharide-filled perivascular spaces (16). As the disease progresses, the lesions become larger and more diffuse, reflecting the development of infarcts and demyelination.
  • Mucopolysaccharidosis in a 4-year-old boy with Hurler disease.(a) T1-weighted MR image shows multiple well-defined areas of low signal intensity in the central and subcortical white matter. (b) T2-weighted MR image demonstrates multiple well-defined areas of high signal intensity in the deep and subcortical white matter.
  • Peroxisomes are small, intracellularorganellesthat are involved in theoxidation of verylongchain and monounsaturatedfattyacids. Peroxisomalenzymes are alsoinvolved in gluconeogenesis, lysinemetabolism, and glutaricacidmetabolism (2). Peroxisomaldisorders are inbornerrors in cellularmetabolismcausedby a deficiency of oneor more of theseenzymes. ALD is a leukodystrophycausedby a single peroxisomalenzymedeficiency, whereasZellwegersyndrome and neonatal ALD (discussedlater) are causedbymultipleenzymedefects (1,2).
  • X-linked ALD is a rare peroxisomal disorder that affects the white matter of the central nervous system, adrenal cortex, and testes (17). The genetic defect responsible for X-linked ALD is located in Xq28, the terminal segment of the long arm of the X chromosome (18). X-linked ALD is caused by a deficiency of a single enzyme, acyl-CoAsynthesase. This deficiency prevents the breakdown of very long chain fatty acids (C > 22:0), which then accumulate in tissue and plasma (17). A rare form of ALD, neonatal ALD, is an autosomal recessive disorder characterized by multiple enzyme deficiencies.Un tratamiento con diferentes aceites ("aceite de Lorenzo") ha tenido mucho éxito aunque no ha sido aprobada por la FDA. Se trata de una mezcla de ácidos grasos que reduce los niveles de ácidos grasos de cadena muy larga, los cuales son la causa principal de la ALD, por medio de la competitividad, inhibiendo la enzima que forman los ácidos grasos de cadena muy larga.Addison2 de esta enfermedad es: languidez y debilidad general, actividad hipocinética del corazón, irritabilidad gástrica y un cambio peculiar de la coloración de lapiel.3
  • In the early stages of classic ALD, symmetric white matter demyelination occurs in the peri-trigonal regions and extends across the corpus callosumsplenium (Figs 7, 8). Demyelination then spreads outward and cephalad as a confluent lesion until most of the cerebral white matter is affected. The subcortical white matter is relatively spared in the early stage but often becomes involved in the later stages. The affected cerebral white matter typically has three different zones. The central or inner zone appears moderately hypointense at T1-weighted MR imaging and markedly hyperintense at T2-weighted imaging. This zone corresponds to irreversible gliosis and scarring. The intermediate zone represents active inflammation and breakdown in the blood-brain barrier. At T2-weighted MR imaging, this zone may appear isointense or slightly hypointense and readily enhances after intravenous administration of contrast material (Fig 7c). The peripheral or outer zone represents the leading edge of active demyelination; it appears moderately hyperin-tense at T2-weighted MR imaging and demonstrates no enhancement (19–21). Symmetricabnormal areas of hyperintensity along the descending pyramidal tract are common at T2-weighted MR imaging (Fig 9a,9b) (21). Atypical cases with unilateral or predominantly frontal lobe involvement may occur (Fig 10) (22).
  • Figure 7a.  ALD in a 5-year-old boy. (a) T2-weighted MR image shows symmetric confluent demyelination in the peritrigonal white matter and the corpus callosum. (b) On a T1-weighted MR image, the peritrigonal lesions appear hypointense. (c) Gadolinium-enhanced T1-weighted MR image reveals a characteristic enhancement pattern in the intermediate zone (arrows) representing active demyelination and inflammation.
  • Figure 7a.  ALD in a 5-year-old boy. (a) T2-weighted MR image shows symmetric confluent demyelination in the peritrigonal white matter and the corpus callosum. (b) On a T1-weighted MR image, the peritrigonal lesions appear hypointense. (c) Gadolinium-enhanced T1-weighted MR image reveals a characteristic enhancement pattern in the intermediate zone (arrows) representing active demyelination and inflammation.
  • Figure 8.  ALD involving the corpus callosumsplenium. T2-weighted MR image shows the corpus callosumsplenium with diffuse high signal intensity (arrows). No abnormality of the periventricular white matter is seen.
  • Figure 9a.  ALD with preferential involvement of the descending pyramidal tract. (a, b) T2-weighted MR images (b obtained at a lower level than a) show demyelination of the internal capsule, descending pyramidal tract (arrows in a, long arrows in b), and cerebellar deep white matter (short arrows in b). The peritrigonal white matter is relatively spared. (c)Gadolinium-enhanced T1-weighted MR image shows bilateral enhancement of the descending pyramidal tracts (arrows).
  • (c)Gadolinium-enhanced T1-weighted MR image shows bilateral enhancement of the descending pyramidal tracts (arrows
  • Figure 10a.  Atypical ALD. (a) T2-weighted MR image shows involvement predominantly of the frontal lobe white matter, genu of the corpus callosum, and anterior limbs of the internal capsule (arrows). (b) Gadolinium-enhanced T1-weighted MR image shows linear enhancement within the involved white matter and the anterior limbs of the internal capsule (arrows).
  • Zellwegersyndrome, orcerebrohepatorenalsyn­drome, isanautosomalrecessivedisordercausedbymultipleenzymedefects and characterizedbyliverdysfunctionwithjaundice, marked mentalretardation, weakness, hypotonia, and craniofa­cialdysmorphism (23). It may lead to death in early childhood. The severity of disease varies and is determined by the degree of peroxisomalactiv­ity. Ultrasonography of the kidneys reveals small cortical cysts. MR imaging reveals diffuse demyelination with abnormal gyration that is most severe in the peri­sylvian and perirolandic regions (Fig 11). The pattern of gyral abnormality is similar to that seen in polymicrogyria or pachygyria.
  • MR imaging reveals diffuse demyelination with abnormal gyration that is most severe in the peri­sylvian and perirolandic regions (Fig 11). The pattern of gyral abnormality is similar to that seen in polymicrogyria or pachygyria.
  • Zellweger syndrome in a 5-month-old girl. (a) T2-weighted MR image shows extensive areas of diffuse high signal intensity in the white matter. The gyri are broad, the sulci are shallow, and there is incomplete branching of the subcortical white matter, findings that suggest a migration anomaly with pachygyria. (b) On a T1-weighted MR image, the white matter abnormalities demonstrate low signal intensity.
  • Some reasonably well-defined disorders include MELAS syndrome, Leigh disease, and MERRF syndrome síndrome de epilepsia mioclónica asociada a fibras rojas rasgadas;Kearn-Sayre syndrome El síndrome de Kearns-Sayre (abreviado como SKS) es una enfermedad producida por una deleción de 5000 pares de bases en el ADN mitocondrial, es por lo tanto una enfermedad genética.Dependiendo de cuales sean las células afectadas, los síntomas pueden incluir: pérdida del control motor, debilidad muscular, dolor agudo, desordenes gastrointestinales y dificultades en el aparato digestivo, retardo en el crecimiento, enfermedad cardíaca, enfermedad hepática, diabetes, complicaciones respiratorias, crisis, problemas visuales/auditivos, acidosis láctica, retrasos en el desarrollo y susceptibilidad a las infecciones. En todos los casos causando la muerte prematura.NAA
  • MELAS Syndrome Patients with MELAS syndrome usually appear healthy at birth with normal early development, then exhibit delayed growth, episodic vomiting, seizures, and recurrent cerebral injuries resem­bling stroke. These strokelike events, probably the result of a proliferation of dysfunctional mito­chondria in the smooth muscle cells of small ar­teries, may give rise to either permanent or revers­ible deficits.
  • MRIchronic infarctsinvolving multiple vascular territoriesmay be either symmetrical or asymmetrical parieto-occipital and parieto-temporal most commonacute infarctsswollen gyri with increased T2 signalmay enhancesubcortical white matter involvedincreased signal on DWI (T2 shine through) with little if any change on ADC: thought to represent vasogenic rather than cytotoxicoedema 3MR imaging demonstrates multiple cortical and subcortical infarct-like lesions that cross vas­cular boundaries, along with varying degrees of generalized cerebral and cerebellar atrophy (Fig 12a, 12b). The parietal and occipital lobes and the basal ganglia are frequently involved. Fol­low-up MR images may show resolution and sub-sequent reappearance of the abnormal areas (Fig 12c).
  • (a) Initial T2-weighted MR image shows a high-signal-intensity lesion in the left occipital lobe (arrows). Prominent cortical sulci are seen in the right occipital lobe, a finding that suggests cortical atrophy. (b) On a contrast-enhanced T2-weighted MR image, the lesion demonstrates no enhancement. (c) Follow-up MR image obtained 15 months later shows another lesion in the left temporal area (arrowheads). (d) Photomicrograph (original magnification, ×40; Gomorimethenamine silver stain) of the muscle biopsy specimen reveals scattered ragged red fibers (arrows). (e)Electron micrograph reveals an increased number of mitochondria (arrows), which are somewhat irregular in shape.
  • Figure 1.A, Coronal FLAIR 11 days afterstroke-like episode 1 onset. B, Sagittal T1 58days after stroke-like episode 1 onset
  • Leigh disease, or subacute necrotizing encephalo­myelopathy, is an inherited, progressive, neurode­generative disease of infancy or early childhood with variable course and prognosis (30). Affected infants and children typically present with hypo­tonia and psychomotor deterioration. Ataxia, ophthalmoplegia, ptosis, dystonia, and swallow­ing difficulties inevitably ensue (30,31). Charac­teristic pathologic abnormalities include micro-cystic cavitation, vascular proliferation, neuronal loss, and demyelination of the midbrain, basal ganglia, and cerebellar dentate nuclei and, occa­sionally, of the cerebral white matter (31).
  • Typical MR imaging findings include symmet­ricputaminal involvement, which may be associ­ated with abnormalities of the caudate nuclei, globuspallidi, thalami, and brainstem and, less frequently, of the cerebral cortex (Fig 13). The cerebral white matter is rarely affected. Enhance­ment may be seen at MR imaging and may corre­spond to the onset of acute necrosis (31).
  •  Leigh disease in a 2-year-old boy. (a) T2-weighted MR image shows bilateral high-signal-intensity areas in the putamen and globuspallidus (arrows). (b) On a T1-weighted MR image, the lesions demonstrate low signal intensity (arrows).
  • Canavan disease, or spongiform leukodystrophy, is an autosomal recessive disorder caused by a deficiency of N-acetylaspartylase, which results in an accumulation of N-acetylaspartic acid in the urine, plasma, and brain. It usually manifests in early infancy as hypotonia followed by spasticity, cortical blindness, and macrocephaly (2). Cana­van disease is a rapidly progressive illness with a mean survival time of 3 years, although pro­tracted cases do occur. Definite diagnosis usually requires brain biopsy or autopsy. Canavan disease is characterized at pathologic analysis by extensive vacuolization that initial­ly involves the subcortical white matter, then spreads to the deep white matter (Fig 14c). Elec­tron microscopy demonstrates increased water content within the glial tissue, described as having the texture of a wet sponge, as well as dysmyelina­tion (32,33).
  • T1-weighted MR imaging demonstrates sym­metric areas of homogeneous, diffuse low signal intensity throughout the white matter, whereas T2-weighted imaging shows nearly homogeneous high signal intensity throughout the white matter. The subcortical U fibers are preferentially af­fected early in the course of the disease (Fig 14a, 14b). In rapidly progressive cases, the internal and external capsules are involved, and the cere­bellar white matter is usually affected as well. As the disease progresses, atrophy becomes con­spicuous.
  • Figure 14. Canavan disease in a 6-month-old boy with macrocephaly. (a) T2-weighted MR image shows exten­sive high-signal-intensity areas throughout the white matter, resulting in gyralexpan­sion and cortical thinning. Striking demy­elination of the subcortical U fibers is also noted. (b) T1-weighted MR image shows demyelinated white matter with low sig­nal intensity. (c) Photomicrograph (origi­nal magnification, �200; hematoxylin-eo­sin stain) shows ballooning of the myelin sheaths of oligodendrocytes due to massive intramyelinic edema.
  • PMD has been linked to a severe deficiency of myelin-specific lipids caused by a lack of proteo­lipid protein. This myelin-specific proteolipidprotein is necessary for oligodendrocytedifferen­tiation and survival. PMD has traditionally been divided into classic and connatal forms (34,35). Classic PMD begins during late infancy with X-linked recessive inheritance. Connatal PMD is a rarer and more severe variant that begins at birth or in early infancy. The connatal form has eitherX-linked or autosomal recessive inheritance. Patients with all forms of PMD present with clinical signs and symptoms including abnormal eye movements, nystagmus, extrapyramidalhyperki­nesias, spasticity, and slow psychomotor development (34–36).
  • T2-weighted MR imaging reveals a nearly total lack of normal myelination with diffuse high signal intensity that extends peripherally to involvethe subcortical U fibers, along with early involvement of the internal capsule (Fig 15). Sometimes,the white matter demonstrates high signal intensity with small scattered foci of more normal signal intensity, afinding that may reflect the tigroid pattern of myelination (36). At pathologic analysis, the involved white matter demonstrates patchy distribution of dysmyelination with preserved myelin islands. These findings are frequently seen along the perivascular area, thus giving rise to the characteristic tigroid appearance
  • PMD in a 7-month-old boy. T2-weighted MR image reveals almost no myelination of the cerebral white matter. The subcortical white matter is also involved, as are the internal and external capsules (arrowheads).
  • Alexander disease, or fibrinoidleukodystrophy, is characterized at pathologic analysis by massive deposition of Rosenthal fibers (dense, eosinophilic, rodlikecytoplasmic inclusions found in astrocytes) in the subependymal, subpial, and perivascular regions (Fig 16b) (37). Three clinical subgroups are recognized. The infantile subgroup is characterized by early onset of macrocephaly, psychomotor retardation, and seizure. Death occurs within 2–3 years. The diagnosis is made on the basis of a combination of macrocephaly, early onset of clinical findings, and imaging findings, but definite diagnosis usually requires brain biopsy or autopsy. In the juvenile subgroup, onset of symptoms occurs between 7 and 14 years of age. Progressive bulbar symptoms with spasticity are common. In the adult subgroup, onset of symptoms occurs between the 2nd and 7th decades. The symptoms and disease course can be indistinguishable from those of classic multiple sclerosis in the adult subgroupLa fibra de Rosenthal es una haz grueso, alargado, con un contorno irregular y en forma de espiral eosinofílico que aparece en la tinción hematoxilina-eosina del cerebro en presencia degliosis de larga evolución, en ocasiones tumores, y algunos desórdenes metabólicos.Son características también del astrocitomapilocítico cerebeloso, también como respuesta cerebral reactiva adyacente al craneofaringioma o a las cavidades siringeas, y como consecuencia de la enfermedad de Alexander (leucodistrofia) se encuentran abundantemente en zonas periventriculares, perivasculares y subpiales.1
  • Alexander disease has a predilection for the frontal lobe white matter early in its course. CT demonstrates low attenuation in the deep frontal lobe white matter. Enhancement is often seen near the tips of the frontal horns early in the disease course (39). The characteristic frontal lobe areas of hyperintensity are seen at T2-weighted MR imaging. These hyperintense areas progress posteriorly to the parietal white matter and internal and external capsules (Fig 16a). The subcortical white matter is affected early in the disease course. In the late stages of the disease, cysts may develop in affected regions of the brain.
  • Alexander disease in a 5-year-old boy with macrocephaly. (a)T2-weighted MR image shows symmetric demyelination in the frontal lobe white matter. The internal and external capsules and parietal white matter are also involved.

Transcript

  • 1. Dr. Orlando Morales Ballesteros R3Rx
  • 2.     Enfermedad de la sustancia blanca Enfermedad de la sustancia gris Desordenes de los ganglios basales Tóxico/infeccioso
  • 3.  Enfermedad de la sustancia blanca  Enfermedad desmielinizante ▪ Adquirida ▪ Mielina normal  Enfermedad dismelinizante (leucodistrófias) ▪ Errores de congénitos ▪ Síntesis, mantenimiento o degradación.
  • 4.  Enfermedad desmielinizante  Esclerosis múltiple  EMDA  Relacionada a toxinas ▪ Mielinolisis central pontina ▪ Síndromes paraneoplásicos ▪ Radiación y quimioterapia ▪ Alcoholismo
  • 5.  Enfermedad dismelinizante  Desórdenes de encimas lisosomales  Desórdenes de los peroxisomas  Desórdenes mitocondriales  Amino-ácidopatías  Idiopáticas
  • 6.  Enfermedad desmielinizante idiopática  Autoinmune; influencia genética y factores ambientales.   Inflamación perivascular (placas agudas) Proliferación astroglial y desmielinización (placas crónicas) Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria
  • 7.    Adultos jóvenes (35ª) Mujeres (60%) Clínica: Localización de la lesión  Amaurosis mono ocular, problemas de la marcha, alteraciones sensoriales. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria
  • 8. ▪ Recurrente remitente ▪ Más común (70%) ▪ Periodos sintomáticos con remisión completa (etapas tempranas) ▪ Secundariamente progresiva ▪ 85 % de los pacientes con EM RR. ▪ Primaria progresiva ▪ Menos común (10%) ▪ Progresiva con remisiones ▪ SM benigna ▪ 15 - 50%; se mantiene funcionalidad por mas de 15 años.
  • 9.  Diagnóstico:  Clínica  Laboratorio: potenciales evocados, bandas oligoclonales en LCR (IgG), Acuaporina 4 sérica (NMO).  Imagen: Criterios de McDonald ▪ RM: Distribución en tiempo y espacio
  • 10.  Lesiones hiperintensas en T2 y FLAIR      0.5 – 3cm Alargadas, elípticas en la interfase calloso-septal Dedos de Dawson SM tumefacta; puede simular una tumoración Realce al contraste homogéneo, en anillo, parchado (Placas activas)
  • 11.  Distribución:  Supratentorial ▪ Periventricular bilateral (85%) ▪ Cuerpo calloso (70%) ▪ Dispersas en la sustancia blanca ▪ Sustancia gris (poco común)  Tallo, Cerebelo  Médula espinal (50%)  Nervios ópticos y quiasma.
  • 12.  Otros hallazgos  Atrofia cortical (hasta un 80%)  Atrofia del cuerpo calloso (40%)  Tálamo y putamen hipointensos en T2 (depósitos de ferritina)  “Hoyos negros” en T1
  • 13.    Antecedente de infección viral o vacunación Mas frecuente en niños Indistinguible de la EM por imagen*  Menor tendencia periventricular  Mayor afección a tálamos  Monofásica
  • 14.   Clínica: Cefalea, alteraciones visuales, convulsiones, confusión Causas comunes      Hipertensión Eclamsia / pre-eclamsia Vasculitis Quimioterapia (ciclosporina), Radioterapia Comúnmente reversible si se trata la causa
  • 15.  Alta señal en T2  Sustancia gris y sustancia blanca subcortical  Predilección posterior  Lóbulo occipital, parietal y tallo cerebral (posterior)  Involucro de estructuras anteriores no excluye el Dx.  Realce variable
  • 16.  2 semanas después
  • 17.     Haces proximales antes que los distales (tronco cerebral antes que cerebro) Sensorial antes que motor Sustancia blanca central antes que periférica Posterior antes que anterior RM de cabeza y columna Scott W. Atlas, Marcus T. Alley 3ra Ed 2004.
  • 18.     Tronco cerebral dorsal Pedúnculos cerebelosos superiores e inferiores Región perirrolándica Haz corticoespinal  Porción central del centro semioval  Brazo posterior de la cápsula interna   ´Tálamo ventrolateral Nervio óptico, quiasma y tracto RM de cabeza y columna Scott W. Atlas, Marcus T. Alley 3ra Ed 2004.
  • 19.  Recién nacido RM de cabeza y columna Scott W. Atlas, Marcus T. Alley 3ra Ed 2004.
  • 20.  6 meses
  • 21.  24 meses
  • 22.  Grupo heterogéneo Defectos Enzimáticos  Mielina Anormal Lisosomas, Peroxisomas, Mitocondrias, Aminoácidos, idiopáticos.
  • 23.  Principales leucodistrófias Nombre Tipo Deficiencia Comentario Leucodistrofia metacrómica Lisosomal (AR) Arilsulfatasa A Mas común Enf. de Krabbe Lisosomal (AR) Galactocerebrósido BGalactocidasa Mucopolisacaridosis Lisosomal Enzimas degradantes de glucosaminoglucanos Adrenoleucodistrófia Peroxisomal (X) Acetil CaA sintetasa Enf. de Canavan Citosol (AR) N-Acetilaspartilasa Degeneración espongiforme Enf. de Alexander Desconocido Desconocido Esperádica Enf. de Pelizaeus-Merzbacher Desconocido Proteolipido apoproteina Fenilcetonuria Amino-ácidos Fenilalanina hidroxilasa *** Tratamiento dietético
  • 24.  3 tipos de acuerdo a la edad de presentación  Infantil tardía, Juvenil, Adulto ▪ 12-18 meses  Clínica  Signos motores; neuropatía periférica  Deterioro intelectual, habla y coordinación  2 años; trastornos de la marcha, cuadriplejia, ceguera, posición de decerebración.  Progresiva, MUERTE 6 meses a 4 años de instalado el cuadro.  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 25. Aumento de señal T2 SBP periventricular; confluentes  Respeta de las fibras U*  No capta contrastae  Patrón “atigrado” , leopardo; distribución perivascular  Cuerpo calloso, cápsula interna y tracto córtico-espinal  Sustancia blanca del cerebelo 
  • 26.  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 27.  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 28.  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 29.  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 30.  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 31.   Deficiencia de Galactocerebrósido BGalactocidasa 3 tipos de acuerdo a la edad de presentación  Forma infantil; más común. ▪ Irritabilidad, incremento del tono muscular, fiebre, aislamiento y regresión ▪ Progresiva; involución congnitiva, mioclonus, opistótonos y nistagmus  Rápidamente progresiva y fatal
  • 32.      Sustancia blanca profunda SB periventricular Fibras U respetadas hasta estadios tardios Núcleos dentados cerebelosos Tálamos densos en TC  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 33.  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 34. Deficiencia de enzimas lisosomales encargadas de degradar glucosaminoglucanos  Macrocrania, cifosis, enanismo,  Cráneo: Dilatación de espacios perivasculares, desmielinización de SB, engrosamiento dural  Subluxación atlanto axial   Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 35.  Imagen     Retraso en la mielinización Hidrocefalia Cambios en la sustancia blanca Focos bien definidos; cuerpo calloso, ganglios basales, sustancia blanca cerebral; espacios perivasculares llenos de mucopolisacárido.  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 36. Ligada al cromosoma X Sustancia blanca del SNC, corteza adrenal (Addison) y testículos  Deficiencia de Acil-CoA Sintetasa  Acumulación de ácidos grasos de cadena muy larga  ALD neonatal (Rara); deficiencia de varias encimas    Muerte antes de los 5 años
  • 37. Male adrenoleukodystrophy phenotypes[1] Phenotype Childhood cerebral Adolescent Description Progressive neurodegenerative decline, leading to a vegetative state without treatment Similar to childhood cerebral, with a slower progression Adrenomyelone Progressive neuropathy, paraparesis; approximately 40% uropathy (AMN) progress to cerebral involvement Onset Approximate Relative Frequency 3–10 years 31–35% 11–21 years 4–7% 21–37 years 40–46% Adult cerebral Dementia, behavioral disturbances, similar progression to childhood cerebral form, but without preceding AMN Adulthood phenotype Olivo-pontocerebellar Cerebral and brain stem involvement Adolescence to adulthood Adrenal insufficiency Up to 50% in Before 7.5 years childhood, varies with age No clinical presentation, further studies can reveal subclinical adrenal insufficiency or mild AMN phenotype Most common Proportion of phenotype in asymptomatic patients boys under four decreases with age years of age "Addison disease only" Asymptomatic 2–5% 1–2%
  • 38. Female adrenoleukodystrophy phenotypes[1] Phenotype Description Asymptomatic No neurologic or adrenal involvement Mild myelopathy Increased deep tendon reflexes, sensory changes in lower extremities Onset Approximate Relative Frequency Most women under 30 do not have any Diminishes with age neurologic involvement Approximately 50% of Adulthood women over 40 years of age Moderate to severe Similar to male AMN phenotype, but later onset and myeloneuropath milder presentation y Adulthood Cerebral involvement Progressive dementia and decline Rare in childhood, more ~2% common in adults Adrenal involvement Primary adrenal insufficiency Any age Approximately 15% of women over 40 years of age ~1%
  • 39.  Imagen  Etapas iniciales ▪ Desmielinización simétrica posterior ▪ Extensión al esplenio del cuerpo calloso ▪ Relativa conservación de SB subcortical  3 zonas ▪ Central (Hipo T1 – Hiper T2) Gliosis irreversible y cicatriz ▪ Intermedia, (levemente hipointensa T2, Realce C+) inflamación activa, ruptura de la barrera HE ▪ Periférica Borde de desmilinización activa (Moderadamente Hiper T2, sin realce)  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 40.  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 41.  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 42.  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 43.  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 44.  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 45.  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 46.   Sx. Cerebrohepatorenal Múltiples enzimas     Disfunción hepática con ictericia Marcado retraso mental y debilidad (hipotonía) Dismorfismo craneofacial Enfermedad quística renal (quistes corticales pequeños)  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 47.  Imagen:  Desmielinización difusa  Alteraciones girales ▪ Región perisilviana y perirolándica ▪ Polimicrogiria o paquigiria  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 48.  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 49.  Sanos al nacimiento; desarrollo temprano normal  Retraso del crecimiento, vómitos, convulsiones  Lesiones cerebrales recurrentes semejantes a infartos  Disfunción mitocondrial  Musculo liso, Neuronal   Progresiva con exacerbaciones Elevación del lactato sérico  Stroke 2009;40:e15-e17 Serial Diffusion Imaging in a Case of Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-Like Episodes
  • 50.  Imagen  Lesiones similares a infartos (Agudos y crónicos)  No respetan territorios vasculares  Parieto-occipital y parieto-temporal mas común, ganglios basales  Atrofia; Estudios de control, posible “resolución”, lesiones nuevas  DWI hiper, poco o ningún cambio en ADC  Realce giral en tras episodios, en etapa subaguda tardía*  Stroke 2009;40:e15-e17 Serial Diffusion Imaging in a Case of Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-Like Episodes
  • 51.  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 52.  Stroke 2009;40:e15-e17 Serial Diffusion Imaging in a Case of Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-Like Episodes
  • 53.  Stroke 2009;40:e15-e17 Serial Diffusion Imaging in a Case of Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-Like Episodes
  • 54.     Encefalo-mielopatia necrotizante aguda Hereditaria, progresiva Niñéz temprana Clínica: Hipotonía, deterioro psicomotor.  Ataxia, oftalmoplegía, ptosis, distonía, disfagia  Desmielinización del mesencéfalo, gánglios basales, núcleo dentado.  Sustancia gris cerebral*  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 55.  Imagen  Putamen en forma bilateral y “simétrica” (Hiper T2) ▪ Núcleo caudado, globo pálido, tálamo, tallo ▪ Menos frecuente corteza y SB cerebral  Realce en episodios de necrosis aguda (T1 C+)  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 56.  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 57.   Leucodistrofia espongiforme Deficiencia de N-Acetilaspartilasa  N-Acetil-Aspartato  Clínica: Hipotonía en infancia temprana  Espasticidad  Ceguera cortical  Macrocefalia  Rápidamente progresiva (supervivencia 3 años)  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 58.   T1; Baja intensidad simétrica y homogénea en la sustancia blanca T2; Alta señal, predominantemente homogénea  Fibra U afectadas en etapas tempranas  Capsulas internas y externas involucradas en evolución rápida  SB Cerebelo; Atrofia.
  • 59.  Deficiencia de lípidos de la mielina  Carencia de proteína proteo-lípida ▪ Necesaria para la diferenciación del oligodendrocito   Autosómica recesiva o ligada a X* Clínica: Movimientos oculares anormales, nistagmos, hiperquinesia extrapiramidal, espasticidad, desarrollo psicomotor lento  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 60.  Imagen  T2 hiper; ausencia casi completa de mielinización normal ▪ Fibras U y cápsula interna. ▪ A veces; Focos de señal normal ▪ Patrón “atigrado” de mielinización *  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 61.  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 62.   Leucodistrofia fibrinoide Depósito de fibras de Rosental (Astrocitos)  Subependimario, subpial y perivascular    Macrocepalia; retraso psicomotor, convulsiones Muerte de 2-3 años Infantil <6 años; Juvenil 7-14 años; Adulto 2da-7ma década (clínica indistinguible de EM)  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 63.  Imagen  T2 hiper; sustancia blanca frontal ▪ Progresión posterior; parietal, cápsula interna y externa ▪ Sustancia blanca subcortical afectada en etapas tempranas  Degeneración quística en etapas tardías  Realce C+ en cuernos frontales en etapas tempranas  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 64.  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.
  • 65.  Leukodystrophy in Children: A Pictorial Review of MR Imaging Features May 2002 RadioGraphics, 22,461-476.