Educational Neuroscience: Using Cognitive and Brain Science to Enhance our Understanding of Learning and Achievement in Math


Published on

The CERI OECD/National Science Foundation International Conference took place in Paris, at the OECD Headquarters on 23-24 January 2012. Here the presentation of Session 5, Informal Learning, Item 2.

Published in: Education, Technology
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Educational Neuroscience: Using Cognitive and Brain Science to Enhance our Understanding of Learning and Achievement in Math

  1. 1.         Educa&onal  Neuroscience:    Using  Cogni&ve  and  Brain  Science  to    Enhance  our  Understanding  of  Math     Learning       Susan C. Levine University of Chicago Spatial Intelligence and Learning Center
  2. 2. Research  Ques&ons  •  Is there a preparation gap in math knowledge related to parent math input in the early home environment?•  Are variations in young children s math achievement related to affective inputs – to teacher math anxiety in early elementary school?•  Why does math anxiety not always disrupt math performance? •  Insights from a brain imaging study
  3. 3. Numerical  and  Spa&al  Skills:   Key  Elements  of  Early  Mathema&cs   •  Numerical  and  spa&al   skills  are  vital  for  success   in  the  STEM  disciplines   (Science,  Technology,   Engineering  &  Math)   •  These  skills  begin  to   develop  at  an  early  age   (e.g.,  Delgado & Prieto, 2004;  Levine, Huttenlocher, Taylor & Langrock, 1999)  
  4. 4. Early  Individual  Differences  in  Children s   Math  Knowledge:    Do  they  maOer?  •  Children  show  wide  dispari&es  in  their   mathema&cal  knowledge  by  preschool.  •  These  early  varia&ons  predict  children s  later   math  achievement.  •  Importantly,  early  varia&ons  in  math   knowledge  are  related  to  differences  in  the   cogni&ve  and  affec&ve  inputs  young  children   receive.  
  5. 5. Study  1:  Children’s  first   classroom  is  the  home  •  Diverse  sample  of  parent-­‐child  dyads  followed   longitudinally.  •  Coded  math  talk  –  talk  about  number  and  spa&al   rela&ons    -­‐-­‐  today  will  focus  on  number  talk.  
  6. 6. Large  Varia&on  in  Parent  Number  Talk  •  Across  our  sessions  range  was  4  to  257   number  words  •  Extrapola&ng,  translates  to  enormous   differences  in  children s  opportunity  to  learn     28  to  1799  in  a  week     1456  to  93,548  in  a  year  
  7. 7. Children’s  Cardinal  Number  Knowledge   •  Assessed  at  46  months       •  Point-­‐to-­‐X  task   Experimenter: Point to three.
  8. 8. Rela&on  between  parent  cumula&ve  number  word  tokens  (log)  and  child  cardinal  number    knowledge   at  46  months  
  9. 9. Quality  of  number  talk  also   maOered  •  Talk  about  number  with  present  objects   predicts  children s  understanding  of  the   number  words  •  Talk  about  number  of  objects  in  larger  sets  (4   to  10),  in  addi&on  to  1,  2,  and  3  also  predicts   children s  understanding  of  number  words  
  10. 10. Why  is  talk  about  sets  >3   par&cularly  helpful?  •  Unlike  smaller  sets,  sets  larger  than  3  cannot   be  enumerated  exactly  without  coun&ng.  •  Hypothesis:  The  necessity  of  coun&ng  these   sets  to  determine  their  exact  numerosity   helps  children  link  coun&ng  to  the  cardinal   number  of  objects  in  a  set  –  to  understand  the   purpose  of  coun&ng.   Gunderson & Levine (in press) Developmental Science
  11. 11. Future  studies  are  informed  by  classroom     prac&ce  and  by  cogni&ve  science  •  Partnering  with  teachers  to  implement  lessons   that  strengthen  children s  understanding  of   early  math  –  using  their  feedback  to  design   beOer  instruc&on  in  an  itera&ve  manner     –  Cri&cal  classroom-­‐lab  interac&ons  •  Examining  how  a  learning  principle  that   emerges  from  cogni&ve  science  –  spaced   learning  works  beOer  than  massed  learning  -­‐   applies  to  early  math  learning  
  12. 12. Spaced  vs.  Massed  Learning  •  How  does  it  apply  to  math  learning    -­‐-­‐  what  is   the  op&mal  spacing?   –  At  different  developmental  &me  points     –  At  different  points  in  the  learning  trajectory   –  In   real-­‐world  learning  environments   –  For  different  learning  goals:    facts,  procedures,   and  concepts   –  To  promote  long-­‐term  reten&on  and   generaliza&on  
  13. 13. Study  2:    Affec&ve  Input:       Teachers  math  anxiety  predicts   students  math  achievement  •  We  also  inves&gated  the  role  of  teachers   math  anxiety  on  children s  math  achievement   because…   –  Elementary  educa&on  majors  in  the  U.S.  have     high  levels  of  math  anxiety  (Hembree,  1990)   –  91%  of  early  elementary  school  teachers  are   female  (Na&onal  Educa&on  Associa&on,  2003)    
  14. 14. Hypotheses    •  Teachers  math  anxiety  may  impact   girls  by  confirming  a  self-­‐relevant   gender  stereotype  (e.g.,  Cvencek,  Meltzoff  &   Greenwald,  2009)  •  Girls  who  confirm  tradi&onal  gender   stereotypes  ( boys  are  beOer  at  math,  girls   are  beOer  at  reading )  will  learn  less  than   other  children  
  15. 15. Sample  and  Study  Design  •  Students  math  achievement  and  gender   stereotypes  were  assessed  at  the  beginning   and  end  of  the  school  year  •  Teacher  math  knowledge  and  anxiety   assessed  at  end  of  school  year  
  16. 16.  Assessing  children s  gender  stereotypes   about  math:       Gender  ability  beliefs  task    One  story  about  math,  one  about  reading   This is a story about a student who is really good at math. This student is always the first to finish every math problem, no matter how hard. And this student also really likes doing math. If there is a math problem to be done, this student is the one to do it. This student is a really great mathematician. Can you draw a picture of this student? Is it a boy or a girl? (adapted from Steele, 2003)
  17. 17. Example  drawings   Reading = Girl Math = BoyChildren who confirm stereotype draw girl for reading and boy for math
  18. 18. Teacher  assessments  •  Math  anxiety  (sMARS;  Alexander  &  Martray,  1989)   •  “Reading  a  cash  register  receipt  aoer  you  buy  something”   •  “Studying  for  a  math  test”  •  Math  knowledge  for  teaching  (CKTM;  Hill,  Schilling  &   Ball,  2004)  •  Teachers  varied  widely  on  both  
  19. 19. Media&on  Analysis  •  Teacher  math  anxiety  predicted  girls  end   of  year  math  achievement   Teacher  Math   β = -0.21* Girls’  Math   Anxiety   Achievement  •  Mediated by girls gender ability beliefs Gender   β = 0.31* Stereotypes   β = -0.23* Teacher  Math   Girls’  Math   Anxiety   Achievement   β = -0.16, n.s. *p<.05 (Beilock,  Gunderson,  Ramirez  &  Levine,  PNAS,  2010)  
  20. 20. End-­‐of-­‐Year  Math  Achievement  by   Gender  Ability  Beliefs   (Beilock,  Gunderson,  Ramirez  &  Levine,  PNAS,  2010)  
  21. 21. Implica&ons  •  Teacher  math  anxiety  may  help  to  explain  the   forma&on  of  gender  stereotypes  and  the   divergence  between  boys  and  girls  artudes   toward  math  •  To  reduce  these  effects,  it  is  important  to   directly  address  teachers  math  anxiety,  as   well  as  their  math  knowledge,    as  a  component   of  teacher  training  
  22. 22. Study  3:  How  brain  imaging  can  help  inform   efforts  to  reduce  math  anxiety  •  Anxiety  about  math  common  and  deleterious   to  learning,  but  not  all  math-­‐anxious   individuals  perform  poorly  in  math.  •  Why  is  this  the  case?                                                    Lyons  and  Beilock  (2011)  
  23. 23. Math Trial Word Trial tneimrepxe tneimrepxe
  24. 24. Math anxiety deficitLyons & Beilock (2011). Cerebral Cortex
  25. 25. Lyons & Beilock (2011). Cerebral Cortex
  26. 26. Inferior frontal junction (IFJ) Inferior parietal lobe (IPL)Lyons & Beilock (2011). Cerebral Cortex
  27. 27. Lyons & Beilock (2011). Cerebral Cortex
  28. 28. Lyons & Beilock (2011). Cerebral Cortex
  29. 29. Study  3  Summary  •  High math anxiety individuals who recruit additional working memory resources or exercise greater regulation of their anxiety response (or both) reduced math performance deficits that are typically associated with math anxiety.•  These responses begin when individuals anticipate doing math, before they even see the problem.•  Its not that these individuals don t feel anxious – they do, but are able to manage their anxiety successfully.
  30. 30. Overall  Summary  •  Both  cogni&ve  and  affec&ve  inputs  are  related  to  math   learning  from  an  early  age  •  We  can  increase  our  understanding  of  how  these   factors  interact  –   •  By  carrying  out  studies  in  the  lab  and  in  real-­‐world  learning   environments   •  By  collabora&ng  with  teachers  as  research  partners   •  By  examining  the  impact  of  math  learning,  math  anxiety,   and  stereotypes  at  the  behavioral  and  neural  levels  •  Overarching  goal:    To  increase  math  achievement  in  all   children    
  31. 31. Acknowledgements…     OECD     Study  parCcipants     Collaborators     Funding  agencies:     NSF,  SpaCal  Intelligence  and  Learning  Center   (SILC)  Grant  #SBE-­‐0541957     NIH-­‐NICHD  Grant  #P01HD040605