½¾Matemáticas en la Música?!    Gabriel Martínez Ramos     Matemáticas Aplicadas.    México 2012
1                                  Resumen   Muchas veces me he preguntado si existe alguna relación entre laMúsica y la M...
2Índice1. Música y Matemáticas                                                                                 3  1.1. Rel...
31.     Música y Matemáticas   Para empezar primero daremos algunas deniciones y características decada una de las dicipli...
4Tiembre:    es el color del sonido, al cual podemos diferenciar sonidos, ya sean       bruscos o suaves.    Un dato inter...
5    Aprendido lo anterior, podemos hablar de que trata la Matemática.Desde el tiempo que he estudiado la carrera de Matem...
61.1. Relaciones y Similitudes.    Durante mucho tiempo se dice que tanto las Matemáticas como la Músicatienen ciertas sim...
7tre tonos que sonaban armónicos y fue el primero en darse cuanta que laMúsica, siendo uno de los medios escenciales de la...
8netas giran alrededor del Sol, renó la Teoría de la música de las esferas,propuesta por los pitagóricos, sugiriendo que l...
9estacionarios, lo que debemos de cuidar es que las funciones de densidad deprobabilidad no cambien en el transcurso del t...
10    lo cual se inere en los siguientes resultados:                            Resultado     Probabilidad                ...
11                    I     II   III   IV     V    VI    VII   VIII             2     96    22    141   41    105   122   ...
12armónico de acuerdo a su época. En ella se utiliza una escala de 7 sonidoscorrespondientes a siete grados, las más utili...
13Apartir de este resultado se obtiene la primera composición de este trabajo.De acuerdo con el esquema armónico, visto an...
14Veamos como queda al nal:
152.2. Fractales en la Música.    Básicamente los fractales se caracterizan por dos propiedades: autoseme-janza (o autosim...
16Fractalidad en la Música Clásica.    Normalmente se entiende por música fractal aquella que ha sido genera-da a partir d...
172.3. Inuencia de las Tranformaciones Geométricas en     la melodía.    Las transformaciones musicales están íntimamente ...
18   Si colocamos notas musicales en los vértices triángulares   y después lo trasladamos a un pentagrama,   emerge el equ...
19El equivalente musical es llamado retrógradoFigura 1: Un ejemplo musical es Rain drops keep fallen in my head.
20La ecuación para estas grácas es y = f (x) y y = f (−x)Esta forma de inversión puede ser encontrada en la canción Greens...
213.     Teoría Matemática de la Música.    Como ya podimos ver, las matemáticas se puden aplicar en algunos te-mas que ti...
22Estas cartas K se pegan y comparan mediante isomorsmos de los módulossubyacentes. Tales objetos globales, los cuales gen...
234.     Conclusiones    Para concluir, tanto la Música como las Matemáticas tienen ciertas re-laciones y similitudes que ...
24ReferenciasCordantonopulos, V. (2002). Curso completo de la teoría de la música. En       (p. 7-9). México.Emilio, L. P....
Upcoming SlideShare
Loading in...5
×

¿¡Matemáticas en la Música!?

10,881

Published on

Las matemáticas y la música tiene diversas relaciones en común, sin embargo, no todos conocen esas relaciones. Por ello, comparto este ensayo, para que las personas, que no conocen de ello, puedan comprender las relaciones y similitudes que entre ellas existe.

Published in: Education
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
10,881
On Slideshare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
157
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

¿¡Matemáticas en la Música!?

  1. 1. ½¾Matemáticas en la Música?! Gabriel Martínez Ramos Matemáticas Aplicadas. México 2012
  2. 2. 1 Resumen Muchas veces me he preguntado si existe alguna relación entre laMúsica y la Matemática, sin embargo, hasta hoy en día puedo dar unarespuesta a ello, y esta es: que efectivamente sí existe. La música y las matematicas tiene ciertas relaciones desde épocasantiguas. Además de que éstas dos son diciplinas demasiado abstrac-tas tiene ciertas carácteristicas en común, pues son diciplinas que hancausado gran importancia en el mundo. Desde la época de Pitágoras estas dos disciplinas tienen ciertas re-laciones, pues para poder crear la estructura musical, que hoy en díase conoce, se necesito de la matemática que en esa época conocía. Algunos matemáticos, de nuestra época, se han preguntado si sepuede estudiar la música mediante alguna estructura matemática, si sepuede hacer ¾cómo sería? De ahí la creación de la Teoría matemá-tica de música, que fue creada alrededor de 1980 y que se encargadel estudio de la musicología mediante una estructura algebraica. Des-de entonces se ha podido estudiar la música mediante una estructuraalgebraica. También podemos hablar de que hay matemáticos mexica-nos que se han dedicado al estudio de la música-matemática , tambiénhan propuesto nuevas teorías e investigado sobre algunos fenómenosmusicales mediante esta teoría. Por otro lado, podemos saber de si hay algunas aplicaciones de lamatemática a la música, es decir, resolver algún problema de músicamediante algún algoritmo matemático, o también intentar componeralguna melodía mediante el uso de las matemáticas.
  3. 3. 2Índice1. Música y Matemáticas 3 1.1. Relaciones y Similitudes. . . . . . . . . . . . . . . . . . . . . . 6 1.2. Antecendentes Históricos. . . . . . . . . . . . . . . . . . . . . 6 1.2.1. Los Pitagóricos. . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2. Edad Media y El Renacimiento. . . . . . . . . . . . . . 72. Aplicaciones de la Matemática a la Música. 8 2.1. Teoría de la Probabilidad. . . . . . . . . . . . . . . . . . . . . 8 2.1.1. Juego de Dados de W. A. Mozart. . . . . . . . . . . . . 9 2.2. Fractales en la Música. . . . . . . . . . . . . . . . . . . . . . . 15 2.3. Inuencia de las Tranformaciones Geométricas en la melodía. . 173. Teoría Matemática de la Música. 214. Conclusiones 23Referencias 24
  4. 4. 31. Música y Matemáticas Para empezar primero daremos algunas deniciones y características decada una de las diciplinas para poder entender mejor de lo que se quierehablar. En diversos libros podemos encocontar distintas denicones de lo que es lamúsica, sin embargo, podemos recopilar indformación y crear una deniciósmás fuerte (entendible) de lo que es la música en sí, por tanto la siguientedenición.Música: Es el buen arte de combinar sonidos, de manera secesiva o simul- tanea, con el tiempo de tal forma que se puedan evocar y transmitir sentimientos al oyente. De esto, podemos decir que la música es una arte en el cual se intentanconvinar sonidos de dos maneras distintas, sin embrago podemos decir quela base para crear música es el sonido. Hay dos maneras de entender qué es el sonido, veamos:Físca: El sonido es todo aquello que llega a nuestro oido, es producido por un cuerpo que vibra, y la vibración que produce genera ondas en el aire, que son las que llegan al tímpano.Música: El sonido es la combinación de notas, en armonía y consonante- mente, para generar emociones al oyente. Visto esto, podríamos entender que, además de todo, los musicos puedenencontrar algunas propiedades del sonido como las siguientes:Altura: es la anación del sonido, es decir, si es grave, medio o agudo.Duración: es el tiempo durante el cual se mantiene dicho sonido.Intensidad: equivale a hablar de el volumen: un sonido fuerte o débil. Cordantonopulos, V. (2002), Curso Completo de Teoría de la Música. En (p. 7-9).México. OBS:La música no depende del tiempo, pues este es una propiedad del sonido. Portanto, combinar sonidos y estimar su duración es lo único que se necesita para hacermúsica. Curiosamente la música depende el pulso (tiempo musical), el cual es una partede lo que dura un compas pero esta depende de la porpiedad de duración de un sonido.
  5. 5. 4Tiembre: es el color del sonido, al cual podemos diferenciar sonidos, ya sean bruscos o suaves. Un dato interesante: cuando hablamos producimos sonidos -½y más queeso!- producimos notas musicales, aunque nosotros no las persivimos has-ta eschuchar bien. De ello, al reproducir un sonido podemos diferenciar laspropiedades anteriores. Al denir la música, hablamos sobre que la música estudía sonidos, ade-más de eso lo hace de una forma que haga evocar sentimeintos a los escu-chandos. Cuando un artista crea una pieza se dedica a darle ciertos arreglosque constan de sonidos sucesivos y simultaneos, pero como antes se mensionóque respeten las reglas de la armonía ! Por ello los elementos fundamentalesde la música :Melodía: Es la forma de combinar los sonidos de forma sucesiva. Siempre las escuchamos al tararear una pieza o canción que nos agrada.Armonía: Es la forma de combinar sonidos de forma simultanesa. Hay veces en las que las piezas no tienen forma, pues con sólo melodías estas suenan vacías.Ritmo: La parte esecencial de una pieza es que tenga ritmo. Se dene como el pulso o el tiempo a intervalos constante y regulares. Nótese que el sonido tiene la propiedad de duración de aquí que la música no depende del tiempo, sino del sonido. Con conocimiento de esto, espero que se pueda entender de que se trata alhablar de música. Muchas personas no saben el porqué, al escuchar una pieza,los compositores hacen maravillosas creaciones y se debe a las prapiedades,antes mencionadas, y a las reglas de la armonía. ! La armonía es el estudio de reglas que obedecen los sonidos para ser audible y aprecia-ble al combinarse, en pocas palabras: el arte de formar y enlazar acordes (unión de notas) .Por otro lado, hacer armonía sigica que podemos tocar dos o más notas simultaneamente(al mismo tiempo).
  6. 6. 5 Aprendido lo anterior, podemos hablar de que trata la Matemática.Desde el tiempo que he estudiado la carrera de Matemáticas Aplicadas,he aprendido muuy poco de que signica estudiar o hacer matemáticas. Lescontaré que el semestre pasadoentendí un poco de que hago aquí, pues unaDra. de Matemáticas , al hacerle una entrevista para publicarla y lo vieranlos alumnos del nuevo ingreso, nos dijo que la matemática no es más queel estudio de conjuntos (cómo se comportan, sus propiedades) apartir de unanalisis matemático.. Sin embargo un Matemático aplicado se dedica a es-tudiar otro tipo de matemática como puede saberse no a crear matemáticateórica, sino a modelar, optizar y resolver problemas en otros campos cien-ticos. Con ello, el objetivo es crear nueva matemática al tratar de resolverproblemas de esa índole. Por ello, veremos que es la matemática en sí. De acuerdo con el DRAEentendemos que:Matemática: Es una ciencia deductiva que estudia las propiedades de los entes abstractos, como: números, guras geometricas o símbolos, y sus relaciones.Se divide en dos campos, veamos:Matemáticas Aplicadas: Estudio de la cantidad considerada en relación con ciertos fenomenos físicos.Matemáticas Puras: Estudio de la cantidad considerada en abstracto. Al ver esto, me queda más claro que lo que me explico la Dra., esa vez, esrealidad. Sin embargo, esta denición nos habla de el concepto de conjuntoimplicitamente. Además de ser una ciencia que consta de un lenguaje absracto, la matemá-tica es una de las ciencias más importantes, yo diría que las más importante,pues se aplica en casí todo lugar y ciencia. También sabemos que es una delas diciplinas más antiguas, pues su origen da desde la epoca de los babilo-nicos, egipcios, griegos y otras civilizaciones antiguas. Con lo que su origenempiza con la necesidad de simbolizar el número que contenía un conjuntode objetos. De ahí, el sistema de números naturales. No necesariamente de la Física. a lo que se reere la denición es que estudia fenomenosque ocurren en nuestra vida real.
  7. 7. 61.1. Relaciones y Similitudes. Durante mucho tiempo se dice que tanto las Matemáticas como la Músicatienen ciertas similitudes y se dice, también, que tienen al menos ciertasrelaciones comunes. Como ya se mencionó anteriormente, las matemáticas, en general, se en-cargan del estudio de entes abastractos como números, guras geométricas,espacios, en pocas palabras, el analisis de las propiedades de ciertos con-juntos. Mientras que la música, por su parte, estudia la manera de formarsonidos para hacerlos audibles más aún de sus propiedades. Para empezar mencionaremos que es común escuchar que hay Matemá-ticas en la Música pues al abrir una partitura ésta está llena de numeritos(números del compas y digitaciones). En efecto, se dice que hay Matemáti-cas en la música, que la Música y las Matemáticas están muy relacionadas. La Música cambia su textura y carácter según el lugar y la época. Porsu parte, las Matemáticas son directas (exactas), nunca alteran su carácter yse remotan tanto como el lugar sobre el espacio. Además, ambas disciplinasnacieron desde tiempos remotos, nunca cambían al hablar teóricamente, conel paso del tiempo ambas an cambiado para reevolucionar la humanidad. Adiferencia de la Matemáticas la Música parece inutil pero el mundo actualno se puede concebir sin Matemáticas. Tanto el matemático como el músicose encuentran a resolver problemas o componiendo o interpretando, ambosenseñan a los alumnos sin detenerse a pensar que, ambos, están entregados,que sn paradigmas de lo abstracto.1.2. Antecendentes Históricos. Como ya hemos visto, ambas disciplinas comparten ciertas característicasen común. Pero ¾desde cuándo éstas comparten las características ya mencio-nas? Para ello, empezaremos hablar un poco de los antescedentes históricos.1.2.1. Los Pitagóricos. Pitágoras estudio la naturaleza de los sonidos musicales. La música griegaexistía antes, era escencialmente melódica más que armónica y era microto-nal. Es decir, su escala contenía más de doce sonidos, más que la occidental.Fue pitagoras quien primero descubrió que existía una relación numérica en-
  8. 8. 7tre tonos que sonaban armónicos y fue el primero en darse cuanta que laMúsica, siendo uno de los medios escenciales de la comunicación y y el placer,podía ser medida por razones de enteros # . Sabemos que el sonido producidopor tocar una cuerda depende de la longitud, el grosor y la tención de lamisma. Entendemos que cualquiera de estas variables afecta la frecuencia dela vibracion de la cuerda, lo que Pitágoras descubrió fue que al dividir unacuerda en ciertas proporciones era capaz de producir sonidos audibles. Estaera una maravillosa conrmación de nuetra teoría. Pitágoras descrubrió que al dividir una cuerda a la mitad producía unsonido que era una octava más aguda que na original, que cuando la razónera 2 : 3 se producía una quinta más aguda que la original y que otras razonesproducían sonidos agradables. Cuando una cuerda de 36cm se rasga, no sólo se produce una onda de36cm, sino, además, se forman dos ondas de 18cm, tres de 12cm, cuatro denueve, y así sucesivamente. Sin embargo, Pitágoras no sabía nada de armo-nía, él solo sabía que las razones 1 : 2 y 2 : 3 producen sonidos agradables alcombinarlos, y contruyo una escala apartir de estas proporciones. Con ello, los pitagóricos desarrollaron una división del currículum llamadocuadrivium en donde la música se consideraba una disciplina matemática quemanejaban relaciones de números, razones y proporciones.1.2.2. Edad Media y El Renacimiento. La Longevidad de la tradición pitagórica fue propiciada por Severino Boe-cio $ , lósofo y matemático, sus textos de matemáticas fueron usados por si-glos. Él creía que la música y la proporción que representaban los intervalosmusicales estaban relacionados con la moralidad y la naturaleza humana ypreferencia de proporciones pitagáricas. Tiempo después, Johannes Kepler (1571-1630), raconociendo que los pla- # Recordemos que los pitagóricos eran famosos por sus creencias losócas y religosas,además de que ellos siempre podían describir al mundo por medio de razones matemáticas,cociente de números enteros. $ Nació en Roma durante el siglo V, fue el principal traductor de la teoría de la música enla Edad Media. Escribió Principios de la Música interpretando los trabajos de Nicómaco,Ptolomeo y Euclides.
  9. 9. 8netas giran alrededor del Sol, renó la Teoría de la música de las esferas,propuesta por los pitagóricos, sugiriendo que los palentas producían dife-rentes sonidos por los diferentes grados de velocidad a lo que giraban. Asípropuso que si conocía la masa y la velocidad de un objeto que giraba, sepodría calcular el sonido fundamental. Sus estudios matemáticos del movi-miento de los planetas lo llevaron a dar una notación racional de la músicade éstos, conrmando así, que su verdadera música era polifónica y no sólouna escala estética como habían conrmado escritores anteriores. Desarrollósonidos correspondientes a los planetas entonces conocidos.2. Aplicaciones de la Matemática a la Música. Después de dar un vistazo a las relaciones y a los datos históricos, aun-que hay más -por cierto-, en esta sección exploraremos como se han aplicadolas matemáticas en algunos problemas de música, o bien, que se ha podidohacer con ambas disciplinas.2.1. Teoría de la Probabilidad. Un aspecto interesante de la relación Música-Matemática es la compo-sición de piezas musicales a partir de reglas y conceptos de la teoría de laprobabilidad aplicada a juegos de azar, modelos estocásticos, el movimeintobrowniano, o música estocástica entre otros. También se puede generar mú-sica mediante computadoras programadas con ciertas reglas.Uno de los primeros intentos data alrededor de 1926, cuando Guido de Arez-zo desarrolló una técnica para generar una melodía asociando sonidos a lasvocales de un texto de tal forma que la melodía variaba de acuerdo al númerode vocales en el texto. La modelación matemática de la composición musical basada en la teoríade la probabilidad requiere de la generación de números aleatorios en lacomputadora; sin embargo, existe una manera alternativa de genarar númerosaleatorios apartir de juegos de azar: los dados, la pirinola, los volados, lossorteos, etc.. Se eligen estos juegos de azar porque es fácil de elaborarlos oadquirirlos sin que tengan sesgos apreciables, lo que los hace repetibles encualquier situación. Los juegos de azar pueden ayudarnos a modelar procesos estocásticos
  10. 10. 9estacionarios, lo que debemos de cuidar es que las funciones de densidad deprobabilidad no cambien en el transcurso del tiempo.2.1.1. Juego de Dados de W. A. Mozart. En 1777, a los 21 años, Mozart descubrió un método para componer valses,de 16 compases, por medio del juego de dados, el cual llamó Juego de dadosmusical para componer valses con ayuda de dos dados sin ser músico ni sabernada de composición [K 294]. Cada uno de los dados se escoge lanzando dos dados y anotando la sumade los resultados. Tenemos 11 resultados posibles, del 2 al 12. Mozart diseñódos tablas: una para la primera parte del vals y otra para la segunda.Cada parte consta de 8 compases. Los números romanos sobre las columnascorresponden a los 8 compases de cada parte del vals. Los números del 2 al12 en las las corresponden la suma de los resultados. Los números en la má-triz corresponden a cada uno de los 176 compases que mozrt compuso. Hay2 × 1114 (72 trillones) de variaciones de este vals, sólo una pqueña fracciónde éste ha sido escuchada. Tomando en cuenta la duración del vals, pasaríanmiles de años si quisieramos escuchar todas las posibilidades. Intentaremoscrear una coposición de este vals. El lanzamiento de un dado aparece un espacio muetral con seis puntos, sufunción de densidad es discrta-uniforme % , porque para cualquier resultadotiene una probabilidad de 1 . Al lanzar dos dados se crea un espacio muetral 6bidimensional de 36 parejas de resultados con una probabilidad p = 36 .1El lanzamiento de dos dados nos permite construir la variable aleatoria (L):suma de dos resultados del lanzamiento. El espacio muestral de este experi-mento consta de 11 puntos, pero la función de densidad es discreta-triangular % Recordemos que una variable aletoría X tiene función de densidad uniforme si secomporta de la siguiente manera: { 1 b−a si a x b f (x) = 0 E.O.C.. Una variable aleatoria Y tiene funcion de densidad triangular si tiene la siguiente
  11. 11. 10 lo cual se inere en los siguientes resultados: Resultado Probabilidad 2 1 36 3 2 36 4 3 36 5 4 36 6 5 36 7 6 36 8 5 36 9 4 36 10 3 36 11 2 36 12 1 36 Claramente, se puede observar que el número que más aparece es el 7,los resultados 2, 3, 4, 10, 11 y 12 a pesar de que son el 55 % de los reultadostienen una probabilidad de aparecer de 0.167. Este experimento depende de dos variables aleatorias una asociada alpriemer dado y otra al segundo. Como ya vimos, Mozart usó el lanzamientode dados para componer un vals de 16 compases.Para obtner cada unos de los 8 primeros compases (numerados del I al VIII)se lanza un par de dados y se anota la suma de los puntos que muestran suscaras obteniendose 8 parejas de numeros: (n1 , I), (n2 , II), (n3 , III), (n4 , IV ),(n5 , V ), (n6 , V I), (n7 , V II), (n8 , V III). Cada pareja se asocia a un número de la Tabla 1 generandose 8 compases:N1 , N2 , N3 , N4 , N5 , N6 , N7 , N8 .forma:  ax + b  b si −a x 0 f (y) = − a x + b b si 0 ≤ x 0   0 e.o.c..
  12. 12. 11 I II III IV V VI VII VIII 2 96 22 141 41 105 122 11 30 3 32 6 128 63 146 46 134 81 4 69 95 158 13 153 55 110 24 5 40 17 113 85 161 2 159 100 6 148 74 163 45 80 97 36 107 7 104 157 27 167 154 68 118 91 8 152 60 171 53 99 133 21 127 9 119 84 114 50 140 86 169 94 10 98 142 42 156 75 129 62 123 11 3 87 165 61 135 47 147 33 12 54 130 10 103 28 37 106 5 Tabla 1: Primera parte del vals de Mozart. Los 8 compases siguientes del vals (numerados del I al VIII) se lanzaun par de dados y se anota la suma de los puntos que muetran sus carasobteniendose 8 parejas de números: (m1 , I), (m2 , II), (m3 , III), (m4 , IV),(m5 , V), (m6 , VI), (m7 , VII), (m8 , VIII).Cada pareja se asocia a un número de la Tabla 2 generanose los otros 8compases: M1 , M2 , M3 , M4 , M5 , M6 , M7 , M8 . I II III IV V VI VII VIII 2 70 121 26 9 112 49 109 14 3 117 39 126 56 174 18 116 83 4 66 139 15 132 73 58 145 79 5 90 176 7 34 67 160 52 170 6 25 143 64 125 76 136 1 93 7 138 71 150 29 101 162 23 151 8 16 155 57 175 43 168 89 172 9 120 88 48 166 51 115 72 111 10 65 77 19 82 137 38 149 8 11 102 4 31 164 144 59 173 78 12 35 20 108 92 12 124 44 131 Tabla 2: Segunda parte del vals de Mozart. Mozart designó los compases por columnas siguiendo un sencillo patron
  13. 13. 12armónico de acuerdo a su época. En ella se utiliza una escala de 7 sonidoscorrespondientes a siete grados, las más utilizados son: el primer grado (I),el quinto grado (V) y el cuarto grado (IV) que en una escala de DO mayorcorresponderían DO, Sol y Fa y a los acordes que se construyen sobre ellos,lo cual nos lleva a una composición con las siguiente armonía: Primera parte, 8 compases 1 2 3 4 5 6 7 8 do do do do sol sol sol sol I I V I-VI V I IV-V I Segunda parte, 8 compases 1 2 3 4 5 6 7 8 sol sol sol do do do do do V I IV-I V I I IV-V I Ahora que ya se ha explicado el procedimiento que Mozart propuso solonos queda realizar el experimento:Se lanzan 16 veces simultaneamente dos dados y se anota la suma. El resul-tado que se obtuvo es el siguienteLos primeros 8 resultados son:{N1 , N2 , N3 , N4 , N5 , N6 , N7 , N8 }= {5, 5, 7, 11, 5, 12, 8, 7}.Los segundos 8 compases son:{M1 , M2 , M3 , M4 , M5 , M6 , M7 , M8 }={11, 12, 9, 7, 5, 4, 11, 1}El algoritmo de Mozart hace que los compases del resultado 7, en amboas ta-blas, sean los que más aparecen, siguiendo los resultados 6 y 8, siguiendo losresultados 5 y 9, siguiendo los resultados 4 y 10, resultados 3 y 11, siguiendolos resultados 2 y 12, en ese sentido los compases del resultado 5 al 9 de las2 tablas genera una tendencia cental, ya que 10 resultados de 16 caen entredichos números (63 %). Los resultados 2, 3, 4 , 10, 11 y 12, a pesar de queson el 55 % de las probabilidades solo caen 6 resultados de 16 (17 %), lo queconrma la veracidad del modelo de la función de densidad de probabilidadtriangular. Buacando en las Tablas 1 y 2 de Mozart encontramos los correspondientescompases: C1 ={40, 17, 27, 61, 161, 37, 21, 91} y C2 ={102, 20, 48, 29, 67, 58,173, 13}.
  14. 14. 13Apartir de este resultado se obtiene la primera composición de este trabajo.De acuerdo con el esquema armónico, visto anterirormente obtenemos: 1 11 comienzos en do I 2 11 segundos compaces en do 3 11 terceros compaces en sol V 4 11 cuertos compaces en sol y sol6 5 11 quintos compaces en re7 6 11 sextos compaces en sol − sol7 7 11 septimos compaces en do-re 8 11 compaces nales en sol identicos y en la segunda parte hallaremos 1 11 comienzos en sol V 2 11 segundos compaces en sol I 3 11 terceros compaces en sol IV= do I 4 11 cuertos compaces en do V 5 11 quintos compaces en do I 6 11 sextos compaces en do I 7 11 septimos compaces en do IV-V 8 11 compaces nales en do
  15. 15. 14Veamos como queda al nal:
  16. 16. 152.2. Fractales en la Música. Básicamente los fractales se caracterizan por dos propiedades: autoseme-janza (o autosimilitud) y autorreferencia. La autorreferencia determina queel propio objeto aparece en la denición de sí mismo, con lo que la formade generar el fractal necesita algún tipo de algoritmo recurrente. La auto-semejanza implica invarianza de escala, es decir, el objeto fractal presentala misma apariencia independientemente del grado de ampliación con que lomiremos. Por más que se amplíe cualquier zona de un fractal, siempre hayestructura, hasta el innito y aparece muchas veces el objeto fractal incialcontenido dentro de sí mismo.Controversia Ciencia-Arte. Muchas voces denuncian que la música fractal no es realmente arte. Elarte es emocional, intuitivo y expresivo, mientras que la ciencia es racional,demostrable y descriptiva. Dejando a un lado los argumentos, más o menosdiscutibles, de que este tipo de música no procede de un acto de composicióncreativo y fruto de la inspiracion, lo cierto es que la música fractal suena deentrada rara y desconcertante. La mayor parte de las composiciones, por tanto, utilizan la musica frac-tal como punto de partida; el compositor moldea la melodía fractal hastaobtener un resultado que le agrade. Muchas veces este proceso es lento: elautor del programa The Well Tempered Fractal asegura que invirtió más 31de diez horas en obtener una composición que le agradara a partir de datosfractales. El resultado es, según el autor, una composición que no podríaimaginar sin la ayuda de un ordenador, pero que un ordenador nunca habríaproducido en una forma tan elaborada. Con todo, los programas de generación de música fractal recientes (comoMusiNum o Gingerbread) son cada vez más complejos y es posible generarautomaticamente con ellos melodías agradables sin necesidad de un proce-samiento ulterior.
  17. 17. 16Fractalidad en la Música Clásica. Normalmente se entiende por música fractal aquella que ha sido genera-da a partir de la proyección en un espacio musical del comportamiento deun determinado fractal. Aunque el fractal sea autosemejante e invariable ala escala, es difícil que la composición musical lo sea; es complicado inclusodenir exactamente estos conceptos para una melodía. Bennett considera en que como mecanismos para generar sonidos, lastécnicas relacionadas con los sistemas caóticos pueden ser de un interés con-siderable para los compositores de hoy en día, pero, por la forma en que lossucesos sonoros se perciben en el tiempo, me es difícil imaginar que la na-turaleza esencial de los sistemas caóticos (la autosemejanza y la invarianzade escala) pueden tener alguna vez una importancia estructural real en lamúsica.. Aun así, algunos estudios han encontrado rasgos de autosemejanzaen algunas piezas clásicas, como se cuenta en el siguiente apartado.Beethoven y Bach. La coral situada al nal de Kunst der Fuge (1749) de Johann SebastianBach es un ejemplo de pieza autosemejante . En ella los mismos motivos sonrepetidos una y otra vez con distintas variaciones dentro de una región mayorde la pieza. Así, por ejemplo, varias voces repiten al doble de velocidad lamelodía de la voz principal (un motivo se repite por disminución a escalasmenores). Hay varios trabajos que analizan la manifestación de estructuras fractali-formes en composiciones clásicas: estudia la analogía entre la estructura delconjunto de Cantor y la primera Ecossaisen de Beethoven, así como entre eltriángulo de Sierpinski y el tercer movimiento de la sonata para piano nú-mero 15, opus 28, también de Beethoven; se analiza la autosemejanza de lasfugas de Bach.
  18. 18. 172.3. Inuencia de las Tranformaciones Geométricas en la melodía. Las transformaciones musicales están íntimamente relacionadas con lascuatro transformaciones geométricas básicas. Las transformaciones geomé-tricas que aquí usaremos recolocan una gura geométrica rígida en el planopreservando su forma y tamaño. La forma original no se distorsiona con lamanipulación. Así una frase musical tendrá motivos que se repiten en formaidéntica o se repiten en forma más aguda o más grave, en otras ocasiones envez de ascender descienden o retroceden (retrógrado). Las transformaciones geométricas son: traslación, transposición, reexióne inversión. Todas estas transformaciones geométricas las encontramos en lamayoría de las melodías populares y un análisis de las obras maestras mu-sicales nos llevará a encontrarlas, no hay una que no las tenga. Ya sea enlas obras de Bach como en las de Mozart, Haydn, Beethoven, etc. sin excluirlos Beatles o cualquier canción de moda. Este es un recurso muy utilizado,aunque normalmente no lo asociamos con matemáticas. Imaginemos la melo-día de When de Saints go marching in, o Guantanamera, Cielito Lindo, LasMañanitas y en cada una de ellas encontramos alguna de estas transforma-ciones. En 1984 Julio Estrada en colaboración con Jorge Gil publicó un libro [Es-trada] en el cual se aplica la teoría de grupos nitos y el álgebra de Boole queestudia la simetría de las formas, para analizar la estructura de la música ycomo una herramienta en la composición dada la coincidencia de las estruc-turas musicales con la simetría (retrogradación, inversión y retrogradaciónde la inversión). Por ejemplo:
  19. 19. 18 Si colocamos notas musicales en los vértices triángulares y después lo trasladamos a un pentagrama, emerge el equivalente musical de una traslación geométrica.La segunda tranfromación geométrica es la reexión
  20. 20. 19El equivalente musical es llamado retrógradoFigura 1: Un ejemplo musical es Rain drops keep fallen in my head.
  21. 21. 20La ecuación para estas grácas es y = f (x) y y = f (−x)Esta forma de inversión puede ser encontrada en la canción Greensleeves.
  22. 22. 213. Teoría Matemática de la Música. Como ya podimos ver, las matemáticas se puden aplicar en algunos te-mas que tiene que ver con música; sin embargo, no son los únicos temas hayuna diversidad de temas interesantes donde se puede aprecias más de estarelación. A continuación hablaremos de un tema importante y, que además, a losestudiantes de matemáticas les interesará mucho y se trata de nada más ynada menos que de la Teoría Matemática de la Música. Comenzo hace más de dos decadas. Una de las principales metas de estaTeoría es la de desarrollar un marco cientíco para musicología. Este marcoposee como fundamento a campos cientícos establecidos. Incluye un lenguajeformal para los objetos y relaciones musicales y musicológicas. La Música está enraizada con realidades físicas, psicológicas y semióti-cas. Pero la descripción formal de las instancias musicales corresponde alformalismo matemático. Está basada en las Teorías de Módulos y Categorías, en la Topología Al-gebraica y Combinatoria, en la Geometría Algebraica, Teoría de Representa-ciones, esto es, en matemática de alto nivel. Su propósito es el de describirlas estructuras musicales. La losofía detrás de ella es la de comprender losaspectos de la Música que están sujetos al raciocinio de la misma manera enque la Física puede hacerlo de los fenómenos propios del trabajo cientíco.Esta teoría está basada: en un lenguaje adecuado para manejar los concep-tos relevantes de las estructuras musicales, en un conjunto de postulados oteoremas con respecto a las estructuras musicales sujetas a las condicionesdenidas y, en la funcionalidad para la composición y el análisis con o sincomputadora. En los años ochenta, Mazzola observó que las estructuras musicales sonestructuras globales pegadas con datos locales. Mazzola utilizó la selecciónde una cubierta como atlas, la cual es parte del punto de vista en el sentidode Yoneda y Adorno. Las cartas se llaman composiciones locales y consis-ten (vagamente) de subconjuntos nitos K de módulos M sobre un anillo R. Una referencia para entender más sobre este tema es la de The Topos of Music deGuerino Mazzola.
  23. 23. 22Estas cartas K se pegan y comparan mediante isomorsmos de los módulossubyacentes. Tales objetos globales, los cuales generan diferentes categoríasse llaman composiciones globales. Éstos son los conceptos estudiados en loque ahora se conoce como la Teoría Matemática Clásica de la Música. En el libro de Lluis Puebla Una Introducción a la Teoría de Grupos conaplicacines en la Teoria Matemática de la Música en el capítulo cuatro seexpone con detalle algunas aplicaciones de la Teoría de Grupos en la TeoríaMusical, también nos dice que Una meta de la Teoría Musical es describir las posibilidades de un siste-ma de tonos . Tradicionalmente, el estudio del intervalo entre tonos se hacíausando las razones de frecuencia de las potencias de los enteros pequeños.La Teoría Matemática de la Música moderna ofrece una manera indepen-diente de entender el sistemas de tonos. considerando los intervalos comotransformaciones. El surgimiento histórico de las estructuras algebraicas enla Musicología llevó a la Teoría Transformacional, que se concentra en lasoperaciones que forman grupos matemáticos. Como ya mencioné en ese capitulo se presentan algunas aplicaciones y seve como se desarrolla toda esta Teoría , que para mí es interesante y que megustaría aprender. El tono es el sonido que se escucha y que, usualmente, se asocia con las frecuanciasde vibración.
  24. 24. 234. Conclusiones Para concluir, tanto la Música como las Matemáticas tienen ciertas re-laciones y similitudes que las hacen únicas, además que podemos aplicaralgunos conceptos matemáticos para estudiar la música (como antes vimos),y como se podrá dar cuenta ambas poseen gran importancia en este mundo,así que espero en algún futuro aportar con la Teoría Matemática de la Mú-sica como matemático pues sería algo interesante. Como podrá saber hastala fecha desde los pitagóricos ha habido una forma de entender la músicamediante las matemáticas, y han habido diversos personajes que se han en-cargado de estudiar y resolver problemas de la música mediante matematicas. Con ello me despido, esperando que este ensayo haya sido de su agrado.
  25. 25. 24ReferenciasCordantonopulos, V. (2002). Curso completo de la teoría de la música. En (p. 7-9). México.Emilio, L. P. (2009). Una introducción a la tería de grupos con aplicaciones en la teoría matemática de la música. (1ra. ed.). México: Publicaciones Electronicas, SMM.Javier Luzuriage, R. O. P. (2006). La física de los instrumentos musicales. (1ra. ed.). Buenos Aires: Eudeba.Órtiz, J. A. P. (2000). Música fractal: El sonido del caos. Tesis Doctoral no publicada, Universidad de Alicante.Solís, S. T. (s.f.). Teoría de la probabilidad en la composición musical con- temporánea. México.

×