泥炭地のシミュレーションと気候変動 - 生態学と物理学の接点 伊勢武史 海洋研究開発機構
自己紹介 <ul><li>徳島県の田舎の出身 </li></ul><ul><ul><li>田んぼの動植物が好き </li></ul></ul><ul><ul><li>釣りが好き </li></ul></ul><ul><li>無目的な二十歳ごろ ...
自己紹介 <ul><li>思い立ってアメリカ留学 </li></ul><ul><ul><li>ワイオミング州 </li></ul></ul>
自己紹介 <ul><li>Western Wyoming Community College </li></ul><ul><ul><li>いろいろ専攻してみる </li></ul></ul><ul><ul><li>特に環境関連 </li></u...
自己紹介 <ul><li>Harvard University </li></ul><ul><ul><li>生態系モデリング </li></ul></ul><ul><ul><li>物理・統計なども </li></ul></ul><ul><ul>...
自己紹介 <ul><li>海洋研究開発機構 </li></ul><ul><ul><li>地球シミュレータ </li></ul></ul><ul><ul><li>気候モデルに陸域生態系プロセスを組み込む! </li></ul></ul><ul><...
双方向 のフィードバック 環境 生態系 気候 土壌 などなど 炭素循環 アルベド などなど 生理生態的 個体群的 群集的 生態系的
酸素とオゾン <ul><li>2-way interactions </li></ul>大気 生態系
Fig. 7.3 Carbon cycle Atmosphere 6.4 GtC/yr 120 GtC/yr
<ul><li>Vegetation drives global C cycle </li></ul>
双方向 のフィードバック 環境 生態系 気候 土壌 などなど 炭素循環 アルベド などなど 生理生態的 個体群的 群集的 生態系的 Positive feedback? Negative feedback?
Increase in litter Ecosystem feedbacks to climate positive feedback negative feedback
Dark tree canopy White snow/ice Dark tree canopy White snow/ice Ecosystem feedback to climate albedo
ケーススタディ <ul><li>泥炭地の炭素循環と気候変動 </li></ul><ul><li>Ise, T., A.L. Dunn, S.W. Wofsy, and P.R. Moorcorft. In revision. High temp...
 
なぜ泥炭地を研究? Ise and Moorcroft (2006) Global Soil Data Task (2000) 0 10 20 30 > 40 [kgC/m2] 土壌炭素 <ul><li>1500 GtC (2x in the ...
光合成と呼吸 大気 生態系 植物 土壌有機物など
光合成と呼吸 土壌微生物など 土壌微生物など 土壌微生物など 大気 泥炭地では・・・ 植物 土壌有機物など
冷帯と気候変動 B1 A1B A2
<ul><li>泥炭地の炭素循環 </li></ul><ul><ul><li>Bog </li></ul></ul><ul><ul><li>Fen </li></ul></ul>
<ul><li>泥炭地の炭素循環 </li></ul><ul><ul><li>Bog </li></ul></ul><ul><ul><li>Fen </li></ul></ul>
<ul><li>Bog </li></ul><ul><ul><li>Disconnected from regional hydrology </li></ul></ul>terrestrialization paludification Fo...
泥炭地の SOC Mature spruce bog humic layer bedrock fibrous layer humic layer fibrous layer years Young spruce bog litter & mos...
How to model water table? Mature spruce bog humic layer fibrous layer humic layer fibrous layer years Young spruce bog wat...
How to model water table? Mature spruce bog humic layer fibrous layer humic layer fibrous layer years Young spruce bog wat...
How to model water table? null? ? fibrous layer Mature spruce bog humic layer humic layer fibrous layer years Young spruce...
ED2 <ul><li>Process-based land-surface model </li></ul><ul><li>Fast timescale fluxes </li></ul><ul><ul><li>carbon </li></u...
<ul><li>Two peat types </li></ul><ul><ul><li>Fibrous </li></ul></ul><ul><ul><li>Humic </li></ul></ul><ul><li>Simulation of...
Fibrous Humic Decomposition temperature dependence moisture dependence Frolking et al. 2002 bedrock mineral soil Td Md Bio...
2 simulations Fibrous Humic Dynamic peat depth model Static model (mineral soil model) Equilibrium SOC: self-regulatory Eq...
Results
Results
Results hydrology peat depth    insulation fraction below water table year year
Results Comparison: BOREAS NOBS, 2003 (Dunn, Barford, Wofsy, Goulden, & Daube 2007) water table depth [m] soil temperature...
Climate change: equilibrium 40% loss Extrapolate over northern peatlands, 72-182 PgC 34-87 ppm year soil organic carbon [k...
Climate change: transient HadCM3 SRES A2 at 2099 + 4.3 °C + 42.1 mm ~10% loss Extrapolate over northern peatlands, 18-46 P...
Bog :まとめ <ul><li>泥炭地の形成・保持・崩壊には正・負のフィードバックが関わっている </li></ul><ul><li>気候と泥炭地のフィードバックは、これまでに考えられていたより双方向ともに重要 </li></ul>
<ul><li>泥炭地の炭素循環 </li></ul><ul><ul><li>Bog </li></ul></ul><ul><ul><li>Fen </li></ul></ul>
<ul><li>Fen </li></ul><ul><ul><li>Affected by regional hydrology </li></ul></ul>http://www.na.fs.fed.us/spfo/pubs/n_resour...
メタン Global mean radiative forcing Wetlands: 72% of natural source (Prather et al. 1995)
<ul><li>Production </li></ul><ul><li>Oxidation </li></ul><ul><li>Transport </li></ul><ul><ul><li>Diffusion </li></ul></ul>...
Fen :観測との比較 ornl.daac.gov 1994: simulation vs. observation
Fen: 気候変動 <ul><li>Long-term simulation for equilibrium </li></ul><ul><li>4 ° C rise at year 2000 </li></ul><ul><li>Changes...
今世紀中は・・・ <ul><li>Transient simulation in this century </li></ul><ul><li>HadCM3 anomalies after year 2004 </li></ul><ul><li...
<ul><li>メタンも地下水位に敏感 </li></ul><ul><li>Fen は乾燥した年に特に炭素を出す </li></ul><ul><li>温帯と冷帯の境を越えると、一気に崩壊するかも? </li></ul>Fen :まとめ
泥炭地の未来 ? boreal temperate 4°C rise: Can cross the threshold? Global Soil Data Task (2000) New et al. (2000) piecewise 90-p...
泥炭地の未来 ? http://maps.google.com http://dustydavis.com/ http://www.canada.com Prince Albert (MAT 0.7°C) Bismarck, ND (MAT 5...
海洋研究開発機構での研究 sSEIB 大気と、 CO 2 や水のやり取り 成長・繁殖・競争・遷移 土壌に 炭素蓄積 土壌炭素の 分解
排出量 差し引きして大気中に残る部分 陸域 海洋 [PgC yr -1 ] ソース シンク 実験結果:植物の効果は? ギガトン/年
純一次生産量 NPP ( 月ごと )
純一次生産量 NPP ( 年平均 ) Global total: 44.2 PgC/yr
植物バイオマス 温暖化前 温暖化後 kgC/m 2
土壌の炭素 温暖化前 温暖化後 kgC/m 2
現在のプロジェクト <ul><li>土地利用の変化 </li></ul><ul><ul><li>自然植生 </li></ul></ul><ul><ul><li>二次植生 </li></ul></ul><ul><ul><li>農地 </li></...
この部分終わりです。ご質問?
Upcoming SlideShare
Loading in …5
×

Ise at r2

1,225 views

Published on

Model seminar
Takeshi Ise
"泥炭地のシミュレーションと気候変動-
生態学と物理学の接点"

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,225
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Ise at r2

  1. 1. 泥炭地のシミュレーションと気候変動 - 生態学と物理学の接点 伊勢武史 海洋研究開発機構
  2. 2. 自己紹介 <ul><li>徳島県の田舎の出身 </li></ul><ul><ul><li>田んぼの動植物が好き </li></ul></ul><ul><ul><li>釣りが好き </li></ul></ul><ul><li>無目的な二十歳ごろ </li></ul><ul><ul><li>魚市場で働いたり </li></ul></ul>
  3. 3. 自己紹介 <ul><li>思い立ってアメリカ留学 </li></ul><ul><ul><li>ワイオミング州 </li></ul></ul>
  4. 4. 自己紹介 <ul><li>Western Wyoming Community College </li></ul><ul><ul><li>いろいろ専攻してみる </li></ul></ul><ul><ul><li>特に環境関連 </li></ul></ul><ul><li>University of Wyoming </li></ul><ul><ul><li>生態学にはまる </li></ul></ul><ul><ul><li>体が弱い! </li></ul></ul><ul><ul><li>じゃあ数学で </li></ul></ul>
  5. 5. 自己紹介 <ul><li>Harvard University </li></ul><ul><ul><li>生態系モデリング </li></ul></ul><ul><ul><li>物理・統計なども </li></ul></ul><ul><ul><li>グローバルな視点で </li></ul></ul>
  6. 6. 自己紹介 <ul><li>海洋研究開発機構 </li></ul><ul><ul><li>地球シミュレータ </li></ul></ul><ul><ul><li>気候モデルに陸域生態系プロセスを組み込む! </li></ul></ul><ul><ul><li>気候シミュレーションに もぐりこんだ生態学者 </li></ul></ul><ul><li>来年から(たぶん) パーマネントの准教授 </li></ul>
  7. 7. 双方向 のフィードバック 環境 生態系 気候 土壌 などなど 炭素循環 アルベド などなど 生理生態的 個体群的 群集的 生態系的
  8. 8. 酸素とオゾン <ul><li>2-way interactions </li></ul>大気 生態系
  9. 9. Fig. 7.3 Carbon cycle Atmosphere 6.4 GtC/yr 120 GtC/yr
  10. 10. <ul><li>Vegetation drives global C cycle </li></ul>
  11. 11. 双方向 のフィードバック 環境 生態系 気候 土壌 などなど 炭素循環 アルベド などなど 生理生態的 個体群的 群集的 生態系的 Positive feedback? Negative feedback?
  12. 12. Increase in litter Ecosystem feedbacks to climate positive feedback negative feedback
  13. 13. Dark tree canopy White snow/ice Dark tree canopy White snow/ice Ecosystem feedback to climate albedo
  14. 14. ケーススタディ <ul><li>泥炭地の炭素循環と気候変動 </li></ul><ul><li>Ise, T., A.L. Dunn, S.W. Wofsy, and P.R. Moorcorft. In revision. High temperature sensitivity of peat decomposition due to physical-biogeochemical feedback. Nature Geoscience . </li></ul>
  15. 16. なぜ泥炭地を研究? Ise and Moorcroft (2006) Global Soil Data Task (2000) 0 10 20 30 > 40 [kgC/m2] 土壌炭素 <ul><li>1500 GtC (2x in the atmosphere) </li></ul><ul><li>up to 30% in northern peatlands </li></ul>
  16. 17. 光合成と呼吸 大気 生態系 植物 土壌有機物など
  17. 18. 光合成と呼吸 土壌微生物など 土壌微生物など 土壌微生物など 大気 泥炭地では・・・ 植物 土壌有機物など
  18. 19. 冷帯と気候変動 B1 A1B A2
  19. 20. <ul><li>泥炭地の炭素循環 </li></ul><ul><ul><li>Bog </li></ul></ul><ul><ul><li>Fen </li></ul></ul>
  20. 21. <ul><li>泥炭地の炭素循環 </li></ul><ul><ul><li>Bog </li></ul></ul><ul><ul><li>Fen </li></ul></ul>
  21. 22. <ul><li>Bog </li></ul><ul><ul><li>Disconnected from regional hydrology </li></ul></ul>terrestrialization paludification Forested bog, northern Manitoba http://gsc.nrcan.gc.ca/landscapes/ (Anderson, Foster, & Motzkin 2003) http://www.na.fs.fed.us/spfo/pubs/n_resource/wetlands/wetlands9_organic.htm
  22. 23. 泥炭地の SOC Mature spruce bog humic layer bedrock fibrous layer humic layer fibrous layer years Young spruce bog litter & moss <ul><li>Peat column gains height </li></ul><ul><li>Rise in water table </li></ul>mineral soil bedrock mineral soil
  23. 24. How to model water table? Mature spruce bog humic layer fibrous layer humic layer fibrous layer years Young spruce bog water table depth water table depth Hypothesis: Constant from surface (Clymo 1984) bedrock mineral soil bedrock mineral soil Strong positive feedback (paludification) humic layer fibrous layer water table depth
  24. 25. How to model water table? Mature spruce bog humic layer fibrous layer humic layer fibrous layer years Young spruce bog water table height Constant from bedrock Strong negative feedback water table height bedrock mineral soil bedrock mineral soil Null hypothesis
  25. 26. How to model water table? null? ? fibrous layer Mature spruce bog humic layer humic layer fibrous layer years Young spruce bog Which hypothesis ? Somewhere in between Needs for mechanistic simulation! water balance soil properties bedrock mineral soil bedrock mineral soil
  26. 27. ED2 <ul><li>Process-based land-surface model </li></ul><ul><li>Fast timescale fluxes </li></ul><ul><ul><li>carbon </li></ul></ul><ul><ul><li>water </li></ul></ul><ul><ul><li>energy </li></ul></ul>T atm T canopy T surface T soil_1 T soil_i T soil_n e atm e canopy e surface e soil_1 e soil_i e soil_n CO 2 CO 2 CO 2 CO 2 R in R out <ul><li>Input data </li></ul><ul><ul><li>update in 30 minutes </li></ul></ul><ul><ul><li>meteorological variables (SW, LW, air temperature, precipitation, humidity, wind speed/direction, and [CO 2 ]) </li></ul></ul>ED1: Moorcroft et al. 2001. Ecological Monographs 71:557-585. ED2: Medvigy et al. 2006. Ph.D Thesis. Harvard University.
  27. 28. <ul><li>Two peat types </li></ul><ul><ul><li>Fibrous </li></ul></ul><ul><ul><li>Humic </li></ul></ul><ul><li>Simulation of SOC </li></ul><ul><li>Real-time conversion to peat depth </li></ul><ul><li>Simple, but powerful </li></ul><ul><ul><li>Reproduce feedbacks </li></ul></ul>Biogeochemical model Fibrous Humic fluctuates according to water balance bedrock mineral soil
  28. 29. Fibrous Humic Decomposition temperature dependence moisture dependence Frolking et al. 2002 bedrock mineral soil Td Md Biogeochemical model
  29. 30. 2 simulations Fibrous Humic Dynamic peat depth model Static model (mineral soil model) Equilibrium SOC: self-regulatory Equilibrium SOC: sensitive to initialization bedrock mineral soil
  30. 31. Results
  31. 32. Results
  32. 33. Results hydrology peat depth  insulation fraction below water table year year
  33. 34. Results Comparison: BOREAS NOBS, 2003 (Dunn, Barford, Wofsy, Goulden, & Daube 2007) water table depth [m] soil temperature [ °C ] Julian day
  34. 35. Climate change: equilibrium 40% loss Extrapolate over northern peatlands, 72-182 PgC 34-87 ppm year soil organic carbon [kgC m -2 ]
  35. 36. Climate change: transient HadCM3 SRES A2 at 2099 + 4.3 °C + 42.1 mm ~10% loss Extrapolate over northern peatlands, 18-46 PgC 9-22 ppm year soil organic carbon [kgC m -2 ]
  36. 37. Bog :まとめ <ul><li>泥炭地の形成・保持・崩壊には正・負のフィードバックが関わっている </li></ul><ul><li>気候と泥炭地のフィードバックは、これまでに考えられていたより双方向ともに重要 </li></ul>
  37. 38. <ul><li>泥炭地の炭素循環 </li></ul><ul><ul><li>Bog </li></ul></ul><ul><ul><li>Fen </li></ul></ul>
  38. 39. <ul><li>Fen </li></ul><ul><ul><li>Affected by regional hydrology </li></ul></ul>http://www.na.fs.fed.us/spfo/pubs/n_resource/wetlands/wetlands9_organic.htm Forested bog and fenland, northern Manitoba http://gsc.nrcan.gc.ca/landscapes/
  39. 40. メタン Global mean radiative forcing Wetlands: 72% of natural source (Prather et al. 1995)
  40. 41. <ul><li>Production </li></ul><ul><li>Oxidation </li></ul><ul><li>Transport </li></ul><ul><ul><li>Diffusion </li></ul></ul><ul><ul><li>Bubbles (ebullition) </li></ul></ul><ul><ul><li>Plant vascular system </li></ul></ul>メタンのプロセス Diffusion Ebullition fibrous, aerobic fibrous, anaerobic humic, anaerobic Diffusion Ebullition Production Production Oxidation Production Oxidation Oxidation Vascular transport rooting depth fibrous, aerobic humic, anaerobic humic, aerobic High water table Low water table Walter & Heimann (2000) fibrous humic mineral
  41. 42. Fen :観測との比較 ornl.daac.gov 1994: simulation vs. observation
  42. 43. Fen: 気候変動 <ul><li>Long-term simulation for equilibrium </li></ul><ul><li>4 ° C rise at year 2000 </li></ul><ul><li>Changes in C storage and CH 4 </li></ul><ul><li>Establishment of a new equilibrium </li></ul>
  43. 44. 今世紀中は・・・ <ul><li>Transient simulation in this century </li></ul><ul><li>HadCM3 anomalies after year 2004 </li></ul><ul><li>Interannual variability and “dry” periods </li></ul><ul><li>Loss of metabolic C in dry periods (Dunn, Barford, Wofsy, Goulden, & Daube 2007) </li></ul>HadCM3 SRES A2 at 2099 + 4.3 °C + 42.1 mm
  44. 45. <ul><li>メタンも地下水位に敏感 </li></ul><ul><li>Fen は乾燥した年に特に炭素を出す </li></ul><ul><li>温帯と冷帯の境を越えると、一気に崩壊するかも? </li></ul>Fen :まとめ
  45. 46. 泥炭地の未来 ? boreal temperate 4°C rise: Can cross the threshold? Global Soil Data Task (2000) New et al. (2000) piecewise 90-percentile quantile regression
  46. 47. 泥炭地の未来 ? http://maps.google.com http://dustydavis.com/ http://www.canada.com Prince Albert (MAT 0.7°C) Bismarck, ND (MAT 5.6°C)
  47. 48. 海洋研究開発機構での研究 sSEIB 大気と、 CO 2 や水のやり取り 成長・繁殖・競争・遷移 土壌に 炭素蓄積 土壌炭素の 分解
  48. 49. 排出量 差し引きして大気中に残る部分 陸域 海洋 [PgC yr -1 ] ソース シンク 実験結果:植物の効果は? ギガトン/年
  49. 50. 純一次生産量 NPP ( 月ごと )
  50. 51. 純一次生産量 NPP ( 年平均 ) Global total: 44.2 PgC/yr
  51. 52. 植物バイオマス 温暖化前 温暖化後 kgC/m 2
  52. 53. 土壌の炭素 温暖化前 温暖化後 kgC/m 2
  53. 54. 現在のプロジェクト <ul><li>土地利用の変化 </li></ul><ul><ul><li>自然植生 </li></ul></ul><ul><ul><li>二次植生 </li></ul></ul><ul><ul><li>農地 </li></ul></ul><ul><ul><li>牧草地 </li></ul></ul><ul><ul><li>市街地 </li></ul></ul>(Hurtt らのデータ )
  54. 55. この部分終わりです。ご質問?

×