Cook.richard

18,174 views

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
18,174
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
9
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Cook.richard

  1. 1. Managing Complexity: The Mars Science Laboratory Project Richard Cook Jet Propulsion Laboratory California Institute of Technology Artists Concept
  2. 2. Success!
  3. 3. New Challenges - MSL <ul><li>A broad and flexible payload including advanced geochemical instruments used in Earth labs </li></ul><ul><li>A system to acquire and process dozens of rock and soil samples </li></ul><ul><li>A long-lived, roving, robotic laboratory capable of visiting many sites </li></ul><ul><li>A new landing system capable of providing access to a wide range of potential landing sites </li></ul>Artists Concept
  4. 4. Family Portrait Mars Exploration Rover Mars Pathfinder Sojourner Rover Mars Science Laboratory Rover
  5. 5. MSL Mission Overview ENTRY, DESCENT, LANDING <ul><li>Guided entry and controlled, powered “sky crane” descent </li></ul><ul><li>20×25-km landing ellipse </li></ul><ul><li>Discovery responsive for landing sites ±30º latitude, <0 km elevation </li></ul><ul><li>900-kg landed mass </li></ul>CRUISE/APPROACH <ul><li>9 month cruise </li></ul><ul><li>Spinning cruise stage </li></ul><ul><li>Arrive N. hemisphere summer </li></ul>LAUNCH <ul><li>Atlas V (541) </li></ul>SURFACE MISSION <ul><li>Prime mission is one Mars year </li></ul><ul><li>Latitude-independent and long-lived power source </li></ul><ul><li>20-km range </li></ul><ul><li>80 kg of science payload </li></ul><ul><li>Acquire and analyze samples of rock or soil </li></ul><ul><li>Large rover, high clearance; greater mobility than MPF, MER </li></ul>
  6. 6. Miracles & Challenges <ul><li>Miracles (Inventions) </li></ul><ul><ul><li>Skycrane Landing System </li></ul></ul><ul><ul><li>Sample Acquisition System (Drill, etc.) </li></ul></ul><ul><ul><li>Organic Chemistry Laboratory </li></ul></ul><ul><li>Challenges </li></ul><ul><ul><li>New, redundant avionics architecture with tight mass/volume constraints </li></ul></ul><ul><ul><li>Many (33) high rel/low mass/high performance actuators </li></ul></ul><ul><ul><li>High performance terminal descent sensor (radar) </li></ul></ul><ul><ul><li>Multimission Radioisotope Thermalelectric Generator </li></ul></ul><ul><ul><li>“ Heritage” entry system (aeroshell, parachute) on steroids </li></ul></ul><ul><ul><li>9 other instruments, including 4 </li></ul></ul><ul><ul><li>New implementation processes (EVM, Tech Authority, JCL, etc) </li></ul></ul><ul><ul><li>“ Aggressive” development schedule </li></ul></ul>
  7. 7. Project Resiliency (Phase B) 10/24/11 Strengths Challenges <ul><li>Healthy early investment ratio </li></ul><ul><li>Critical technology risk mitigated </li></ul><ul><li>Early MMRTG dev </li></ul><ul><li>Good technical margins </li></ul><ul><li>Design to Full Capabilities </li></ul><ul><li>Threshold Reqts Identified </li></ul><ul><li>Early EDL focus/reviews </li></ul><ul><li>Early instrument focus </li></ul><ul><li>Good cost/schedule reserves </li></ul><ul><li>Early PP definition </li></ul><ul><li>Instrument development </li></ul><ul><li>Parachute qualification </li></ul><ul><li>Skycrane VnV </li></ul><ul><li>Cost management </li></ul><ul><li>Motor actuators </li></ul><ul><li>SA/SPaH complexity/Org Clean </li></ul><ul><li>Mass/volume management </li></ul><ul><li>Thermal cycle qualification </li></ul><ul><li>PP implementation </li></ul><ul><li>Long duration ops </li></ul>
  8. 8. What Happened? <ul><li>December 2003 – Mission Concept Review/Phase A Start </li></ul><ul><ul><li>Redundant architecture, Focused Technology started </li></ul></ul><ul><li>December 2004 – Delta Mission Concept Review </li></ul><ul><ul><li>Single string architecture, payload selected </li></ul></ul><ul><li>May 2005 – Phase B Start </li></ul><ul><ul><li>Partial redundancy added, new avionics architecture adopted </li></ul></ul><ul><li>May 2006 – PDR </li></ul><ul><ul><li>Sample Chain architecture change, motor control architecture modified </li></ul></ul><ul><li>Aug 2007 – CDR </li></ul><ul><ul><li>Heatshield material change, Actuator architecture changed after dev life test failure </li></ul></ul><ul><ul><li>Substantial cost growth identified due to delivery delays & resulting schedule compression </li></ul></ul><ul><li>April 2008 – System I&T started </li></ul><ul><ul><li>Primarily using EM equipment </li></ul></ul>
  9. 9. What Happened? <ul><li>Nov 2008 – Launch slip declared </li></ul><ul><ul><li>Proximate cause was inability to complete adequate System V&V effort given lateness is critical hardware deliveries (actuators/mechanisms, radar, SAM) </li></ul></ul><ul><ul><li>Contributing cause was immaturity in system architecture & critical hardware elements resulted in late discovery of problems & need for additional rework (avionics/power electronics) </li></ul></ul><ul><li>May 2009 – Launch slip replan complete </li></ul><ul><ul><li>FY09 Focus on critical hardware deliveries & improving maturity </li></ul></ul><ul><li>January 2010 – Actuator flight deliveries </li></ul><ul><li>April 2010 – Restarted System I&T </li></ul><ul><li>June 2010 – Final Avionics deliveries </li></ul><ul><li>August 2010 – Final mechanism deliveries (arm, drill, etc.) </li></ul><ul><li>December 2010 – Final payload delivery </li></ul>
  10. 10. Lessons Learned <ul><li>Simple missions are largely done – need to recognize that mission requirements are driving us beyond our experience base </li></ul><ul><ul><li>Complexity causing non-linear increase in implementation challenges </li></ul></ul><ul><li>Project has largely been very successful despite this – a testament to the quality of the team </li></ul><ul><li>Key “complexity” related lessons fall in several related areas </li></ul><ul><ul><li>Technology </li></ul></ul><ul><ul><li>System Architecture </li></ul></ul><ul><ul><li>Oversight </li></ul></ul>
  11. 11. Lessons Learned (Technology) <ul><li>Focused technology efforts are extremely useful to weed out immature technologies, but don’t contribute significantly to system maturity </li></ul><ul><li>Need to assess dependencies on critical technologies early and develop contingency plans for highly coupled elements </li></ul><ul><li>Religiously respect Technology Readiness gates </li></ul><ul><li>Electronics technology (processors, FPGAs, bus architectures, low voltage) enabling system functional integration and corresponding explosion in system complexity </li></ul>
  12. 12. Lessons Learned (System Architecture) <ul><li>System architecture definition is critical to managing & bounding complexity </li></ul><ul><li>Challenge design choices which trade box simplicity for system complexity </li></ul><ul><li>Cost & schedule modeling tools are largely box based and drive architecture choices accordingly </li></ul><ul><li>V&V scope is a n-squared problem, V&V tools & techniques permit execution at a “n” pace </li></ul><ul><li>Early investment ratio is only helpful if the product architecture stays the same </li></ul>
  13. 13. Lessons Learned (Oversight) <ul><li>Agency should assess “behavioral” implications of standard processes for Project formulation & implementation </li></ul><ul><li>Assess schedule dependencies of complex developments early and develop contingency plans for highly coupled elements </li></ul><ul><li>No operationally effective mechanism exists to determine “good enough” in the current risk environment </li></ul><ul><li>EVM & other cost management tools are only as useful as the quality of your plan </li></ul><ul><li>Project review process did not provide sufficient “external” integration of complexity & resulting project vulnerability </li></ul><ul><li>Extremely difficult to implement an operationally effective integrated risk management process without significant resource investment </li></ul><ul><li>Project leadership should continuously challenge whether their past experience is scalable to the current task </li></ul>
  14. 15.
  15. 16. SA/SPaH Hardware May contain Caltech/JPL proprietary information and be subject to export control. Comply with all applicable U.S. export regulations.
  16. 17.
  17. 18. PAYLOAD SAM CHEMIN

×