Carrier Ethernet Technology: TPS Backhaul Connectivity

  • 230 views
Uploaded on

Download a PDF file: http://www.netmanias.com/en/?m=view&id=techdocs&no=5912&vm=ppt …

Download a PDF file: http://www.netmanias.com/en/?m=view&id=techdocs&no=5912&vm=ppt
You can also find and download more materials from http://www.netmanias.com

More in: Technology , Business
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
230
On Slideshare
0
From Embeds
0
Number of Embeds
3

Actions

Shares
Downloads
0
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Netmanias Technical Document: Carrier Ethernet Technology – TPS Backhaul Connectivity www.nmcgroups.com About NMC Consulting Group NMC Consulting Group is an advanced and professional network consulting company, specializing in IP network areas (e.g., FTTH, Metro Ethernet and IP/MPLS), service areas (e.g., IPTV, IMS and CDN), and wireless network areas (e.g., Mobile WiMAX, LTE and Wi-Fi) since 2002. Copyright © 2002-2013NMC Consulting Group. All rights reserved. February 11, 2008 NMC Consulting Group (tech@netmanias.com) www.netmanias.com www.nmcgroups.com Carrier Ethernet Technology : TPS Backhaul Connectivity
  • 2. Copyright © 2002-2013NMC Consulting Group. All rights reserved. Netmanias Technical Document: Carrier Ethernet Technology – TPS Backhaul Connectivity 2 TPS Backhaul Connectivity Model: VLAN Assignment Scheme and BNG Issues Various connectivity models suggested in DSL Forum TR 101 should be supported for TPS backhaul networks. 1. VLAN Assignment Scheme; Per-Service VLAN Per-Subscriber VLAN Combination 2. Service Edge Scheme; Single BNG (Single BRAS) Multiple BNG (BRAS, ERs) BRAS Single BNG Voice TV Internet Per-Subscriber VLAN (1:1 VLAN) Shared MC-VLAN RG BRASVoice TV Internet Per-Subscriber VLAN (1:1 VLAN, QinQ) Shared MC-VLAN RG ER (PIM) Internet VoIP VoD IP-TV (Multicast) All Unicast Traffic - Internet - VoIP - VoD IP-TV (Multicast) Bell South (AT&T) Dual BNG Per-Subscriber VLAN (1:1 VLAN, All Unicast Traffic) BRASVoice TV Internet Per-Service VLAN (Internet VLAN) Per-Service VLAN (IP-TV/Multicast VLAN) RG ER Internet Dual BNG Per-Service VLAN (N:1 VLAN) Per-Service VLAN (VoIP VLAN) Per-Service VLAN (VoD VLAN) VoIP VoD IP-TV (Multicast) BT, BellSouth, SBC*, CHT Telecom Italia, Versatel, Telefonica TPS Backhaul Requirements • Subscriber Isolation (Security/Hair-Pin) • Service Separation • Broadcast Handling • Scalability: MAC Learning, VLAN ID • DSL Line Identification and Traceability • Multicast • Configuration Consistency Voice TV Internet RG BRAS ERDSLAM /OLT ? TPS BackhaulCO POPHome
  • 3. Copyright © 2002-2013NMC Consulting Group. All rights reserved. Netmanias Technical Document: Carrier Ethernet Technology – TPS Backhaul Connectivity 3 Per-Subscriber VLAN (1:1) Per-Service VLAN (N:1) NE Vendor AT&T (BellSouth) • Per-Subscriber VLAN (PPPoE) + Multicast VLAN - RBAK Chunghwa Telecom • Per-Subscriber VLAN (for Security) FT - • Per-Service VLAN Telecom Italia - • Per-Service VLAN 1: Unicast VLAN (Internet, VoIP, VoD over PPPoE: BRAS) • Per-Service VLAN 2: Multicast VLAN => Dual BNG ? • RD와 DSLAM간: 2 PVCs >>> RD through DSLAM: 2 PVCs Telefonica - • Per-Service VLAN • VLAN ID (DSLAM ID) Translation at AGG SW (BRAS facing port) • H-VPLS Backhaul Riverstone Tele2 (Versatel) - • Per-Service VLAN (Internet, VoIP, VoD, Multicast) SBC •RG through DSLAM: Per-Subscriber VLAN • Per-Service & Per-DSLAM VLAN (QinQ) • Multiple BNG (BRAS, VoD Router,) • MPLS/VPLS Backhaul ALU BT • Per-Subscriber VLAN (QinQ): Internet (BRAS) • Per-Service VLAN: VoIP (Voice PE) Belgacom •RG through DSLAM: Per-Subscriber VLAN • Per-Service & Per-DSLAM VLAN (QinQ) • Multiple BNG (BRAS, VoD Router,) • MPLS/VPLS Backhaul ALU Per-Subscriber VLAN Per-Service VLAN IP Address per Home Single IP Address Multiple IP Addresses (one per service) MAC Learning at AGG SW One Customer MAC per Home Multiple Customer MAC per Home User Isolation (Security) One Broadcast Domain per Customer Private VLAN (DSLAM, CO SW, AGG SW) Broadcast Storm One Broadcast Domain per Customer Per-DSLAM VLAN (S-VID) DSL Line Identification and Traceability (mapping between IP address and DSLAM port) Unique VLAN per Subscriber - AAA: Intermediate Agent (C-VID, S-VID), NAD-ID, NAS-Port-ID at BRAS - DHCP Relay: Option 82 (C-VID, S-VID), GI address at BRAS Option 82 at DSLAM DSLAM Provisioning (Per-Subscriber) - Option 82 at DSLAM Service Edge Single BNG Dual BNG Multiple (Dual) BNG The connectivity models differ by operator. Vendors, therefore, usually offer all models, 1:1 VLAN, N:1 VLAN and a combination of both. Per-Subscriber VLAN vs. Per-Service VLAN
  • 4. Copyright © 2002-2013NMC Consulting Group. All rights reserved. Netmanias Technical Document: Carrier Ethernet Technology – TPS Backhaul Connectivity 4 Per-Subscriber VLAN Solution: Stacked VLAN (QinQ/PB) BRAS DSLAM (port to VLAN ID Mapping) VLAN=1 VLAN=2 VLAN=3 VLAN=4 VLAN=5 VLAN=6 VLAN=7 VLAN=8 Voice TV Internet RG BRAS DSLAM - C-VID: DSL port to C-VID Mapping - S-VID: DSLAN ID Voice TV Internet RG S-VID=1/C-VID=1 S-VID=1/C-VID=2 S-VID=2/C-VID=1 S-VID=2/C-VID=2 S-VID=3/C-VID=1 S-VID=3/C-VID=2 S-VID=4/C-VID=1 S-VID=4/C-VID=2 C-VID=1 C-VID=2 C-VID=1 C-VID=2 C-VID=1 C-VID=2 C-VID=1 C-VID=2 S-VID=1 S-VID=2 S-VID=3 S-VID=4 • User Isolation: Per-Subscriber VLAN • Traceability (IP-DSLAM Port): Per-SubscriberVLAN (VLAN ID) • Broadcast storm: Per-SubscriberVLAN (Broadcast Domain perSubscriber) • MAC Learning (AGG SW): Learning or Not • Problem: VLAN ID Scalability (4K) !!! • Problem: Provisioning Consistency !!!Per RG • User Isolation: Per-Subscriber VLAN • Traceability (IP-DSLAM Port): Per-SubscriberVLAN (S-VID/C-VID: DSLAM ID/Port ID) • Broadcast storm: Per-SubscriberVLAN (Broadcast Domain perSubscriber) • MAC Learning (AGG SW): Learning or Not • VLAN ID Scalability: 16M Subscribers • Problem: Provisioning Consistency !!!Per DSLAM BRAS Voice TV Internet RG C-VID=1 C-VID=2 C-VID=1 C-VID=2 C-VID=1 C-VID=2 C-VID=1 C-VID=2 S-VID=1 S-VID=2 S-VID=1 S-VID=2 Solution: VLAN Translation • User Isolation: Per-Subscriber VLAN • Traceability: Per-Subscriber VLAN (S-VID/C-VID: DSLAM ID/Port ID) • Broadcast storm: Per-SubscriberVLAN (Broadcast Domain perSubscriber) • MAC Learning (AGG SW): Learning or Not • VLAN ID Scalability: 16M Subscribers • Provisioning Consistency: VLAN Translation at AGGSW Distinct S-VID/C-VID Pair in BH Telefonica: TLATAM Metro Evolution Proposal v1.1 There is the option to pop the outer tag from the traffic coming from the DSLAM and push a different outer tag in the BRAS facing port (VLAN ID translation). This functionalityenables the utilization ofthe same VLAN ID for Internetaccess in all DSLAMs, and can make DSLAM provisioning easier. Additionally, each VSI can be configured with MAC limiting usingthe flood option to reduce the MAC address table utilization. VLAN Translation Table Input Output Port S-VID C-VID S-VID C-VID 1 1 1 11 1 1 1 2 11 2 1 2 1 12 1 1 2 2 12 2 2 1 1 21 1 2 1 2 21 2 2 2 1 22 1 2 2 2 22 2 AGG-SW rewirtes output S-VID based on input port and S-VID DSLAM - C-VID: DSL port to C-VID Mapping - S-VID: DSLAN ID S-VID=11/C-VID=1 S-VID=11/C-VID=2 S-VID=12/C-VID=1 S-VID=12/C-VID=2 S-VID=21/C-VID=1 S-VID=21/C-VID=2 S-VID=22/C-VID=1 S-VID=22/C-VID=2
  • 5. Copyright © 2002-2013NMC Consulting Group. All rights reserved. Netmanias Technical Document: Carrier Ethernet Technology – TPS Backhaul Connectivity 5 Per-Service VLAN (1): Single Tagged VLAN (802.1Q) AGG-SW rewrites output VID and determines output port based on input port and VID. BRAS DSLAM Voice TV Internet RG VLAN=1 (Internet) VLAN=2 (VoIP) VLAN=4 (Multicast) VLAN=4 (Multicast VLAN) • User Isolation: Private VLAN (Broadcast Domain =All Backhaul) • Traceability (IP-DSLAM Port): Option 82 at DSLAM (DSLAM port, DSLAM ID) • Broadcast storm: Broadcast Domain =All Backhaul • MAC Learning (AGG SW): AGG SWshould learn“(N-1) x #of RG” MAC addresses • Provisioning Consistency: The Same Configuration VLAN=1 (Internet) VLAN=1 VLAN=2 VLAN=4 VLAN=2 (VoIP) VLAN=4 (Multicast) BRAS CO 1 Voice TV Internet VLAN=4 (Multicast VLAN) VLAN=1001 VLAN=2001 VLAN=1002 VLAN=2002 CO ID Service ID • User Isolation: Private VLAN at DSLAM, CO SW (Broadcast Domain =Per-CO) • Traceability (IP-DSLAM Port): Option 82 at DSLAM (DSLAM port, DSLAM ID) • Broadcast storm: Broadcast Domain =Per-CO • MAC Learning (AGG SW): AGG SWshould learn “(N-1) x #of RG” MAC addresses • Provisioning Consistency: Unique per DSLAM VLAN=1001 VLAN=1002 VLAN=4 VLAN=1001 VLAN=1002 VLAN=4 VLAN=1001 VLAN=1002 VLAN=4 VLAN=1001 VLAN=1002 VLAN=4 VLAN=2001 VLAN=2002 VLAN=4 VLAN=2001 VLAN=2002 VLAN=4 VLAN=2001 VLAN=2002 VLAN=4 VLAN=2001 VLAN=2002 VLAN=4 VLAN 1001 VLAN 1002 RG BRAS Voice TV Internet VLAN=4 (Multicast VLAN) VLAN=1001 VLAN=2001 VLAN=1002 VLAN=2002 DSLAM ID Service ID VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN 1 VLAN 2 RG Port1 Port3 Port4 • User Isolation: Private VLAN at DSLAM, CO SW (Broadcast Domain =Per-CO) • Traceability (IP-DSLAM Port): Option 82 at DSLAM (DSLAM port, DSLAM ID) • Broadcast storm: Broadcast Domain =Per-CO • MAC Learning (AGG SW): Not Learning • Provisioning Consistency: The Same Configuration CO 2 CO 1 CO 2 Versatel VLAN XC Table Input Output Port VID Port VID 1 1 3 1001 1 2 4 1002 2 1 3 2001 2 2 4 2002 Assigning different VLANs to every CO Solution: VLAN XC
  • 6. Copyright © 2002-2013NMC Consulting Group. All rights reserved. Netmanias Technical Document: Carrier Ethernet Technology – TPS Backhaul Connectivity 6 Per-Service VLAN (2): Stacked VLAN (802.1ad) BRAS DSLAM Voice TV Internet RG VLAN=1 (Internet) VLAN=2 (VoIP) VLAN=4 (Multicast) VLAN=4 (Multicast VLAN) • User Isolation: Private VLAN at DSLAM, CO SW and AGG SW (Broadcast Domain =All Backhaul) • Traceability (IP-DSLAM Port): Option 82 at DSLAM (DSLAM port, DSLAM ID) • Broadcast storm: Broadcast Domain =All Backhaul • MAC Learning (AGG SW): AGG SWshould learn “(N-1) x #of RG” MAC addresses • Provisioning Consistency: VLAN=1 (Internet) VLAN=1 VLAN=2 VLAN=4 VLAN=2 (VoIP) VLAN=4 (Multicast) BRAS (Internet) DSLAM 1 Voice TV Internet RG VLAN=4 (Multicast VLAN) VLAN=1 DSLAM 2 DSLAM 3 DSLAM 4 VLAN=2 VLAN=4 S-VID=1001 S-VID=1002 S-VID=1001/C-VID=1 S-VID=1002/C-VID=1 S-VID=1003/C-VID=1 S-VID=1004/C-VID=1 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 S-VID=1001/C-VID=2 S-VID=1002/C-VID=2 S-VID=1003/C-VID=2 S-VID=1004/C-VID=2 ER/PE (VoIP) PIM Router • User Isolation: Private VLAN at DSLAM (Broadcast Domain =Per-DSLAM) • Traceability (IP-DSLAM Port): Option 82 at DSLAM (DSLAM port, DSLAM ID) • Broadcast storm: Broadcast Domain =Per-DSLAM • MAC Learning (AGG SW): AGG SWshould learn “(N-1) x #of RG” MAC addresses • Provisioning Consistency: Unique Per DSLAM BRAS (Internet) DSLAM 1 Voice TV Internet RG VLAN=4 (Multicast VLAN) VLAN=1 DSLAM 2 DSLAM 3 DSLAM 4 VLAN=2 VLAN=4 S-VID=1 S-VID=2 S-VID=1001/C-VID=1 S-VID=1002/C-VID=1 S-VID=1003/C-VID=1 S-VID=1004/C-VID=1 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 S-VID=1001/C-VID=2 S-VID=1002/C-VID=2 S-VID=1003/C-VID=2 S-VID=1004/C-VID=2 ER/PE (VoIP) PIM Router Port1 Port3 Port4 • User Isolation: Private VLAN at DSLAM (Broadcast Domain =Per-DSLAM) • Traceability (IP-DSLAM Port): Option 82 at DSLAM (DSLAM port, DSLAM ID) • Broadcast storm: Broadcast Domain =Per-DSLAM • MAC Learning (AGG SW): Not Learning • Provisioning Consistency Solution: Stacked VLAN (QinQ/PB) Outer-tag (S-VID) =DSLAM ID Inner-tag (C-VID) =Service VLAN XC Table Input Output Port S-VID C-VID Port S-VID C-VID 1 1 1 3 1001 1 1 1 2 4 1001 2 1 2 1 3 1002 1 1 2 2 4 1002 2 2 1 1 3 1003 1 2 1 2 4 1003 2 2 2 1 3 1004 1 2 2 2 4 1004 2 Solution: VLAN XC AGG-SW (1) Rewriteoutput V-SID based on input port and S-VID (2) Decideoutput port based on input port and C-VID
  • 7. Copyright © 2002-2013NMC Consulting Group. All rights reserved. Netmanias Technical Document: Carrier Ethernet Technology – TPS Backhaul Connectivity 7 MPLS at TPS Backhaul Network BRAS DSLAM (C-VID: port to C-VID Mapping) (S-VID: DSLAN ID) Voice TV Internet RG C-VID=1 C-VID=2 C-VID=1 C-VID=2 C-VID=1 C-VID=2 C-VID=1 C-VID=2 S-VID=1 S-VID=2 S-VID=1 S-VID=2 BRAS (Internet) DSLAM 1 Voice TV Internet RG VLAN=4 (Multicast VLAN) VLAN=1 DSLAM 2 DSLAM 3 DSLAM 4 VLAN=2 VLAN=4 S-VID=1 S-VID=2 S-VID=1001/C-VID=1 S-VID=1002/C-VID=1 S-VID=1003/C-VID=1 S-VID=1004/C-VID=1 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 S-VID=1001/C-VID=2 S-VID=1002/C-VID=2 S-VID=1003/C-VID=2 S-VID=1004/C-VID=2 ER/PE (VoIP) PIM Router Port1 Port3 Port4 BRAS DSLAM (C-VID: port to C-VID Mapping) (S-VID: DSLAN ID) Voice TV Internet RG C-VID=1 C-VID=2 C-VID=1 C-VID=2 C-VID=1 C-VID=2 C-VID=1 C-VID=2 S-VID=1 S-VID=2 S-VID=1 S-VID=2 BRAS (Internet) DSLAM 1 Voice TV Internet RG VLAN=4 (Multicast VLAN) VLAN=1 DSLAM 2 DSLAM 3 DSLAM 4 VLAN=2 VLAN=4 S-VID=1 S-VID=2 S-VID=1001/C-VID=1 S-VID=1002/C-VID=1 S-VID=1003/C-VID=1 S-VID=1004/C-VID=1 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 S-VID=1001/C-VID=2 S-VID=1002/C-VID=2 S-VID=1003/C-VID=2 S-VID=1004/C-VID=2 ER/PE (VoIP) PIM Router Port1 Port3 Port4 Native Ethernet Retaining 1:1 VLAN and N:1 VLAN connectivity models (Ethernet Connectivity over MPLS)  Enhancing reliability using MPLS technology TPS Backhaul Connectivity • Subscriber Isolation (Security/Hair-Pin) • Service Separation • Broadcast Handling • Scalability: MAC Learning, VLAN ID • DSL Line Identification and Traceability • Multicast • Configuration Consistency • Reliability: STP/RSTP/MSTP TPS Backhaul Connectivity • Subscriber Isolation (Security/Hair-Pin) • Service Separation • Broadcast Handling • Scalability: MAC Learning, VLAN ID • DSL Line Identification and Traceability • Multicast • Configuration Consistency MPLS Resiliency • EoMPLS (MPLS FRR) • PW Redundancy • PW Redundancy +MC-LAG • H-VPLS/- Dual-homed H-VPLS MPLS Backhaul EthernetBackhaul MPLSBackhaul DSLAM and BRAS don’t recognize that MPLS has been introduced to backhaul networks. i.e., DSLAM and BRAS don’t need to support MPLS on backhaul port
  • 8. Copyright © 2002-2013NMC Consulting Group. All rights reserved. Netmanias Technical Document: Carrier Ethernet Technology – TPS Backhaul Connectivity 8 MPLS at TPS Backhaul Network Cisco 1:1 VLAN over EoMPLS Backhaul Cisco N:1 VLAN over EoMPLS Backhaul Telefonica: N:1 VLAN over H-VPLS Backhaul Alcatel: N:1 VLAN over H-VPLS Backhaul Belgacom: N:1 VLAN over MPLS
  • 9. Copyright © 2002-2013NMC Consulting Group. All rights reserved. Netmanias Technical Document: Carrier Ethernet Technology – TPS Backhaul Connectivity 9 PBT at TPS Backhaul Network BRAS DSLAM (C-VID: port to C-VID Mapping) (S-VID: DSLAN ID) Voice TV Internet RG C-VID=1 C-VID=2 C-VID=1 C-VID=2 C-VID=1 C-VID=2 C-VID=1 C-VID=2 S-VID=1 S-VID=2 S-VID=1 S-VID=2 BRAS (Internet) DSLAM 1 Voice TV Internet RG VLAN=4 (Multicast VLAN) VLAN=1 DSLAM 2 DSLAM 3 DSLAM 4 VLAN=2 VLAN=4 S-VID=1 S-VID=2 S-VID=1001/C-VID=1 S-VID=1002/C-VID=1 S-VID=1003/C-VID=1 S-VID=1004/C-VID=1 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 S-VID=1001/C-VID=2 S-VID=1002/C-VID=2 S-VID=1003/C-VID=2 S-VID=1004/C-VID=2 ER/PE (VoIP) PIM Router Port1 Port3 Port4 BRAS DSLAM (C-VID: port to C-VID Mapping) (S-VID: DSLAN ID) Voice TV Internet RG C-VID=1 C-VID=2 C-VID=1 C-VID=2 C-VID=1 C-VID=2 C-VID=1 C-VID=2 S-VID=1 S-VID=2 S-VID=1 S-VID=2 BRAS (Internet) DSLAM 1 Voice TV Internet RG VLAN=4 (Multicast VLAN) VLAN=1 DSLAM 2 DSLAM 3 DSLAM 4 VLAN=2 VLAN=4 S-VID=1 S-VID=2 S-VID=1001/C-VID=1 S-VID=1002/C-VID=1 S-VID=1003/C-VID=1 S-VID=1004/C-VID=1 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 VLAN=1 VLAN=2 VLAN=4 S-VID=1001/C-VID=2 S-VID=1002/C-VID=2 S-VID=1003/C-VID=2 S-VID=1004/C-VID=2 ER/PE (VoIP) PIM Router Port1 Port3 Port4 Native Ethernet Retaining 1:1 VLAN and N:1 VLAN connectivity models (Ethernet Connectivity over PBT)  Enhancing reliability using PBT technology TPS Backhaul Connectivity • Subscriber Isolation (Security/Hair-Pin) • Service Separation • Broadcast Handling • Scalability: MAC Learning, VLAN ID • DSL Line Identification and Traceability • Multicast • Configuration Consistency • Reliability: STP/RSTP/MSTP TPS Backhaul Connectivity • Subscriber Isolation (Security/Hair-Pin) • Service Separation • Broadcast Handling • Scalability: MAC Learning, VLAN ID • DSL Line Identification and Traceability • Multicast • Configuration Consistency PBT Resiliency • PBT Protection (50ms) • Dual-homed PBT • Dual-homed PBT +MC-LAG PBT Backhaul DSLAM and BRAS don’t recognize that PBT has been introduced to backhaul networks. i.e., DSLAM and BRAS don’t need to support PBT on backhaul port EthernetBackhaul PBTBackhaul
  • 10. Copyright © 2002-2013NMC Consulting Group. All rights reserved. Netmanias Technical Document: Carrier Ethernet Technology – TPS Backhaul Connectivity 10 Market & System Requirement for TPS Backhaul Connectivity 1. Per-Subscriber VLAN (1:1 VLAN) 2. Per-Service VLAN (N:1 VLAN) 3. Combination (Per-Subscriber + Per-Service) Market Requirement System Requirement See examples in the following pages • Support of various connectivity models suggested in DSL Forum TR 101 for TPS backhaul networks • PBT equipment that supports a connectivity architecture that does not perform customer MAC learning in TPS backhaul networks • Architecture capable of configuration consistency • Broadcast domain size minimized for N:1 VLAN
  • 11. Copyright © 2002-2013NMC Consulting Group. All rights reserved. Netmanias Technical Document: Carrier Ethernet Technology – TPS Backhaul Connectivity 11 TPS Backhaul Network Architecture using PBT (Example 1) PBB-TE Trunk I-SID 4001 I-SID 3001 PBB-TE Trunk I-SID 2001 I-SID 1001 S-VLAN 10 C-VID 1 C-VID 2 S-VLAN 11 C-VID 1 C-VID 2 S-VLAN 10 C-VID 1 C-VID 2 S-VLAN 11 C-VID 1 C-VID 2 C-VID 1 C-VID 2 C-VID 1 C-VID 2 C-VID 1 C-VID 2 C-VID 1 C-VID 2 C-VID=1 C-VID=2 S-VID=10 C-VID=1 C-VID=2 S-VID=11 Port 1 C-VID=1 C-VID=2 S-VID=10 C-VID=1 C-VID=2 S-VID=11 Port 2 RG DSLAM CO-SW1 AGG-SW BRAS Port 3 S-VLAN 10 C-VID 1 DSLAM Port C-VID 2 DSLAM ID S-VLAN 11 C-VID 1 C-VID 2 S-VLAN 10 C-VID 1 C-VID 2 S-VLAN 11 C-VID 1 C-VID 2HIS VoIP VoD S-VID=10 S-VID=11 S-VID=10 S-VID=11 S-VID=101 S-VID=211 S-VID=310 S-VID=411 S-VLAN 101 S-VLAN 211 S-VLAN 310 S-VLAN 411 DSLAM Port DSLAM ID Port 1 Port 2 Port 1 Port 2 CO-SW2 Per-Subscriber VLAN (1:1 VLAN, Single BNG) Ensuring DSLAM Configuration Consistency: VLAN Translation at AGG SW No Customer MAC Learning: I-SID : Output Port = 1:1 mapping Issue on CO-SW Configuration Consistency: problem caused by assigning an I-SID per DSLAM (AGG-GW assigns a unique I-SID) Per-Subscriber VLAN • No Broadcast Storm • Ensuring DSL Line Identification and Traceability (IP-to-DSLAM Port)
  • 12. Copyright © 2002-2013NMC Consulting Group. All rights reserved. Netmanias Technical Document: Carrier Ethernet Technology – TPS Backhaul Connectivity 12 TPS Backhaul Network Architecture using PBT (Example 1) C-VID=1 C-VID=2 S-VID=10 C-VID=1 C-VID=2 S-VID=11 Port1 C-VID=1 C-VID=2 S-VID=10 C-VID=1 C-VID=2 S-VID=11 Port2 RG DSLAM CO-SW1 AGG-SW BRAS Port3 S-VID=10 S-VID=11 S-VID=10 S-VID=11 S-VID=101 S-VID=211 S-VID=310 S-VID=411 VLAN Translation Table Input Output I-SID S-VID S-VID 1001 10 101 2001 11 211 3001 10 310 4001 11 411 VLAN Translation Table Input Output Port S-VID S-VID 3 101 10 3 111 11 3 210 10 3 211 11 Port1 Port2 Port1 Port2 Port1, S-VLAN=10 EFP 300 I-SID 1001 I-SID 1001 I-SID 2001 Port2, S-VLAN=11 EFP 301 I-SID 2001 Port1, S-VLAN=10 EFP 302 I-SID 3001 Port2, S-VLAN=11 EFP 303 I-SID 4001 I-SID 3001 I-SID 4001 Port1 I-SID 1001 I-SID 2001 Port3 Port2 Port1 I-SID 3001 I-SID 4001 Port2 I-SID 1001 I-SID 2001 I-SID 3001 I-SID 4001 Port3, S-VLAN=101 Port3, S-VLAN=211 Port3, S-VLAN=310 Port3, S-VLAN=411 EFP 300 EFP 301 EFP 302 EFP 303 VLAN Translation VLAN Translation VLAN Translation VLAN Translation CO-SW2 CO-SW1 CO-SW2 AGG-SW CO-SW1 CO-SW2 AGG-SW EFP Definition Input (EFP) Output Port S-VID EVC (I-SID) 3 101 300 3 211 301 3 301 302 3 411 303 EFP Definition: CO-SW1 Input (EFP) Output Port S-VID EVC (I-SID) 1 10 1001 2 11 2001 EFP Definition: CO-SW2 Input (EFP) Output Port S-VID EVC (I-SID) 1 10 3001 2 11 4001 VLAN Translation VLAN Translation VLAN Translation VLAN TranslationUpstream Downstream
  • 13. Copyright © 2002-2013NMC Consulting Group. All rights reserved. Netmanias Technical Document: Carrier Ethernet Technology – TPS Backhaul Connectivity 13 TPS Backhaul Network Architecture using PBT (Example 2) PBB-TE Trunk PBB-TE Trunk I-SID 2001 I-SID 1001 S-VLAN 10 C-VID 1 C-VID 2 S-VLAN 11 C-VID 1 C-VID 2 S-VLAN 10 C-VID 1 C-VID 2 S-VLAN 11 C-VID 1 C-VID 2 C-VID 1 C-VID 2 C-VID 1 C-VID 2 C-VID 1 C-VID 2 C-VID 1 C-VID 2 DSLAM Port C-VID=1 C-VID=2 S-VID=10 C-VID=1 C-VID=2 S-VID=11 Port 1 C-VID=1 C-VID=2 S-VID=10 C-VID=1 C-VID=2 S-VID=11 Port 2 RG DSLAM CO-SW1 AGG-SW BRAS Port 3 S-VLAN 10 C-VID 1 DSLAM Port C-VID 2 DSLAM ID S-VLAN 11 C-VID 1 C-VID 2 S-VLAN 10 C-VID 1 C-VID 2 S-VLAN 11 C-VID 1 C-VID 2HIS VoIP VoD S-VLAN 101 S-VLAN 211 S-VLAN 310 S-VLAN 411 S-VID=10 S-VID=11 S-VID=10 S-VID=11 S-VID=101 S-VID=211 S-VID=310 S-VID=411 DSLAM ID Port 1 Port 2 Port 1 Port 2 CO-SW2 Per-Subscriber VLAN (1:1 VLAN, Single BNG) VLAN XC supported for downstream traffic: Having two output ports at each I-SID, VLAN XC is supported to determine an output port without MAC learning Issue on CO-SW Configuration Consistency: Problem solved by assigning a unique I-SID to each CO instead of each DLSAM Per-Subscriber VLAN • No Broadcast Storm • Ensuring DSL Line Identification and Traceability (IP-to-DSLAM Port) Ensuring DSLAM Configuration Consistency: VLAN Translation at AGG SW No Customer MAC Learning: I-SID: Port = 1:1 mapping
  • 14. Copyright © 2002-2013NMC Consulting Group. All rights reserved. Netmanias Technical Document: Carrier Ethernet Technology – TPS Backhaul Connectivity 14 TPS Backhaul Network Architecture using PBT (Example 2) C-VID=1 C-VID=2 S-VID=10 C-VID=1 C-VID=2 S-VID=11 Port1 C-VID=1 C-VID=2 S-VID=10 C-VID=1 C-VID=2 S-VID=11 Port2 RG DSLAM CO-SW1 AGG-SW BRAS Port3 S-VID=10 S-VID=11 S-VID=10 S-VID=11 S-VID=101 S-VID=211 S-VID=310 S-VID=411 VLAN Translation Table Input Output I-SID S-VID S-VID 1001 10 101 1001 11 211 2001 10 310 2001 11 411 VLAN Translation Table Input Output Port S-VID S-VID 3 101 10 3 111 11 3 210 10 3 211 11 Port1 Port2 Port1 Port2 Port1, S-VLAN=10 I-SID 1001 Port2, S-VLAN=11 Port1, S-VLAN=10 Port2, S-VLAN=11 I-SID 2001 Port1 I-SID 1001 Port2 Port1 I-SID 2001 Port2 I-SID 1001 I-SID 2001 Port3, S-VLAN=101 Port3, S-VLAN=211 Port3, S-VLAN=310 Port3, S-VLAN=411 EFP 300 EFP 302 VLAN Translation VLAN Translation CO-SW2 CO-SW1 CO-SW2 AGG-SW CO-SW1 CO-SW2 AGG-SW EFP 300 I-SID 1001 EFP 302 I-SID 2001 VLAN XC VLAN XC VLAN XC Table: CO-SW1 Input Output I-SID S-VID Port 1001 10 1 1001 11 2 VLAN XC Table: CO-SW2 Input Output I-SID S-VID Port 2001 10 1 2001 11 2 EFP Definition: CO-SW1 Input (EFP) Output Port S-VID EVC (I-SID) 1 10 1001 2 11 1001 EFP Definition: CO-SW2 Input (EFP) Output Port S-VID EVC (I-SID) 1 10 2001 2 11 2001 EFP Definition Input (EFP) Output Port S-VID EVC (I-SID) 3 101 1001 3 211 1001 3 301 2001 3 411 2001 Port3 VLAN Translation VLAN TranslationUpstream Downstream
  • 15. Copyright © 2002-2013NMC Consulting Group. All rights reserved. Netmanias Technical Document: Carrier Ethernet Technology – TPS Backhaul Connectivity 15 TPS Backhaul Network Architecture using PBT (Example 3) C-VID 1 C-VID 2 C-VID 1 C-VID 2 C-VID 1 C-VID 2 C-VID 1 C-VID 2 DSLAM Port PBB-TE Trunk PBB-TE Trunk I-SID 1000 I-SID 1000 C-VID=1 C-VID=2 S-VID=10 C-VID=1 C-VID=2 S-VID=11 Port 1 C-VID=1 C-VID=2 S-VID=10 C-VID=1 C-VID=2 S-VID=11 Port 2 RG DSLAM CO-SW1 AGG-SW BRAS Port 3 S-VLAN 10 C-VID 1 DSLAM Port C-VID 2 DSLAM ID S-VLAN 11 C-VID 1 C-VID 2 S-VLAN 10 C-VID 1 C-VID 2 S-VLAN 11 C-VID 1 C-VID 2HIS VoIP VoD S-VLAN 101 S-VLAN 211 S-VLAN 310 S-VLAN 411 S-VID=10 S-VID=11 S-VID=10 S-VID=11 S-VID=101 S-VID=211 S-VID=310 S-VID=411 DSLAM ID Port 1 Port 2 Port 1 Port 2 S-VLAN 10 C-VID 1 C-VID 2 S-VLAN 11 C-VID 1 C-VID 2 S-VLAN 10 C-VID 1 C-VID 2 S-VLAN 11 C-VID 1 C-VID 2 CO-SW2 Per-Subscriber VLAN (1:1 VLAN, Single BNG) Ensuring Per-Subscriber VLAN • No Broadcast Storm • DSL Line Identification and Traceability (IP-to-DSLAM Port) Ensuring DSLAM Configuration Consistency: VLAN Translation at AGG SW No Customer MAC Learning: I-SID: Port = 1:1 mapping VLAN XC supported for downstream traffic: Having two output ports at each I-SID, VLAN XC is supported to determine an output port without MAC learning Ensuring CO-SW Configuration Consistency: Assigning the same I-SID to each CO using I-SID translation at AGG-GW
  • 16. Copyright © 2002-2013NMC Consulting Group. All rights reserved. Netmanias Technical Document: Carrier Ethernet Technology – TPS Backhaul Connectivity 16 TPS Backhaul Network Architecture using PBT (Example 3) C-VID=1 C-VID=2 S-VID=10 C-VID=1 C-VID=2 S-VID=11 Port1 C-VID=1 C-VID=2 S-VID=10 C-VID=1 C-VID=2 S-VID=11 Port2 RG DSLAM CO-SW1 AGG-SW BRAS Port3 S-VID=10 S-VID=11 S-VID=10 S-VID=11 S-VID=101 S-VID=211 S-VID=310 S-VID=411 VLAN Translation Table Input Output I-SID S-VID S-VID 1001 10 101 1001 11 211 2001 10 310 2001 11 411 VLAN Translation Table Input Output Port S-VID S-VID 3 101 10 3 111 11 3 210 10 3 211 11 Port1 Port2 Port1 Port2 Port1, S-VLAN=10 I-SID 1000 Port2, S-VLAN=11 Port1, S-VLAN=10 Port2, S-VLAN=11 I-SID 1000 Port1 I-SID 1000 Port3 Port2 Port1 I-SID 1000 Port2 I-SID 1000 I-SID 1000 Port3, S-VLAN=101 Port3, S-VLAN=211 Port3, S-VLAN=310 Port3, S-VLAN=411 EFP 300 EFP 301 VLAN Translation VLAN Translation CO-SW2 CO-SW1 CO-SW2 AGG-SW CO-SW1 CO-SW2 AGG-SW EFP 300 I-SID 1000 EFP 300 I-SID 1000 VLAN XC VLAN XC VLAN XC Table: CO-SW1, 2 Input Output I-SID S-VID Port 1000 10 1 1000 11 2 VLAN Translation EFP Definition: CO-SW1, 2 Input (EFP) Output Port S-VID EVC (I-SID) 1 10 1000 2 11 1000 EFP Definition Input (EFP) Output Port S-VID EVC (I-SID) 3 101 1001 3 211 1001 3 301 2001 3 411 2001 I-SID Translation I-SID 1001 I-SID Translation I-SID 2001 VLAN Translation I-SID Translation I-SID Translation I-SID 1001 I-SID 2001 I-SID Translation Table Input Output Tunnel I-SID I-SID A 1000 1001 B 1000 2001 I-SID Translation Table Input Output EFP I-SID I-SID 300 1001 1000 301 2001 1000 Upstream Downstream
  • 17. Copyright © 2002-2013NMC Consulting Group. All rights reserved. Netmanias Technical Document: Carrier Ethernet Technology – TPS Backhaul Connectivity 17 End of Document
  • 18. Copyright © 2002-2013NMC Consulting Group. All rights reserved. 18 Carrier WiFi Data Center Migration Wireline Network LTE Mobile Network Mobile WiMAX Carrier Ethernet FTTH Data Center Policy Control/PCRF IPTV/TPS Metro Ethernet MPLS IP Routing 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 eMBMS/Mobile IPTV Services CDN/Mobile CDN Transparent Caching BSS/OSS Cable TPS Voice/Video Quality IMS LTE Backaul Netmanias Research and Consulting Scope Visit http://www.netmanias.com to view and download more technical documents.