Cell Respiration APBio


Published on

Published in: Sports, Business
1 Like
  • http://iulren.com/genital-and-mouth-yeast-infection-cause-remedies-and-symptoms-in-male-adults-and-children.html
    Are you sure you want to  Yes  No
    Your message goes here
  • Thank you!!!
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • Cell Respiration APBio

    1. 1. Harvesting Energy
    2. 2. Overview of Glucose Breakdown <ul><li>The overall equation for the complete breakdown of glucose is: </li></ul><ul><li> C 6 H 12 O 6 + 6O 2  6CO 2 + 6H 2 O + ATP </li></ul><ul><li>The main stages of glucose metabolism are: </li></ul><ul><ul><li>Glycolysis </li></ul></ul><ul><ul><li>Cellular respiration </li></ul></ul>
    3. 4. Overview of Glucose Breakdown <ul><li>Glycolysis </li></ul><ul><ul><li>Occurs in the cytosol </li></ul></ul><ul><ul><li>Does not require oxygen </li></ul></ul><ul><ul><li>Breaks glucose into pyruvate </li></ul></ul><ul><ul><li>Yields two molecules of ATP per molecule of glucose </li></ul></ul>
    4. 5. Overview of Glucose Breakdown <ul><li>If oxygen is absent fermentation occurs </li></ul><ul><ul><li>pyruvate is converted into either lactate, or into ethanol and CO 2 </li></ul></ul><ul><li>If oxygen is present cellular respiration occurs… </li></ul>
    5. 6. Overview of Glucose Breakdown <ul><li>Cellular respiration </li></ul><ul><ul><li>Occurs in mitochondria (in eukaryotes) </li></ul></ul><ul><ul><li>Requires oxygen </li></ul></ul><ul><ul><li>Breaks down pyruvate into carbon dioxide and water </li></ul></ul><ul><ul><li>Produces an additional 32 or 34 ATP molecules, depending on the cell type </li></ul></ul>
    6. 7. Glycolysis <ul><li>Overview of the two major phases of glycolysis </li></ul><ul><li>Glucose activation phase </li></ul><ul><li>Energy harvesting phase </li></ul>
    7. 8. Glycolysis <ul><li>Glucose activation phase </li></ul><ul><ul><li>Glucose molecule converted to highly reactive fructose bisphosphate by two enzyme-catalyzed reactions, using 2 ATPs </li></ul></ul>
    8. 9. Essentials of Glycolysis (a) Glucose Glucose-6- Phosphate Glucose-6- Phosphate Fructose-1,6- Bisphosphate C C C C C C P P ATP ADP C C C C C C P C C C C C C ATP ADP P C C C C C C
    9. 10. Glycolysis <ul><li>Energy harvesting phase </li></ul><ul><ul><li>Fructose bisphosphate is split into two three-carbon molecules of glyceraldehyde 3-phosphate (G3P) </li></ul></ul><ul><ul><li>In a series of reactions, each G3P molecule is converted into a pyruvate, generating two ATPs per conversion, for a total of four ATPs </li></ul></ul><ul><ul><li>Because two ATPs were used to activate the glucose molecule there is a net gain of two ATPs per glucose molecule </li></ul></ul>
    10. 11. Essentials of Glycolysis ( b ) G3P P P C C C C C C Fructose-1,6- Bisphosphate P C C C P C C C P C C C P C C C
    11. 12. Glycolysis <ul><li>Energy harvesting phase (continued) </li></ul><ul><ul><li>As each G3P is converted to pyruvate, two high-energy electrons and a hydrogen ion are added to an “empty” electron-carrier NAD+ to make the high-energy electron-carrier molecule NADH </li></ul></ul><ul><ul><li>Because two G3P molecules are produced per glucose molecule, two NADH carrier molecules are formed </li></ul></ul>
    12. 13. Essentials of Glycolysis (c) Pyruvates G3P P P P C C C P C C C P C C C P C C C C C C C C C P i P i NAD + NAD + NADH NADH ATP ATP ATP ATP ADP ADP ADP ADP
    13. 14. Glycolysis <ul><li>Summary of glycolysis: </li></ul><ul><ul><li>Each molecule of glucose is broken down to two molecules of pyruvate </li></ul></ul><ul><ul><li>A net of two ATP molecules and two NADH (high-energy electron carriers) are formed </li></ul></ul>
    14. 15. Fermentation of Dough
    15. 16. Fermentation <ul><li>Pyruvate is processed differently under aerobic and anaerobic conditions </li></ul><ul><li>Under aerobic conditions, the high energy electrons in NADH produced in glycolysis are ferried to ATP-generating reactions in the mitochondria, making NAD+ available to recycle in glycolysis </li></ul>
    16. 17. Fermentation <ul><li>Under anaerobic conditions, pyruvate is converted into lactate or ethanol, a process called fermentation </li></ul><ul><li>Fermentation does not produce more ATP, but is necessary to regenerate the high-energy electron carrier molecule NAD+, which must be available for glycolysis to continue </li></ul>
    17. 18. Fermentation <ul><li>Some microbes ferment pyruvate to other acids (as seen in making of cheese, yogurt, sour cream) </li></ul><ul><li>Some microbes perform fermentation exclusively (instead of aerobic respiration) </li></ul><ul><li>Yeast cells perform alcoholic fermentation </li></ul>
    18. 19. Alcoholic Fermentation NAD + Glucoses Glycolysis Alcoholic Fermentation NAD + NADH ADP ATP ADP ATP Pyruvates Ethanols NAD + NAD + NADH C C C C C C C C C C C C C C C C C O O C O O NADH NADH
    19. 20. Fermentation <ul><li>Some cells ferment pyruvate to form acids </li></ul><ul><li>Human muscle cells can perform fermentation </li></ul><ul><ul><li>Anaerobic conditions produced when muscles use up O 2 faster than it can be delivered (e.g. while sprinting) </li></ul></ul><ul><ul><li>Lactate (lactic acid) produced from pyruvate </li></ul></ul>
    20. 21. Lactate Fermentation NAD + Glucoses Glycolysis Lactate Fermentation NAD + NADH ADP ATP ADP ATP Pyruvates Lactates NAD + NAD + NADH C C C C C C C C C C C C C C C C C C NADH NADH
    21. 22. Cellular Respiration <ul><li>In eukaryotic cells, cellular respiration occurs within mitochondria , organelles with two membranes that produce two compartments </li></ul><ul><ul><li>The inner membrane encloses a central compartment containing the fluid matrix </li></ul></ul><ul><ul><li>The outer membrane surrounds the organelle, producing an intermembrane space </li></ul></ul>
    22. 23. A Mitochondrion Matrix A Cell One of Its Mitochondria A Crista Outer & Inner Membranes Intermembrane Compartment a b c
    23. 24. Cellular Respiration <ul><li>Overview of Aerobic Cellular Respiration: </li></ul><ul><li>Glucose is first broken down into pyruvate, through glycolysis , in the cell cytoplasm </li></ul><ul><li>Pyruvate is transported into the mitochondrion (eukaryotes) and split into CO 2 and a 2 carbon acetyl group </li></ul>
    24. 25. Cellular Respiration <ul><li>The acetyl group is further broken down into CO 2 in the Krebs Cycle (matrix space) as electron carriers are loaded </li></ul><ul><li>Electron carriers loaded up in glycolysis and the Krebs Cycle give up electrons to the electron transport chain (ETC) along the inner mitochondrial membrane </li></ul>
    25. 26. Cellular Respiration <ul><li>A hydrogen ion gradient produced by the ETC is used to make ATP ( chemiosmosis ) </li></ul><ul><li>ATP is transported out of the mitochondrion to provide energy for cellular activities </li></ul>
    26. 27. Cellular Respiration
    27. 28. Pyruvate Breakdown in Mitochondria <ul><li>After glycolysis, pyruvate diffuses into the mitochondrion into the matrix space </li></ul><ul><li>Pyruvate is split into CO 2 and a 2-carbon acetyl group, generating 1 NADH per pyruvate </li></ul>
    28. 29. Pyruvate Breakdown in Mitochondria <ul><li>Acetyl group is carried by a helper molecule called Coenzyme A, now called Acetyl CoA </li></ul><ul><li>Acetyl CoA enters the Krebs Cycle and is broken down into CO 2 </li></ul>
    29. 30. Pyruvate Breakdown in Mitochondria <ul><li>Electron carriers NAD + and FAD are loaded with electrons to produce 3 NADH & 1 FADH 2 per Acetyl CoA </li></ul><ul><li>6. One ATP also made per Acetyl CoA in the Krebs Cycle </li></ul>
    30. 31. Formation of Acetyl CoA Pyruvates Acetyl CoA C C C C C C CoA CoA C C C C C C CoA CoA C C C C NAD + NAD + NADH NADH C O O C O O C C C C
    31. 32. Krebs Cycle: Summary NADH CoA NAD + NADH NAD + NADH ADP ATP H 2 O NAD + FADH 2 FAD H 2 O 1 2 3 4 5 6 7 Acetyl CoA C C C C C C C C C C C C C C C C O O C O O C C C C C C C C C C CoA NAD + NADH C O O C C C C C H 2 O NAD + NADH ADP ATP C O O C C C C NADH NAD + FADH 2 FAD H 2 O C C C C C C C C C C C C C C C CoA CoA C C C C
    32. 33. Electron Transport Chain <ul><li>Most of the energy in glucose is stored in electron carriers NADH and FADH 2 </li></ul><ul><ul><li>Only 4 total ATP produced per glucose after complete breakdown in the Krebs Cycle </li></ul></ul>
    33. 34. Electron Transport Chain <ul><li>NADH and FADH 2 deposit electrons into electron transport chains in the inner mitochondrial membrane </li></ul><ul><li>Electrons join with oxygen gas and hydrogen ions to made H 2 O at the end of the ETCs </li></ul>
    34. 35. Mitochondrial Electron Transport System
    35. 36. Chemiosmosis <ul><li>Energy is released from electrons as they are passed down the electron transport chain </li></ul><ul><li>Released energy used to pump hydrogen ions across the inner membrane </li></ul><ul><ul><li>Hydrogen ions accumulate in intermembrane space </li></ul></ul>
    36. 37. Chemiosmosis <ul><li>Hydrogen ions form a concentration gradient across the membrane, a form of stored energy </li></ul><ul><li>Hydrogen ions flow back into the matrix through an ATP synthesizing enzyme </li></ul><ul><ul><li>Process is called chemiosmosis </li></ul></ul>
    37. 38. Chemiosmosis <ul><li>Flow of hydrogen ions provides energy to link 32-34 molecules of ADP with phosphate, forming 32-34 ATP </li></ul><ul><li>ATP then diffuses out of mitochondrion and used for energy-requiring activities in the cell </li></ul>
    38. 39. Mitochondrial Chemiosmosis (1)
    39. 40. Mitochondrial Chemiosmosis (2)
    40. 41. Mitochondrial Chemiosmosis (3)
    41. 42. Influence on How Organisms Function <ul><li>Metabolic processes in cells are heavily dependent on ATP generation (cyanide kills by preventing this) </li></ul><ul><li>Muscle cells switch between fermentation and aerobic cell respiration depending on O 2 availability </li></ul>
    42. 43. Energy Harvested from Glucose
    43. 44. Energy Harvested from Glucose (Cytoplasm) Glucose 2 NADH 2 NADH 6 NADH 2 FADH 2 2 Pyruvates 2 CO 2 4 CO 2 2 ATP 4 ATP (Mitochondrial Matrix) (Inner Membrane) 2 ATP 32 ATP Electron Transport System Glycolysis Krebs Cycle Water Oxygen
    44. 45. The end