Your SlideShare is downloading. ×
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
NW2011 Optic of human eye
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

NW2011 Optic of human eye

655

Published on

Published in: Health & Medicine
0 Comments
4 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
655
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
65
Comments
0
Likes
4
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Nawat Watanachai Sakarin Ausayakhun 2010
  • 2. Visual optics  Understanding the remarkable inner workings of the eye’s optics  Problems  Complicated  imperfection  Schematic eye
  • 3. Schematic Eye  Conceptualizing the optical properties of human eye  To determine mathematic living eye models  Developed by Gullstrand, professor of ophthalmology in Sweden. Nobel Prize 1911
  • 4. Gullstrand’s schematic eye
  • 5. Reduced schematic eye  Schematic eye can be simplified even further  We can treat eye as it was a single refracting element  Ideal spherical surface separating two media of refractive indices 1 and 1.33  Known as reduced schematic eye  Nodal point =  Cornea and lens…
  • 6. Reduced schematic eye P=60 D. N=1 N=1.33
  • 7. Reduced schematic eye  D=n/f, D=(n2-n1)/f  D= 60 D., n(air)=1, n(eye)=1.33  f=n/D  Ant.focal point = 1/60 = 17mm.  Post.focal point = 1.33/60 = 22.6mm.  D = (n’-n)/f, f = (n’-n)/D =(1.33-1)/60 = 5.5 mm.  Nodal point = 22.6-17.0 = 5.6mm.
  • 8.  Schematic eye can calculate image size on retina Image size = Image distance Object size Object distance Image size = Object size Image distance Object distance
  • 9. Example  m 20 cm. retinal image? 6
  • 10.  20 cm. retinal lesion? Image size = Object size Image distance Object distance Image size = 200 mm. 17 mm. 6000 mm. Image size = 200x17/6000 = 0.6 mm. 6m
  • 11. Accommodation
  • 12. Near point (NP)  correspond accommodation retina NP w/accommodation full
  • 13. Far point (FP)  correspond retina accommodation  refraction FP w/o accommodation
  • 14. Emmetropia FP w/o accommodation NP w/ accommodation
  • 15. Myopia FP NP w/o accommodation w/ accommodation
  • 16. Hyperopia FP w/o accommodation NP w/ accommodation
  • 17. Far Point  conjugate accommodation retina Emmetropia Myopia FP FP FP Hyperopia
  • 18. Near point of accommodation  NPA Visual axis conjugate Retina accommodation  NPA amplitude of acommodation  Presbyopia accommodation progressively decrease with age  ↓ NPA ( )
  • 19. Accommodation decrease with age
  • 20. Presbyopia  Acc. loss reading required 40 ac. reserve 33 cm. acc. 1/33/100 = +3 D  20 reserve power 10 D  45 reserve spare = 3.5-3 = 0.5  fatigue 
  • 21. Accommodative amplitude  <40 yr. increase 1.00 D./ each 4 yr.  40 yr. = 6.00 D., 44 yr. = 4.5 D., 48 yr. = 3.00 D.  >48 yr. decrease 0.50 D./ each 4 yr.  <- 40(6.00 D.) – 44(4.50 D.) – 48(3.00 D.) ->  Ex. 60 yr. = 1.5 D.
  • 22. Accommodation  Accommodative range =  Accommodative amplitude A= F – N  A = accommodative amplitude  F = vergence  N = vergence FP NP FP NP
  • 23. Example  clear vision acommodative amplitude = 8.00 D. -4.00 D. • clear vision = far point – near point • Far point = 100/4 = 25 cm. • Near point = 100/(8+4) = 8.33 cm. • clear vision 8.33-24 cm.
  • 24. Myopia F N w/o accommodation w/ accommodation
  • 25. Example clear vision  +2.00 accommodative amplitude = 4.00D. • Uncorrect hyperope 2.00 farpoint = 100/2 = 50 cm. • accommodation +2.00 D. far point infinity accommodation 2.00 D. • near point 100/(4-2) = 50 cm. • clear vision 50 cm infinity
  • 26. Hyperopia F N w/o accommodation w/ accommodation
  • 27. Example  Without correction, far point is located at front of the eye and near point at eye. cm in cm in front of the  What is refractive error of this eye?  What is amplitude of accommodation of this eye?
  • 28. • FP cm 100/100 = -1 D rays) F distant correction = divergent N w/o accommodation w/ accommodation
  • 29.  FP  vergence  accom. cm FP - D NP cm  vergence   NP - D A = F - N = (-1)-(-3) = 2 D amplitude of accommodation D
  • 30. Reading add prescription  add accommodative amplitude  example 54  D -2. 30 cm D, accom. Amplitude add
  • 31. • • • cm ( accommodation 50% add 2.50 D F D) D N w/o accommodation w/ accommodation
  • 32. Example  54 accom. Amplitude -2.00 D. D • -2.00 (FP 50 cm) • AA=1 D (NP 33 cm) • accommodation 30 cm,
  • 33. Correcting myopia P f’ F
  • 34. Correcting myopia P1 F1, f1 VD1
  • 35. Correcting myopia f1 P f VD ----> f2’ > f1’ correcting lens - D (P2<P1) - D
  • 36. Correcting hyperopia f F
  • 37. Correcting hyperopia F,f
  • 38. Correcting lens and hyperopia f1 P F,f VD ----> f2 < f1 correcting lens D (P > P1 D
  • 39. Vertex distance  refractive error power  refractive error lens power VD significant change lens D VD contact
  • 40. CL power
  • 41.  Aphakic lens +12 D ( VD 15 mm) prescribe  VD Dioptric error 10 mm.
  • 42.  +12 D, F’ = 100/12 = 8.3 cm.    R VD 15 mm. 8.3 – 1.5 cm = 6.8 cm. = FP VD 10 mm. = 6.8 + 1.00 = 7.8 cm
  • 43.  P = 100/7.8 = +12.80 D  = 12.8-12.0 = 0.8 D***  *** VD error +4 D
  • 44. Example  + D mm mm power
  • 45. : f2=110 mm = 11 cm + . D power 20 mm = / =
  • 46. Cylinder and Astigmatism  Astigmatic Expression   Spherocylinder form Combined cylinder form
  • 47. Astigmatism - Corneal astigmatism - Lenticular astigmatism Toric surface
  • 48. Spherocylinder and its imagery Cornea O
  • 49. Total astigmatism Total astigmatism = Corneal astigmatism + Lenticular astigmatism O Against-the-rule astigmatism
  • 50. Total astigmatism Total astigmatism = Corneal astigmatism +lenticular astigmatism 42 40 O With-the-rule astigmatism
  • 51. Conoid of Sturm  Anterior focal line  Posterior focal line  Interval of Sturm O  Circle of least confusion  Spherical equivalent = sphere + (cylinder/ I
  • 52. Spherocylinder and its imagery
  • 53. Astigmatic dial technique  focal line retina
  • 54. Astigmatic dial technique  focal line retina
  • 55. Astigmatic dial technique  sphere retina) +Sph VA (CLC
  • 56. Astigmatism  Compound hyperopic astigmatism  Compound myopic astigmatism  Mixed astigmatism  Simple hyperopic astigmatism  Simple myopic astigmatism
  • 57. Cylinder  Plus cylinder  Minus cylinder  Power cylinder axis
  • 58. Plus Cylinder I Axis Power O O I
  • 59. Minus Cylinder O I Axis Power I
  • 60. Against-the-rule astigmatism - . x retina
  • 61. Against-the-rule astigmatism focal line focal lines - . x retina
  • 62. With-the-rule astigmatism 42 40 - . x 180 retina
  • 63. With-the-rule astigmatism 42 focal line focal lines 40 - . x 180 retina
  • 64. Cylinder  cylinder  Power  Axis  Power cylinder RE axis LE
  • 65. Example  + . D cylinder axis 180’  power +5.00 D 90’  @90  x 180’ +5.00@90’/plano@180’ optical cross
  • 66. Plus cylinder form + . sph + . x
  • 67. Minus cylinder form - + . sph - . x 18
  • 68. spherocylinder: 3 0 + . x &+ . x Combined cylinder form +3.0 0 sph 1. x Plus cylinder form 3 sph -1. x 18 Minus cylinder form +2. 0 -1 0 +1. 0 +3.0 0 +3. 0
  • 69. Transposition  minus  sphere sphere cylinder cylinder   plus cylinder axis new
  • 70. Example  form  shp + . x combined cylinder form spherical equivalent minus cylinder
  • 71. . + . x • (+2.00+1.00) -1.00 x 180’ • - . x • • Sph. Equivalent = + . + (+ . / )=+ . D
  • 72. Combined cylinder form + . + . x combined cylinder form 0’ = +3.00@180’ x 180’ = +3.00 x 90’
  • 73. Example  -4.00 -0.5 x 90’  -4.50 +0.5 x 180’  -4.50 x 90’ : -4.00 x 180’ • +2.00 -1.00 x 20’ • +1.00 +1.00 x 110’ • +1.00 x 20 : +2.00 x 110’
  • 74. The end  Confusing???

Ă—