• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Brandon Thomas -- Disruptive Diner: Nano Possibilities
 

Brandon Thomas -- Disruptive Diner: Nano Possibilities

on

  • 166 views

Presentation and discussion from 10/15/13 on opportunities to generate, store, distribute and use energy via nanotechnology. Brandon Thomas, graduate researcher at St. Louis University presented with ...

Presentation and discussion from 10/15/13 on opportunities to generate, store, distribute and use energy via nanotechnology. Brandon Thomas, graduate researcher at St. Louis University presented with a focus on dramatically increasing efficiency, safety, and power via nano energy. Join OpenlyDisruptive.org for live access to more disruptive innovation events.

Statistics

Views

Total Views
166
Views on SlideShare
162
Embed Views
4

Actions

Likes
0
Downloads
2
Comments
0

1 Embed 4

http://openlydisruptive.org 4

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Brandon Thomas -- Disruptive Diner: Nano Possibilities Brandon Thomas -- Disruptive Diner: Nano Possibilities Presentation Transcript

    • BRANDON J. THOMAS PH.D. CANDIDATE SAINT LOUIS UNIVERSITY Use of Nanomaterials for Energetic Applications I.  Piezoelectrics II.  Supercapacitors III.  Reactive Materials IV.  Solar Cells
    • Nanotubes   Nanorods   Nanomaterials   Size:  1-­‐100  nm   Nanosheets   Nanopar5cles   Nanowires  
    • CARBON-BASED NANOMATERIALS Carbon Nanotubes Graphene Buckminsterfullerene, C60
    • Size  Control   Shape  Control   REACTIVITY  
    • Piezoelectric  Effect   Voltage  ßà  Strain   Qin,  Y.;  Wang,  X.;  Wang,  Z.  L.  Nature   2008,  451,  809–813.  
    • PIEZOELECTRIC APPLICATIONS Wang, Z. L. Adv. Funct. Mater. 2008, 18, 3553–3567.
    • Supercapacitors Halper,  M.  S.;  Ellenbogen,  J.  C.  Report  No.  MP  05W0000272,  The  MITRE  Corpora5on,   McLean,  Virginia  2006.  
    • SUPERCAPACITOR •  Nano-enabled electrodes •  Graphene •  Carbon nanotubes (CNTs) http://www.dataweek.co.za/news.aspx?pklnewsid=23918
    • Reactive metal nanomaterials Al (s) + O2 (g) à Al2O3 (s) Thermite Al(s) + H2O(l) à Al(OH)3(s) + H2(g) H2 production/ storage Fuels
    • Nano Al reaction
    • HYDROGEN PRODUCTION http://www.youtube.com/watch?v=hykAr0Lhz04, CE Bunker, AFRL
    • Hydrogen as a Fuel H2 (g)+ O2 (g) à H2O (l) http://butane.chem.uiuc.edu/pshapley/Enlist/Labs/FuelCellLab/FuelCell.html
    • HYDROGEN IS DANGEROUS!
    • HYDROGEN STORAGE Mg nanoblades decorated with Pd NPs Liu, Y.; Chen, L.; Lu, T. M.; Wang, G. C. Int. J. Hydrogen Energ. 2011, 36, 11752–11759.
    • COMPLEX METAL HYDRIDES Niemann, M. U.; Srinivasan, S. S.; Phani, A. R.; Kumar, A.; Goswami, D. Y.; Stefanakos, E. K. J. Nano. Mat. 2008, 1–9.
    • REVERSIBLE HYDROGEN STORAGE – LI3ALH6 Thomas, B.J.; Bunker, C.E.; Guliants, E.A.; Buckner, S.W.; Jelliss, P.A. Chem. Commun. 2013, submitted.
    • Patel, A.; Bunker, C. E.; Guliants, E. A.; Jelliss, P. A.; Buckner, S. W. CRC Press, 2013; Vol. 1, pp. 366–369.
    • Solar Cells – Photovoltaic Effect Forvision  smart  car,  BASF   hYp://www.solarnovus.com/ar5cle.php?nID=937    
    • InP NW array – 13.8% efficiency Wallentin, J. et al. Science 2013, 339, 1057−1060.
    • SUMMARY Energy Conversion Mechanical Chemical Solar Nanomaterials Size: 1-100 nm ELECTRICAL ENERGY Nanogenerators Solar Cells Fuel Cells Supercapacitors