Your SlideShare is downloading. ×
5.3 5.4 notes
5.3 5.4 notes
5.3 5.4 notes
5.3 5.4 notes
5.3 5.4 notes
5.3 5.4 notes
5.3 5.4 notes
5.3 5.4 notes
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

5.3 5.4 notes

108

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
108
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. 5.3­5.4 Angle Bisectors, Medians & Altitudes November 05, 2012 Bellwork Do problems on HW worksheet. 5.1 #2, 14 5.1  2. x=8 5.2 #2, 6, 8 14. DE = 17 5.2 2. AB = 26 6. yes 8. DE = 44 Nov 8­2:25 PMHW Wkst Evens 1
  • 2. 5.3­5.4 Angle Bisectors, Medians & Altitudes November 05, 2012 5.3 Angle Bisectors Angle Bisector Theorem:  If a point is on the < bisector,     then it is equidistant from the 2 sides of the angle. B D A DB = DC C Converse of Angle Bisector Theorem:  If a point is in the interior of an <       and is equidistant from the sides of the <,  then it lies on the < bisector. B D AD bisects <BAC A C Nov 8­2:35 PMHW Wkst Evens 2
  • 3. 5.3­5.4 Angle Bisectors, Medians & Altitudes November 05, 2012 5.4 Medians & Altitudes Median:  egment from a vertex to the midpoint of opposite side s Centroid: point of concurrency (intersection of medians) Concurrency of Medians of a Triangle Theorem:  The medians  intersect at a point that is 2/3 of the distance from  each  vertex to the midpoint of the opposite side. B D E P AP = 2/3 AE BP = 2/3 BF A C CP = 2/3 CD F Nov 10­8:05 AMHW Wkst Evens 3
  • 4. 5.3­5.4 Angle Bisectors, Medians & Altitudes November 05, 2012 Nov 12­3:38 PMHW Wkst Evens 4
  • 5. 5.3­5.4 Angle Bisectors, Medians & Altitudes November 05, 2012 Altitude: perpendicular segment form a vertex to the opposite side  Concurrency of Altitudes Theorem:   The lines containing the altitudes are concurrent. Nov 10­8:18 AMHW Wkst Evens 5
  • 6. 5.3­5.4 Angle Bisectors, Medians & Altitudes November 05, 2012 HW 5.3­5.4  Worksheet  Evens Nov 10­8:33 AMHW Wkst Evens 6
  • 7. 5.3­5.4 Angle Bisectors, Medians & Altitudes November 05, 2012 Nov 16­7:14 AMHW Wkst Evens 7
  • 8. 5.3­5.4 Angle Bisectors, Medians & Altitudes November 05, 2012 Nov 16­7:15 AMHW Wkst Evens 8

×