Your SlideShare is downloading. ×
Teorema de pitágota computacion webquets
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Saving this for later?

Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Text the download link to your phone

Standard text messaging rates apply

Teorema de pitágota computacion webquets

330
views

Published on


0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
330
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. TEOREMA DE PITÁGOTA INTRODUCCIÓN TAREA PROCESO RECURSOS EVALUACIÓN CONCLUCIÓN
  • 2. INTRODUCCIÓN        ¡Dí el nombre de un matemático famoso! Seguro que has pensado en el mismo que la mayoría, pero ¿qué sabes de la vida de Pitágoras? ¿En qué época y lugar vivió? ¿Cómo era y qué ideas tenía? Intentaremos averiguarlo y además visualizaremos y entenderemos mejor el teorema que lo ha hecho tan famoso. Al final van a darle una charla a sus compañeros para contarles lo más interesante y significativo de lo que aprendáis. Este trabajo fue hecho con el propósito de saber y aprender como se resuelven los problemas y como se aplica en cada determinado tipo de problemas y como resolverlos. Atrás siguiente Menú
  • 3. TAREA   El propósito final de la actividad es que nuestro grupo de dos estudiantes prepare y desarrolle una conferencia ante los compañeros de clase (o de otra clase) sobre el Teorema de Pitágoras y sobre el mismo Pitágoras. atrás SiguienteMenú
  • 4.  Actividad nº 1: Construcción.-  Se puede construir a partir del siguiente problema:  Divide el cuadrado en 5 triángulos, de tal forma que una vez recortados puedas construir con ellos un triángulo, un rectángulo y un rombo equivalentes en área.  Sol: Atrás SiguienteMenú
  • 5.  Actividad nº 2: Construye el triángulo a partir del cuadrado. Sol 1 Sol 2Atrás SiguienteMenú
  • 6. Actividad nº 3: Construye el rectángulo. Sol: Atrás SiguienteMenú
  • 7.  Actividad nº 4: Construye un rombo: Sol: Atrás Siguiente Menú
  • 8. PROCESO  La conferencia constará de cinco partes y cada uno de los miembros del grupo será el encargado de exponer una de esas partes (salvo la quinta que será responsabilidad de dos compañeros)  1ª Parte: Se trata de utilizar un puzzle de cartulina para explicar el significado geométrico y comprobar la validez del Teorema de Pitágoras. encontraran las instrucciones para la construcción de dicho puzzle (En el apartado "una sencilla comprobación").  2ª Parte: Comprobar, valiéndose de la figura que encuentren o del geoplano de (y del video proyector), cómo el Teorema de Pitágoras se cumple sólo para triángulos rectángulos. Se trata de construir triángulos sobre el Geoplano y luego cuadrados sobre cada lado, comprobando las correspondientes áreas.  3ª Parte: También con el video proyector, podrán explicar una demostración visual del teorema. Tendrán que elegir la que más les guste entre las que encuentren.  4ª Parte: Tendrán que aclarar la utilidad práctica del teorema, ejemplificándolo con dos o tres problemas en cuya resolución se aproveche el teorema. y encontrar múltiples ejemplos de problemas.  5ª Parte: Se trata de emitir una entrevista radiofónica grabada previamente a Pitágoras, o si lo prefieren, escenificar la entrevista en clase. Uno de los miembros del grupo asumirá el papel de periodista y otro el de el propio Pitágoras.Atrás SiguienteMenú
  • 9. RECURSOS  WEBLIOGRAFÍA:  http://docentes.educación.navarra.es  http://html.rincondelvago.com Atrás SiguienteMenú
  • 10. EVALUACIÓN Atrás Siguiente Menú
  • 11. Cada miembro del grupo recibirá dos notas: una específica por la parte de la que es responsable y otra global (la misma para todos) por la evaluación de toda la sesión.  Aspectos a valorar positivamente: En todas las tareas:  Expresarse con orden y coherencia.  Dejar claros los aspectos fundamentales.  Expresarse de forma apropiada y con naturalidad.  Gestionar los tiempos dedicados a cada parte de manera equilibrada.  Conectar las diferentes partes de la exposición de modo que haya coherencia en el conjunto y no se perciban como exposiciones independientes y sin relación.  Dar pie a la participación de los compañeros y la aclaración de sus dudas.  En la 1ª Parte (el Puzzle):  Transmitir con claridad tanto el proceso de construcción como su utilidad para comprobar el Teorema  En la 2ª Parte (el Geoplano interactivo):  Acertar con ejemplos claros de triángulos. Atrás SiguienteMenú
  • 12.  Utilizar algún triángulo de base oblicua.  Dejar claras las propiedades que se cumplen para cada tipo de triángulos (acutángulos, rectángulos y obtusángulos).  En la 3ª Parte (Demostración interactiva):  Explotar las posibilidades de la figura.  No limitarse a un único triángulo  En la 4ª Parte (los Problemas):  Que no sean problemas exclusivamente de Matemáticas: que planteen una situación de la vida real.  Que los problemas seleccionados tengan un contexto lo más cercano y atractivo posible para los compañeros.  Que alguno de los problemas tenga un ámbito en el espacio (no limitarse a problemas sobre el plano).  Suscitar el interés de los compañeros e invitarles a que sugieran posibles caminos para la solución (mejor si éstos no son evidentes)  En la 5ª Parte (el Entrevistador o Periodista):  Conseguir un estilo periodístico que suscite el interés en el público.  Cuestionar que el Teorema se llame de Pitágoras.  Preguntar por los aspectos fundamentales en la vida y obra de Pitágoras.  Preguntar por los pitagóricos.  Tratar al personaje con el respeto que merece.  Dar pie a alguna pregunta de los compañeros.  En la 5ª Parte (el Entrevistado o Pitágoras):  Dar una visión clara de las aportaciones de Pitágoras a la cultura (matemática, filosófica y astronómica) de la época.  Reconocer y argumentar cómo el teorema era conocida antes de la época de Pitágoras.Atrás SiguienteMenú
  • 13. CONCLUSIÓN  Este trabajo se trato sobre el teorema de Pitágoras cómo se debe de resolver, cuáles son sus aspectos y cómo aplicarlo en cada determinado tipo de temas. Atrás Menú