ExPlates: Spatializing Interactive Analysis to Scaffold Visual Exploration
Upcoming SlideShare
Loading in...5
×
 

ExPlates: Spatializing Interactive Analysis to Scaffold Visual Exploration

on

  • 521 views

EuroVis 2013 conference presentation of the ExPlates data-flow system for multidimensional visualization.

EuroVis 2013 conference presentation of the ExPlates data-flow system for multidimensional visualization.

Statistics

Views

Total Views
521
Views on SlideShare
521
Embed Views
0

Actions

Likes
0
Downloads
1
Comments
1

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

CC Attribution-NonCommercial-ShareAlike LicenseCC Attribution-NonCommercial-ShareAlike LicenseCC Attribution-NonCommercial-ShareAlike License

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
  • Hi, Is this available for public?
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

ExPlates: Spatializing Interactive Analysis to Scaffold Visual Exploration ExPlates: Spatializing Interactive Analysis to Scaffold Visual Exploration Presentation Transcript

  • ›› ExPlates ›› PivotLab ›› PurdueUniversity››West Lafayette, IN, USA»EuroVis2013»June17-21»LeipZig,Germany
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity››Life is a journey, not a destination.
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity››“Life is a journey, not a destination.”― Ralph Waldo Emerson (1803-1882)
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity››visual exploration [ˈvɪʒʊəl -zjʊ- ˈɛkspləˈreɪʃən], n.using visualization to analyze data, often withoutprior knowledge or questions about the data
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity›› GOAL» Support visual exploration by spatializingthe interaction» Time → Space» Externalizes not just the data,but also the exploration process
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity››PREVIEW
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity››Why is this important?Why is this difficult?
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity››» Perception: many viewsyield high visual clutter» Memory: rememberingpast choices and results» Reasoning: synthesizing multipledisparate findings is difficult
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity››
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity›› Exploration Plates (ExPlates)» Data-flow method for visualization thatautomatically spatializes interaction10Spatialize…
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity›› Plate Anatomy» Building block: exploration plate– Visualization state: data, mapping, view– Input and output ports (anchors)– Connected by wires» Mutating ops create new plate(s)– Filtering, change visualization, transforms» Invariant ops update current plate– Color scale, viewport, formatting11
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity›› Plate Types» Visualization plates: visualrepresentations of input data» Data plates: data transformations frominput to output» Annotation plates: add annotation tospecific locations on the canvas12
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity››OutputanchorsInputanchorsControlareaVisualizationareaDatawires
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity›› Canvas and Layout» Infinitely zoomable visual canvas– Mouse control + automatic operations» Grid-based semi-automatic layout– Padding for data wires» Two ways to create new plates– Manual (menu) or automatic (spatializing)14
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity››DEMO
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity››IMPLEMENTATION
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity›› Implementation» Web-based system (JavaScript + SVG)» Google Data Source API– Google Docs (spreadsheets)– RSS/Atom feeds– XML files– CSV files» Rendering: RaphaëlJS (raphaeljs.com)– Extensible with other SVG toolkits (D3, etc)17
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity››
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity››DISCUSSION
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity›› Discussion and Limitations» Scalability: complex exploration + size– Zooming and panning navigation– Web-based setting gives upper bound» Expertise: web-based but not intendedfor novice-level users» Comparison: relation to MDV tools– Data-flow (DataMeadow, GraphTrail)– Dashboard/workbench (Tableau, Spotfire)20
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity››CONCLUSION
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity›› » Spatializing exploration– Branching visual history– Duplicate, do not update» Data flow system– Automatic layout» Multidimensional data– Visualization + analysis» Web-based prototype– Live, dynamic updates
  • ›› ExPlates ›› PivotLab ›› PurdueUniversity››Questions?Niklas ElmqvistPurdue UniversityWest Lafayette, IN, USAelm@purdue.edu»EuroVis2013»June17-21»LeipZig,GermanyAll images are CreativeCommons from Flickr.com