• Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
3,467
On Slideshare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
327
Comments
0
Likes
1

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. HSPA MAC-centric TechnologiesAUGUST 2007
  • 2. CONTENTS3GPP UMTS EvolutionSystem Overview (HSPA and HSPA+)HSDPAHSUPA (E-DCH)HSPA Common IssueAnnex
  • 3. 3GPP UMTS Evolution3GPP Rel.99/43GPP Rel.99/4 3GPP Rel.5/63GPP Rel.5/6 3GPP Rel.73GPP Rel.7 3GPP Rel.83GPP Rel.8WCDMA384 kbps DL128 kbps ULRTT ~ 150 msHSDPA/HSUPA14 Mbps peak DL5.7Mbps peak ULRTT < 100msHSPA+28 Mbps peak DL11 Mbps peak ULRTT < 50msLTE100 Mbps peak DL50 Mbps peak ULRTT ~ 10ms2003/4 2005/6 HSDPA2007/8 HSUPA2008/9 2009/10
  • 4. System OverviewHSPA Today168 HSDPA network deployments in 78 countries115 commercial HSDPA launches (over 70% WCDMA networks)More than 260 HSDPA devices launchedFast upgrade to higher terminal categoriesIntroduction of receive diversity and advanced receiversHSUPA launches expected in 2007Clear evolution path for HSPAHSPA+ ObjectivesEnhance performance of HSPA based radio networks in terms of spectrum efficiency,peak data rate and latencyExploit full potential of WCDMA 5MHz operationProvide a smooth path towards LTE and interworking between HSPA+ and LTEFacilitate migration from existing HSPA infrastructure to HSPA+Allow operation as a packet-only network for both voice and data
  • 5. System OverviewHSPA+ FeaturesHigher order modulation schemes64 QAM for HSDPA16 QAM for HSUPAMultiple antenna systems for HSPAMultiple Input Multiple Output (MIMO)Continuous connectivity for packet data usersIncrease number of packet data users by reducing uplink overheadFast restart of transmission after a period of temporary inactivityImproved L1 support for high data rateEnhanced CELL_FACH state
  • 6. System OverviewHSDPANew transport and physical channelsHS-DSCH : shared channelFast link adaptationFast schedulingPacket scheduling benefiting from the decorrelated UE fast fadingsFast retransmission mechanism (HARQ)HSUPANew transport and physical channelsE-DCH : enhanced dedicated channelFast schedulingPacket scheduling benefiting from UE activity vs. Max UL cell loadFast retransmission mechanism (HARQ)Supported but less reactiveSupported but less reactiveSupportedYesTurboBPSK and QPSK2 ms, 10 msSupportedHSUPASupportedSupportedSupportedNoTurboQPSK and 16QAM2 ms onlyNot supportedHSDPAFast link adaptationFast schedulingHARQPower controlChannel codingModulationTTIMacro Div
  • 7. System Overview2795211516 (MIMO)2337011515 (MIMO)4219611514 (64 QAM)3480011513 (64 QAM)36301512 (QPSK only)36302511 (QPSK only)2795211510202511159144111108144111107729815672981557298254729825372983527298351Max TB sizeMinimum inter-TTI intervalHS-DSCH codesHS-DSCH Cat.229962000010ms / 2msSF247 (16 QAM)114842000010ms / 2msSF2462000010msSF22557722000010ms / 2msSF2241448410msSF42327981448410ms / 2msSF422711010msSF411TB size (2ms)TB size (10ms)TTIMin SFE-DCH codesE-DCH Cat.
  • 8. System OverviewNode BDL 384 kbpsDL 64 kbpsNode BDL 384 kbpsNo coverage for PS 384 kbpsNo service continuityService continuity for PS 64 kbpsDowngrade Upgrade
  • 9. System OverviewPowerPowerControlControlData PowerUnused Power DataUnusedSame ThroughputRateRateAdaptationAdaptation 100% Power100%R99 : DL transmitted power controlled according to the radio conditionsHSDPA : Using all available powerControlling DL user throughput according to the radio conditions- user in good radio conditions : receives a higher bit rate- user in bad radio conditions : receives a lower bit rate
  • 10. HSDPA
  • 11. HSDPA : MAC-hs LocationMAC-hsThe efficiency of rate adaptationNear the PHYAllows a high reactivity in the resource allocation according to RF condition changesHS-DSCHAssociatedUplinkSignalingAssociatedDownlinkSignalingDCCH DTCHDTCHMAC Control MAC ControlCCCH CTCHBCCHPCCHMAC ControlRRC (RNC)RRC (RNC)RLC (RNC)RLC (RNC)HS-PDSCHFACHS-CCPCHFACHS-CCPCHRACHPRACHRACHPRACHDSCHPDSCHDSCHPDSCHDCHDPCHCPCHPCPCHCPCHPCPCHPCHS-CCPCHPCHPCHS-CCPCHHS-DPCCHHS-SCCHMAC-c/sh(C-RNC)MAC-c/sh(C-RNC)DCHDPDCH/DPCCHR99 L1: Channel Coding / Multiplexing (NodeB)R99 L1: Channel Coding / Multiplexing (NodeB)R5 L1: HSDPA (NodeB)R5 L1: HSDPA (NodeB)MAC-d(S-RNC)MAC-hs(NodeB)MAC-hs(NodeB)
  • 12. HSDPA : MAC-hs LocationMAC-hs location at Node BTwo sub-layersone for schedulingone for HARQ operationPermitsfast, adaptive scheduling to leverage Adaptive modulation and Coding(AMC)HARQ techniquesenabling higher peak data rates and capacityHARQ round trip optimizedkeep soft memory requirements at UE to a minimumReduces delay for successful delivery of packet compared to RNC based architectureRLC (in RNC) remains the only repetition layer which guarantees no loss of data
  • 13. HSDPA : MAC-hs details – UTRAN sideMAC-hsMAC – ControlHS-DSCHTFRC selectionPriority QueuedistributionAssociated DownlinkSignallingAssociated UplinkSignallingMAC-d flowsHARQ entityPriority QueuedistributionPriorityQueuePriorityQueuePriorityQueuePriorityQueueScheduling/Priority handlingLogical channelsHS-DSCHMAC-dMAC-d MUXLogical channelsMAC-d MUXLogical channelsMAC-d MUXIur MAC-d flowMAC-c/sh(opt)Iub MAC-d flowMAC-hs MUXMAC-hs
  • 14. HSDPA : MAC-hs details – UE sideMAC-hsMAC – ControlAssociated Uplink SignallingTo MAC-dAssociated Downlink SignallingHS-DSCHHARQReordering ReorderingRe-ordering queue distributionDisassembly DisassemblyC/TMUXRe-orderingBufferHARQ-Processes – Soft MemoryRe-orderingBufferRe-orderingBufferC/TMUXDCCH DTCHDTCH DTCHDTCHMAC-d Flows
  • 15. HSDPA : Flow ControlObjectiveKeep enough data to avoid data shortage when the scheduler selects a UETake into account the memory size to avoid overflowLimit the number of messages sent to RNC on IubL2L1HS-DSCHFPRLCL2L1HS-DSCHFPIub/ IurPHYMACPHYRLCUuMAC-hsMAC-d
  • 16. HSDPA : Flow ControlHS-DSCH FP frame data structureOne MAC-d flowMAC-d PDUs of same length and same priority levelCmCH-PI0~15FlushDRNC should remove or notNumber of MAC-d PDUs is variableIndicated inband (NumOfPDUs)NumOfPDUs per FP and FP emission interval : controlled by RNCUser Buffer SizeBytesTNL Congestion ControlFrame Sequence Number (FP Frame)Delay Reference Time (RFN)Header CRC FTCmCH-PIFrame Seq NrMAC-d PDU LengthMAC-d PDU Length (cont) Spare 1-0Num Of PDUsUser Buffer SizeUser Buffer Size (cont)Spare, bits 7-4 MAC-d PDU 1MAC-d PDU 1 (cont) PadHeaderSpare, bits 7-4 MAC-d PDU nMAC-d PDU n (cont) PadPayloadNew IE Flags7(E) 6 5 4 3 2 1 0Spare ExtensionPayload CRC (cont)DRTDRT (cont)7 0Payload CRCFlush
  • 17. HSDPA : Flow ControlHS-DSCH Capacity RequestRNC indicates the amount of data in bytespending in its buffer to Node B per QIDUsed to warn Node BThere is nothing to transmit on this QIDThere is new data after an IDLE periodHS-DSCH Capacity AllocationNode B indicates the amount of data to besent per QID to RNCCredits– 0 : stop– 2047 : unlimitedInterval credits granted– 0~2550 (unit of 10ms)Repetition period : subsequent interval granted– 0 : unlimited– 255DL transport network congestion– 0~31User Buffer SizeUser Buffer Size (cont)CmCH-PISpare bits 7-4Spare ExtensionPayload10-321Number ofOctets7 0HS-DSCH IntervalHS-DSCH Credits (cont)Maximum MAC-d PDU LengthMaximum MAC-d PDULength (cont)HS-DSCH CreditsHS-DSCH Repetition PeriodCmCH-PISparebits 7-607Spare ExtensionHS-DSCH CreditsCongestionStatus
  • 18. HSDPA : Transport ChannelsNodeBHSDPA UEHS-PDSCH for data (I/B) trafficHS-PDSCH for data (I/B) trafficHSDPA channelsHSDPA channelsHS-SCCH signaling part (UE id, …) associatedto HS-PDSCHHS-SCCH signaling part (UE id, …) associatedto HS-PDSCHHS-DPCCH Feedback informationHS-DPCCH Feedback informationAssociated DPCH for data, speech + SRB trafficAssociated DPCH for data, speech + SRB trafficMaximum bit rate achievable in UL can be bottleneck forthe maximum bit rate achievable in DLexcessive delay of RLC/TCP ACKs due to low BW in ULlimit DL throughputInteractive or background / UL:384 DL: [max bit rate forUE categories 12 and 6] / PS RAB + UL:3.4 DL:3.4 kbps SRBsfor DCCH
  • 19. HSDPA : HS-SCCHHS-SCCH reception : as many HS-SCCH transmitted during a TTI as the number of scheduled userChannelization code set informationModulation scheme – QPSK/16QAMTBS informationHARQ process informationRedundancy and constellation versionNew data indicatorUE identityHS-SCCH#2ACK ACK ACK7,5 slotsHS-SCCH#1HS-PDSCHN_acknack_transmit = 22 msHS-DPCCH2 slotsTime multiplexing : 1 HS-SCCH is enoughCode multiplexing : multiple HS-SCCHs are neededUE may consider at most 4 HS-SCCHs
  • 20. HSDPA : HS-DPCCHHS-DPCCHHARQ ACK/NACK– Can be repeated in consecutive sub-frames : N_acknack_transmitCQI– CQI feedback cycle : k– Repetition factor of CQI : N_cqi_transmitPower control– ΔACK offset to be used for ACK transmission– ΔNACK offset to be used for NACK transmission– ΔCQI offset to be used for CQI transmissionCQISubframe #0 Subframe #i Subframe #41 radio frame = 10msTslot = 2560 chips= 10 bitsACK/NACK2.Tslot = 5120 chips= 20 bitsHS-DPCCH demodulationand CQI decodingCQI adjustment based on BLER(to reach a BLER target)and HS-DPCCH activity (in order to deactivatedeficient UE by artificially setting its CQI to 0)CQIreportedCQIprocessedHS-DPCCH demodulationand CQI decodingCQI adjustment based on BLER(to reach a BLER target)and HS-DPCCH activity (in order to deactivatedeficient UE by artificially setting its CQI to 0)CQIreportedCQIprocessedimprove the detection quality
  • 21. HSDPA : HS-DPCCHinter-TTI interval = 3 and N_acknack_transmit = 2CQI Feedback Cycle = 8ms and N_cqi_transmit = 2Repetition period is needed in some cases :For cell edge operation, when the available power would not ensure sufficient quality for feedback information
  • 22. HSDPA : Rel.6 Enhancement – CQI ReportingEnhanced CQI reportingActivity-based CQI feedbackNACK-based CQI feedbackCQI Feedback Cycle kRegular CQIfeedbackRegular CQIfeedbackData DataACK NACKCQICQINode-BUECQI Feedback Cycle kRegular CQIfeedbackRegular CQIfeedbackData DataACK NACKCQINode-BUE
  • 23. HSDPA : Rel.6 Enhancement – ACK/NACK Power ReductionACK/NACK transmit power reductionDetection threshold reduction helps Node B to distinguish between DTX and ACK without requiring a largeACK transmit powerPreamble/PostambleACK :1 1 1 1 1 1 1 1 1 1NACK:0 0 0 0 0 0 0 0 0 0PREAMBLE (”PRE”) : 0 0 1 0 0 1 0 0 1 0POSTAMBLE (”POST”): 0 1 0 0 1 0 0 1 0 0NHS-DPCCHHS-DSCHHS-SCCHACK or NACKData PacketN N+1 N+2 N+3N N+1 N+2N-1PREPREAMBLEtransmitted in sub-frame N-1 to indicatereception of relevantsignalling informationin sub-frame N onHS-SCCHNormal ACK/NACKto indicate correct orincorrect decoding ofpacketPOSTAMBLE transmittedin sub-frame N+1(unless a packet iscorrectly decoded fromsub-frame N+1 on theHS-DSCH, or controlinformation is detected insub-frame N+2 on theHS-SCCH)N+1 N+2 N+3POST
  • 24. HSDPA : Rel.6 Enhancement – Fractional DPCHTf =10ms 1 radio frameTPC PilotData1 TFCI Data2Slot#0 Slot#1 …. …. Slot#14Slot#iTslot = 2560 chipsTx OFFTPC PilotTx OFFTx OFFTPC PilotTx OFFTPC PilotTx OFFTf =10ms 1 radio frameTx OFFTPCTx OFFTx OFF TPCAmong HSDPA Data-Only users :1) DCCH signaling is carried on HS-DSCH2) UE specific TPC bits are present to maintain UL power control loop for each UE3) Pilot bits are present to allow F-DPCH to be power controlledand allow DL synchronization to be maintained by each UE
  • 25. HSDPA : Rel.6 Enhancement – Fractional DPCHRadio framewith (SFN modulo 2) = 0 Radio framewith (SFN modulo 2) = 1P-CCPCHAny CPICH10 ms 10 msSubframe#00Subframe#1Subframe#22Subframe#3Subframe#46Subframe#5Subframe#6Subframe#97HS-PDSCHSubframesUL 1 DPCCHTtx_diffτDPCH1UE 1 DPCHτDPCH2UE 2 DPCHUE 2 DPCHτDPCH3UE 3 DPCHT0Shared PCchannelTPC + pilot bits for1 slot (or less?)
  • 26. HSDPA : Fast Link AdaptationEvery TTIAdaptive Modulation and Coding UE radio conditions (CQI)The number of codesCode rateModulation typeQoS (10% BLER)QPSK ¼QPSK ½QPSK ¾16QAM ½16QAM ¾-20 -15 -10 -5 0 50100200300400500600700800Ior/Ioc (dB)Throughput(kbps)AMC IllustrationQPSK ¼QPSK ½QPSK ¾16QAM ½16QAM ¾QPSK ¼QPSK ½QPSK ¾16QAM ½16QAM ¾-20 -15 -10 -5 0 50100200300400500600700800Ior/Ioc (dB)Throughput(kbps)AMC Illustration
  • 27. HSDPA : HARQ MechanismDL asynchronousThere is no fixed relationship between transport block set and timing over radioflexibility for retransmission (no fixed timing between transmission and retransmission)UL synchronousACK/NACK is transmitted at time instants which have a known timing relationship to the relateddownlink transmissionTurbo encoderSystematicParity 1Parity 2SystematicParity 1Parity 2Original transmission RetransmissionChase CombiningRate matching (puncturing)RetransmissionIncremental Redundancy combining
  • 28. HSDPA : HARQ MechanismHybrid Automatic Repeat Query typesChase CombiningSame redundancy version than first transmission is appliedQPSK onlyRV=0CC + Constellation Re-arrangementSame puncturing pattern is applied, but constellation rotation is performed16 QAM onlyRV ∈ [0; 4; 5; 6]Partial Incremental RedundancySystematic bits are prioritizedRV ∈ [0; 2; 4; 6] in QPSKRV ∈ [0; 2; 4; 5; 6; 7] in 16QAMFull Incremental RedundancyParity bits are prioritizedRV ∈ [1; 3; 5; 7] in QPSKRV ∈ [1; 3] in 16QAMConsideration on soft bufferUE capabilityHARQ TypeConsideration on soft bufferUE capabilityHARQ Type
  • 29. HSDPA : HARQ Mechanism – Consideration on UE Capability3630363027952202511441114411729872987298729872987298Max TB sizeCCCCIRCCIRCCIRCCIRCCIRCCHARQ Type at max data rate1.80.914.410.27.27.23.63.61.81.81.21.2Achievable max data rate,Mbps1512 (QPSK only)2511 (QPSK only)11510115911081107156155254253352351Minimum inter-TTI intervalHS-DSCH codesHS-DSCH Cat.
  • 30. HSDPA : HARQ Mechanism – Consideration on RLC Parameters150 Kbytes89-10100 Kbytes87-850 Kbytes61-6, 11 and 12Minimum total RLC AM/MAC-hs memoryMaximum # AM RLC entitiesUE cat.The size of RLC re-ordering buffer : determines the window length of the packets ensure in-sequence deliveryBuffer size should be no limitations to the data rateassuming UTRAN end delays (including RLC retransmission handling) are reasonable
  • 31. HSDPA : HARQ MechanismHARQRetransmitting data blocks not received or received with errorsCombining the transmission and retransmissionsIncrease the probability to decode correctly the information663366666666666633332222Number of HARQProcesses121110987654321UE CategoryACK/NACK/DTX ?HARQ process assignedby the schedulerYUpdate of RV parametersData transmissionWait for ACK/NACKreceptionInsertion of DTXindicationReset HARQ processRemove Mac-d PDUUpdate structuresNret = Nret +1Nret > Nret_max ?Wait forretransmissionNACKDTXNWACK stateNACK/DTX stateACK
  • 32. HSDPA : HARQ MechanismRV parametersIR/Modulation parameters [r,s,b] channel coding/modulationr,s : redundancy version 2ndrate matching state– s : indicate whether the systematic bits (s=1) or non-systematic bits (s=0) are prioritized in transmission– r (0~rmax-1) : changes the initialization Rate Matching parameter value modify puncturing or repetitionpatternb : constellation re-arrangement step– b (0~3) : which operations are produced on the 4 bits of each symbol only in 16 QAMXrv value to UE : HS-SCCH01173016201510141103111200010010brsXrv (Value)307316205214103112001010rsXrv (Value)
  • 33. HSDPA : Scheduling PrincipleCell-specific parameters :Allocated HS-SCCH codesAllocated HS-PDSCH codesAllocated HSDPA powerCell-specific parameters :Allocated HS-SCCH codesAllocated HS-PDSCH codesAllocated HSDPA powerUser-specific parameters :SPI : scheduling priority indicatorGuaranteed Bit RateDiscard TimerUE capability/categoryAmount of data buffered in Node BUser-specific parameters :SPI : scheduling priority indicatorGuaranteed Bit RateDiscard TimerUE capability/categoryAmount of data buffered in Node BPacket Scheduler(metric calculation)Packet Scheduler(metric calculation)Scheduling principleOperator service strategyScheduling decisionBasic : how to share the available resources to the pool of users eligible to receive dataUtility function (F. Kelly) : Un (rn)n : a particular HSDPA userrn : average throughput for the n-th usermeasure of the “happiness or satisfaction” gained from being scheduledThe best scheduling function : the one that maximizes the sum of utility function for all the users at any given time !!!
  • 34. HSDPA : Fast SchedulingMAC-hs schedulerGoal : optimize the radio resources occupancy between usersoutputsSelect Queue IDThe amount of corresponding MAC-d PDUs to transmitInputsNumber of codes availableRemaining power for HS-PDSCH/HS-SCCHReceived ACK/NACK and CQIPreviously scheduled dataUE capabilityRNC configuration parametersMain conceptsRetransmissions are of higher priority than new transmission (first scheduled)QID is chosen according to the SPI/CmCH-PI and the radio conditions based on CQITBs should always be optimized according to the transmitted CQI when possible– If enough codes and power are available– If there is no CPU limitationNo QID should be left starving (those with low priority and bad CQI)
  • 35. HSDPA : Fast SchedulingScheduling AlgorithmsRound RobinUEs are scheduled one after the other oneMAX C/IUE with the best CQI is schedulerPure Fair SchedulerThroughput provided per UE must be equalUsers with the lowest throughput are then scheduled firstClassical Proportional FairUsers are chosen according to the instantaneous CQI/Averaged CQI criteriaUEs in their best instantaneous conditions with regard to their average are scheduled first
  • 36. HSDPA : MAC ProcessingMAC-d multiplexing of logical channels into a single MAC-d flowMAC layer can multiplex different services together into a single transport channel– Both services have similar QoS characteristicsLogical channels– DTCH– DCCH : cannot mapped to MAC-d flow in Rel.5 (additional functionality in Rel.6)Multiplexing (MAC-d in RNC)Multiplexing (MAC-d in RNC)MAC-hs in Node BMAC-hs in Node BPHY layer HS-DSCHPHY layer HS-DSCHDTCHsMAC-d flowHS-DSCHHS-PDSCH
  • 37. HSDPA : MAC PDU FormatMAC PDU : HS-DSCHVF : 1 bitQueue ID : 3 bitsIdentification of the reordering queue in the receiverTSN : 6 bitsUsed for reordering process to support in-sequence deliverySID : 3 bitsSize of a set of consecutive MAC-d PDUsN : 7 bitsNumber of consecutive MAC-d PDUs with equal sizeIn FDD mode, the max number of PDUs transmitted in a single TTI = 70F : 1 bitFlag indicating if more fields are present (0 additional SID/N/F, max number of extensions = 7)Queue ID TSN SID1 N1 F1 SID2 N2 F2 SIDk Nk FkMAC-hs header MAC-hs SDU Padding (opt)MAC-hs SDUMac-hs payloadVF
  • 38. HSDPA : Fast Scheduling - MAC-d Flow and Priority QueueCMCH_PI = 3CMCH_PI = 3CMCH_PI = 4MAC_d Flow ID=0 MAC_d Flow ID=1Queue ID# 0 # 1 # 2Node BRNCMAC_d Flow ID = 0Queue ID CMCH_PI0143MAC_d Flow ID = 1Queue ID CMCH_PI2 3UE #i 312301400CmCH_PIMAC-d Flow IDQueue ID0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15UE # 0UE # iPriorities• • •UE # n• • •1 / 2 0
  • 39. HSDPA : Fast Scheduling - Basic Concept of SchedulerFlow ControlUE1 UE2…TTIsNACKUse all the codesfor new packets …New packetsNew packetsPower LimitationHARQ processes…UE1 UE2 UENQ0Credit = x PDUs…UE1 UE2 UEN…UE1 UE2 UENQ15Credit = z PDUsQ1Credit = y PDUs…UE1 UE2 UEN…UE1 UE2 UEN …
  • 40. HSDPA : Related Layer 1 and 2 Functionality
  • 41. HSDPA : Power ManagementTraffic Power(SHO reserved)OverheadPower(CommonChannels)Traffic PowerP trafficP traffic admissionCall Blocking ThresholdP traffic admission = Ptraffic * callAdmissionRatioP traffic =maxTxPower-Overhead powerCall Blocking Threshold represents thelevel above which new calls are blocked,only new SHO legs are accepted.maxTxPower
  • 42. HSDPA : Power ManagementFlexible Power ManagementMaximizes HS-DSCH throughputDCH traffic is given priority over HSDPA trafficNode BRemaining power management : for HSDPA traffic,MAC-hs scheduler uses Node B PA power not used byDCHRNCMinimum power can be reserved for HS-DSCH and HS-SCCHAdmission for DCH traffic based onPtraffic = MaxTxPower – PminHsdpa – PcchCapability to reserve power for SHO still enabledPower pool self-tuning based on new measurement“Transmitted carrier power of all codes not used forHS-PDSCH or HS-SCCH transmission”Pcch(Commonchannels)TrafficPowerTrafficpower (SHOreserved)PTrafficPTrafficadmissionMaxTxPowerMin power forHS-DSCH andHS-SCCHRNCNodeBPmax for HSDPA cell operationPtotal on non-HSDPAchannels
  • 43. HSDPA : Power ManagementYesNoCompute HS-SCCH and HS-DSCHpower for this UEUpdate the remaining powerUnusedHsdpaPower -= PHsScch+PHsDschBeginning of the TTIA new UE isselectedChanging TTIUnusedHsdpaPower = PHSDPA
  • 44. HSDPA : Power ManagementCCCRNCSHO marginPtrafficRNCOCNS (opt.)PminHsdpaPMaxCellPmaxHsdpaCCCRNCSHO marginPtrafficRNCOCNS (opt.)PminHsdpaPMaxCellPmaxHsdpaPRemainPTotNonHsdpaWithMarginCCCNodeBDCH marginDCHNodeBOCNS (opt.)PMaxCellPTotNonHsdpaPRemainPTotNonHsdpaWithMarginCCCNodeBDCH marginDCHNodeBOCNS (opt.)PMaxCellPTotNonHsdpaPHSDPA = min( PRemain , PmaxHsdpa )Common channel consumption at Node B is lowerthan at RNC level activity considerationFlexible power management for HSDPA
  • 45. HSDPA : Power ManagementPowerconsumed byall codesNodeBPMaxCellPTotCellPowerconsumed bynon HSDPAcodesNodeBPMaxCellPTotCellHSDPA PTotHsdpaTransmitted Carrier Power Averaged HSDPA PowerPower consumed by non HSDPA codes includes DL HSUPAchannel powerCOMMON MEASUREMENT message (100ms measurement) :Total Non HSDPA Power RNC CAC for HSPA cells
  • 46. HSDPA : Power ManagementHS-SCCH powerCQIPHS-SCCH = PP-CPICH + hsScchPcOffset(CQIReported)CQIReported hsScchPcOffset(CQIReported)CQIPHS-SCCH = PP-CPICH + hsScchPcOffset(CQIReported)CQIReported hsScchPcOffset(CQIReported)CCCDCH marginPRemainDCHNodeBOCNS (opt.)HS-DSCHHS-SCCHPSEUDO closed loop power control for HS-SCCH :1)Associated DPCCH power control commandsadjusted relative to the Tx power of the associated DL DPCCHpower offset between HS-SCCH and DPCCH can be set (QoS)2)CQI reportsadjusted as a function of CQI reportpower offset between each CQI index and the required HS-SCCH power
  • 47. HSDPA : Power ManagementHS-DSCH powerHSDPA power not allocated to HS-SCCH(s)PHS-DSCH [dBm] = PP-CPICH[dBm] + G[dB] + D(CQIprocessed)[dB]PHS-PDSCH[dBm] = PHS-DSCH[dBm] - 10log(#codes)– PP-CPICH is the power of the P-CPICH channel– G : the measurement power offset (RRC)– D : the reference power offset given by the tables of CQIUE needs to have a power as reference in order to adapt the reported CQI to the radio linkcondition– In the same radio condition, the reported CQI will be higher if more power is used totransmitted the HS-DSCH channelCQI is chosen to insure a transmission with a given BLER (QoS)– Measurement power offset can be seen as HS-DSCH power required by the mobilecorresponding to the reported CQI– The reference power offset is the one corresponding to the processed CQI, not thereported CQI
  • 48. HSDPA : Transmission LimitationTFDetermined according to the processed CQI, not the reported oneCQI adjustmentPower limitationCode limitationOptimization of CQI according to MAC-d PDU size (336/656 bits)Lack of MAC-d PDU in buffer or TB size limitation320 1621 PaddingMac-d PDUMac-hs transport block(CQI2)320 16320 1621 PaddingMac-d PDUMac-hs transport block(CQI3)320 16
  • 49. HSDPA : Iub Transport Bandwidth15808 kbps12160 kbpsCat 1010608 kbps8160 kbpsCat 98736 kbps6720 kbpsCat 7 – 84368 kbps3360 kbpsCat 1 – 61872 kbps1440 kbpsCat 11 – 12Throughput. at ATM layer (+30% protocol headers)Throughput at RLC level (kbps)HS-DSCH category15360134401152096007680576038401920IuB bandwidth8 E1(Kbps)7 E1(Kbps)6 E1(Kbps)5 E1(Kbps)4 E1(Kbps)3 E1(Kbps)2 E1(Kbps)1 E1(Kbps)# E1+10%signalling&OaMIub Links(E1)Eng margin+31% Protocol headersHSDPA trafficat RLC layerR99 DL trafficat RLC layer10% signalling&OaM+Macro Diversity (eg. 30%)Protocol headers+RLC BLER for PS (eg. 10%)R99+HSDPAaverage trafficat ATM layerBw = 5% (Aal5-Vcc)+10%signalling&OaMIub Links(E1)Eng margin+31% Protocol headersHSDPA trafficat RLC layerR99 DL trafficat RLC layer10% signalling&OaM+Macro Diversity (eg. 30%)Protocol headers+RLC BLER for PS (eg. 10%)R99+HSDPAaverage trafficat ATM layerBw = 5% (Aal5-Vcc)+10%signalling&OaMIub Links(E1)Eng margin+31% Protocol headersHSDPA trafficat RLC layerR99 DL trafficat RLC layer10% signalling&OaM+Macro Diversity (eg. 30%)Protocol headers+RLC BLER for PS (eg. 10%)R99+HSDPAaverage trafficat ATM layerBw = 5% (Aal5-Vcc)
  • 50. HSDPA : HS-DSCH MobilityLack of soft handover for HS-DSCHOnly 1 serving HS-DSCH cellAssociated DCH itself : soft handoverActive set up to 6 cellsCell of DCHactive setServingCellCell of DCHactive setNode-B Node-B Node-BAssociated DCHHS-SCCHHS-PDSCHHS-DPCCHComparison of relative CPICH levels inside the active settrigger a change in the serving HS-DSCH cellRel.5 : serving cell change inside the active setRel.6 : active set update carries out serving cell change
  • 51. HSDPA : HS-DSCH MobilityReceived by one cellSofter handoverUL HS-DPCCHNOwhen RLC AM mode is usedNOwhen RLC AM mode is usedwhen duplicate packets aresent on RLC UM modeNOPacket lossesRLC retransmissions used inSRNCNot forwarded, RLCretransmissions used in SRNCForwarded from source MAC-hsto target MAC-hsPacketretransmissionServing RNCHO decisionTypically by UE, but possibly also by Node BHO measurementHS-DSCH to DCHInter Node BHS-DSCH to HS-DSCHIntra Nod BHS-DSCH to HS-DSCH
  • 52. HSDPA : HS-DSCH Mobility - Intra Node B Serving Cell ChangeUu IubUE SRNCServing HS-DSCH Node B DRNC1. RNSAP: RL RECONFIGURATIONPREPARE4. RNSAP: RL RECONFIGURATION READY7. RRC: PHYSICAL CHANNEL RECONFIGURATION5. RNSAP: RL RECONFIGURATION COMMIT6. NBAP: RL RECONFIGURATION COMMIT2. NBAP: RL RECONFIGURATIONPREPARE3. NBAP: RL RECONFIGURATION READY8. RRC: PHYSICAL CHANNEL RECONFIGURATION COMPLETEIur
  • 53. HSDPA : HS-DSCH Mobility - Inter Node B Serving Cell ChangeUu IubUE SRNCSource HS-DSCH Node B DRNC1. RNSAP: RL RECONFIGURATIONPREPARE6. RNSAP: RL RECONFIGURATION READY5. NBAP: RL RECONFIGURATION READY4. NBAP: RL RECONFIGURATION PREPARE9. RRC: PHYSICAL CHANNEL RECONFIGURATION7. RNSAP: RL RECONFIGURATION COMMIT8. NBAP: RL RECONFIGURATION COMMIT2. NBAP: RL RECONFIGURATIONPREPARE3. NBAP: RL RECONFIGURATION READY10. RRC: PHYSICAL CHANNEL RECONFIGURATION COMPLETEIurALCAP Iub Data Transport Bearer setup(HS-DSCH)ALCAP Iur Data Transport Bearer setup(HS-DSCH)ALCAP Iub Data TransportBearer release (HS-DSCH)ALCAP Iur Data Transport Bearer release(HS-DSCH)Target HS-DSCH Node B
  • 54. E-DCH (HSUPA)
  • 55. DCH vs. HSDPA vs. HSUPA10, 2280, 40, 20, 10TTI [ms]YESNOYESSoft handoverYESYESNOFast HARQYESYESNONode B based schedulingNOYESNOAdaptive modulationYESNOYESFast power controlYESNOYESVariable SFHSUPA (E-DCH)HSDPA (HS-DSCH)DCHFEAUTREHSUPA HARQ : fully synchronouswith IR, even transmitted redundancy version can be predeterminedoperates in soft handover
  • 56. DCH vs. HSUPASF256-SF42xSF4-2xSF2-2xSF4 + 2xSF2SF256-SF42xSF43xSF44xSF45xSF46xSF415-960kbps1.92Mbps2.88Mbps3.84Mbps4.80Mbps5.76MbpsE-DPDCHDPDCHChannel bit ratesPhysical channel bit rateMulti-code not supported in practice with DPDCH (practical maximum for DPDCH is 1xSF4)25615kbps21920kbpsYESBPSK10, 22xSF4 + 2xSF225615kbps4960kbpsYESBPSK80, 40, 20, 106xSF4Maximum SFMinimum channel data rateMinimum SFMaximum channel data rateFast power controlModulationTTIMaximum number of parallel codesE-DPDCHDPDCHFeature
  • 57. HSUPA : PrincipleNode-BUEE-HICHAbsolute GrantE-DCH control and dataAssociated DCHScheduler is much closer to the radio interfacehas more instantaneous information about the UL interference situationcan control UL data rates in a rapid mannerUL load control tightlyNode BDowngrade2ms TTI feasible area10ms TTI feasible area
  • 58. HSUPA : MAC Protocol Architecture - UTRAN sidePHY PHYEDCH FP EDCH FPIubUE NodeBUuDCCH DTCHTNL TNLDTCH DCCHMAC -eSRNCMAC -dMAC -eMAC -dMAC -es /MAC -eMAC -esIurTNL TNLDRNC
  • 59. HSUPA : MAC-es/e details – UTRAN sideMAC-esMAC – ControlFromMAC-e inNodeB #1To MAC-dDisassemblyReordering QueueDistributionReordering QueueDistributionDisassemblyReordering/CombiningDisassemblyReordering/CombiningReordering/CombiningFromMAC-e inNodeB #kMAC-d flow #1 MAC-d flow #nMAC-eMAC – ControlE-DCHAssociatedDownlinkSignallingAssociatedUplinkSignallingMAC-d FlowsDe-multiplexingHARQ entityE-DCHControl (FFS)E-DCHScheduling (FFS)
  • 60. HSUPA : MAC-es/e details – UTRAN sideMAC-d in RNCMAC-d in RNCMAC-e in Node BMAC-e in Node BPHY layer E-DCHPHY layer E-DCHDCCH/DTCHsMAC-d flowsE-DCHE-DPDCHsReordering (MAC-es in RNC)Reordering (MAC-es in RNC)MAC-d flows
  • 61. HSUPA : MAC-es/e details – UE sideMAC-es/eMAC – ControlAssociated UplinkSignalling E-TFC(E-DPCCH)To MAC-dHARQMultiplexing and TSN settingE-TFC SelectionAssociated SchedulingDownlink Signalling(E-AGCH / E-RGCH(s))Associated ACK/NACKsignaling(E-HICH)
  • 62. HSUPA : MAC PDU Processing – UE sideMAC-d FlowsMAC-es PDUMAC-e headerDCCH DTCH DTCHHARQprocessesMultiplexingDATAMAC-d DATADATADDI N Padding(Opt)RLC PDU:MAC-e PDU:L1RLCDDI NMapping info signaled over RRCPDU size, logical channel id, MAC-d flowid => DDIDATA DATAMAC-d PDU:DDIHeaderMAC-es/eNumbering MAC-es PDU: TSN DATA DATANumbering Numbering
  • 63. HSUPA : MAC PDU Processing – UTRAN sideMac-es PDU:Reordering queuedistributionReordering queuedistributionDCCH DTCH DTCHMAC-d FlowsHARQDemultiplexingDATAHeaderMAC-dMAC-eDATADATADATA DATAMAC-e PDU:RLC PDU:L1RLCReorderingMAC-esReordering ReorderingDisassembly Disassembly DisassemblyMAC-d PDU:Mapping info signaled to Node BDDI => MAC-d PDU size, MAC-d flow IDTSNMAC-e headerDDI N Padding(Opt)DDI N DATADATADDITransport block:DDI NIub FP:
  • 64. HSUPA : MAC PDU FormatMAC-es PDU : E-DCHTSN : 6 bitsMAC-d PDU MAC-d PDU MAC-d PDUMAC-es SDUMAC-es SDUTSN1N1DDI1 MAC-es SDUMAC-d PDUs coming from one Logical ChannelN1 MAC-es SDUs of size and LCh indicated by DDI1MAC-es PDU1
  • 65. HSUPA : MAC PDU FormatMAC-e PDUDDI : 6 bitsIdentify the logical channel, MAC-d flow and size of the MAC-d PDUs concatenated into theassociated MAC-es PDUN : 6 bitsNumber of MAC-d PDUs corresponding to the same DDI valueDDI1 N1 DDI2 N2DDI1 N1 DDI2 N2 DDIn Nn DDI0(Opt)MAC-es PDU1 MAC-es PDU2 MAC-es PDUnMAC-es PDU2MAC-es PDU1 DDIn Nn MAC-es PDUnMAC-e PDUSI(Opt)Padding(Opt)
  • 66. HSUPA : MAC PDU FormatUser Data BitsMAC-e headerSeveral MAC-es PDUs (336 bits each)Scheduling InformationUPH (5 bits) : power headroomTEBS (5 bits) : buffer sizeHLID (4 bits) : ID of highest priority queueHLBS (4 bits) : occupancy of the highest priority queueSI0...19982 bitsMac-e header18 bitsMac-es PDU Mac-es PDU paddingTBsize...
  • 67. HSUPA : Signaling of Control InformationUL Scheduling InformationHappy Bit (in E-DPCCH)Scheduling Information (in MAC-e PDU)Highest priority Logical channel ID (HLID)Total E-DCH Buffer Status (TEBS)– The amount of data in number of bytes that isavailable for transmission/ retransmission in the RLClayerHighest priority Logical channel Buffer Status (HLBS)– The amount of data available from the logicalchannel HLID, relative to (TEBS or 50000 bytes)UE Power Headroom (UPH)37642 < TEBS3128339 < TEBS ≤ 376423010 < TEBS ≤ 1420 < TEBS ≤ 101TEBS = 00TEBS Value (bytes)Index82 < HLBS1568 < HLBS ≤ 821455 < HLBS ≤ 681345 < HLBS ≤ 551212 < HLBS ≤ 1454 < HLBS ≤ 610 < HLBS ≤ 40HLBS values (%)Index
  • 68. HSUPA : Happy Bit SettingCriteria for unhappyUE is transmitting as much scheduled data as allowed by Serving_Grant in E-TFCselectionUE has enough power available to transmit at higher data rateIdentify E-TFC : TBS > smallest RLC PDU + TBS of E-TFC selectedTEBS requires more than Happy_Bit_Delay_Condition with following patametersServing GrantRatio of active process to the total number of processes
  • 69. HSUPA : Scheduling Information ReportingTriggering is indicated to E-TFC selection function at the first newtransmission opportunityMay be delayed : HARQ processes are occupied with retransmissionsNot be transmitted if TEBS = 0Take place on every HARQ processSG=Zero_Grant or all processes are deactivatedTEBS > 0Higher priority data arrives than that of already bufferedPeriodic : RRC MACTEBS > 0T_SING : Timer Scheduling Information – Zero_GrantSG<>Zero_Grant and at least one process is activatedE-DCH serving cell changeNew E-DCH serving cell is not part of the previous Serving E-DCH RLSPeriodic : RRC MACT_SIG : Timer Scheduling Information – different from Zero_Grant
  • 70. HSUPA : Related Transport/PHY ChannelsE-DCH transport channelOnly for ULTwo possible TTI : 10ms and 2msPossibility of HARQ process with retransmission proceduresEach transmitted block is numberedPossibility of smart redundancy managementTurbo coding with rate 1/3CRC is 24 bits lengthE-TFCIIndicates which format is currently used for UL transmissionE-DPCCHE-DPDCHE-HICHE-HICHE-AGCHE-AGCHE-RGCHE-RGCH
  • 71. HSUPA : PHY Channel- E-DPCCHHappy bit (1 bit)1 : happy0 : unhappyRSN (2 bits)HARQ0, 1, 2, 3, 3, ...E-TFCi (7 bits)0-127 SF/E-DPDCHsE-DPCCH powerRelative to DPCCH powerIndex [0…8] is signaled by RNC22cececββ=ΔHB RSN10 bitsE-TFCi⎟⎟⎠⎞⎜⎜⎝⎛=Δ 2210log10cecdBecββ0 1 2 3 4 5 6 7 8-10-8-6-4-202468indexΔec
  • 72. HSUPA : PHY Channel- E-HICH and E-RGCH+1DTXDTX+1-1DTXACKNACK-TTI received correctlyTTI received incorrectlyTTI not detectedOther cellsCells in the same RLS withserving HSUPA cellTransmission on E-HICHLogical responseE-DCH TTI receptionUE will continue retransmitting until at least one cell responds with an ACKSave DL TX power : only ACKs actually consume DL capacityAll the cells in the same Node B in softer handover: assumed to receive UL E-DPDCH transmission in cooperationNot allowed-1DTX+1-1DTXUPDOWNHOLDIncrease UE allocationDecrease UE allocationKeep the current oneOther cellsCells in the serving E-DCHRLSTransmission on E-RGCHTransmittedmessageScheduler decision
  • 73. HSUPA : Signaling of Control InformationDL scheduling informationRelative GrantsServing Relative Grant– Transmitted on downlink on the E-RGCH from all cells in the serving E-DCH RLS– UP/DOWN/HOLDNon-serving Relative Grant– Transmitted on downlink on the E-RGCH from a non-serving E-DCH RL– DOWN/HOLDAbsolute GrantIdentity Type : E-RNTI– Primary– Secondary : group usageAbsolute Grant Value– Maximum E-DCH traffic to pilot ratio (E-DPDCH/DPCCH)Absolute Grant Scope– Per HARQ process(2ms TTI only, reduction in the minimum data rate)– 2ms : 320 bits PDU minimum RLC data rate of 160kbps (AVG 20kbps if 1 process)– 10ms : 32kbps– All HARQ process (10ms TTI, Identity Type=Secondary)
  • 74. HSUPA : Scheduling PrincipleScheduled transmissionNode B scheduling mode with L1/MAC control signalingAdvanced schedulingTurn off specific HARQ process (RRC or Node B EAGCH signaling)Use 2 different UE-ids (Primary/Secondary E-RNTI) for flexible resource allocationNon-scheduled transmissionRNC controlled modeAllow RNC to configure a specific MAC-d flow (a specific service) to have aguaranteed data rate (GBR such as for VoIP : similar to DCH allocation)Effectively disabling Node B scheduler control of this particular serviceIf 2ms TTI usedRestricted to specific HARQ process onlyminimum data rate allocation can be reduced
  • 75. HSUPA : PHY Channel- E-DPDCH (TB size)Signalled by RNC : 4 possible tablesTTI (2 / 10ms)Type (0 / 1)0 20 40 60 80 100 120 14000.20.40.60.811.21.41.61.82x 104E-TFCiTBsizeTable 10mstype 0type 1
  • 76. HSUPA : PHY Channel- E-DPDCH (MAC PDU)User Data BitsMAC-e headerSeveral MAC-es PDUs (336 bits each)Scheduling InformationUPH (5 bits) : power headroomTEBS (5 bits) : buffer sizeHLID (4 bits) : ID of highest priority queueHLBS (4 bits) : occupancy of the highest priority queueSI0...19982 bitsMac-e header18 bitsMac-es PDU Mac-es PDU paddingTBsize...
  • 77. HSUPA : Rel.6 Compliant SolutionRNCNode-BHSPA-capableUEHSUPA: L1, MAC-e Scheduler, HARQUu IubMAC-dEDCH FPMAC-e EDCH FPPHY TNL TNLMAC-ePHYMAC-es MAC-esUE Node-B SRNC3GPP E-DCH, an add-on to 3GPPUTRAN Rel’5 versionMAC-dHS-SCCHHS-PDSCH(s)(No SHO)HSDPAHS-DPCCHDPCCH+ DPDCH(SHO)DPCCH& DPDCHDCHE-HICH(SHO)E-DPDCHE-DPCCHHSUPATrafficE-AGCHE-RGCHsHSUPAScheduling256 128128 256128 25664To2nX16256~4512~4eDCH FP
  • 78. HSUPA : Rel.6 Compliant SolutionHS-SCCHHS-PDSCH(s)HSDPAHS-DPCCHsharedsharedper UserDPCCH+ DPDCHDPCCH& DPDCHDCHper UserE-AGCHE-RGCHsHSUPASchedulingsharedsharedE-HICHE-DPDCHE-DPCCHHSUPATrafficper Userper Usershared
  • 79. HSUPA : Rel.6 Compliant SolutionRel.6 UEHSPA-capableDPCCHHS-DPCCHHS-PDSCH(s)HS-SCCH(s)DPCCHE-DPCCHE-DPDCHE-HICHE-AGCHE-RGCHDPCCH / DPDCHDPCCH & DPDCHRel.5 HSDPA L1Rel.5 HSDPA L2 - MAC-hs schedulerRel.6 HSUPA L1Rel.6 HSUPA L2 - MAC-e schedulerRel.99 L1: Dedicated PhCH(s) : Shared PhCH(s)
  • 80. HSUPA : Receiver ArchitectureDPCCHreceiverOKKOchannel estimationE-DPCCHdetectionyesnoE-DPCCHdecodinge-TFCiE-DPDCHdecodingCRCE-HICHfor re-transmissionMAC-e data frame
  • 81. HSUPA : Example of Multi-service ManagementRNCNode-BHSPA-capableRel.6 UEHS-SCCH Signaling part(UE id, …)HS-PDSCH for Mono PS I/B trafficHS-DPCCH Feedback information(CQI, ACK/NACK)Associated DPDCH for CS/PS str/SRB trafficE-AGCH Scheduling information(e-RNTI, Scheduling Grant)E-DPDCH for Mono PS I/B trafficE-HICH Feedback informationACK/NACK, signature)E-DPCCH Feedback information(e-TFCI, RSN, Happy bit)OnceUL PS I/B + PS I/BthenUL DCH Fall back
  • 82. HSUPA : E-DCH MobilityDCH active setE-DCH active setIdentical or a subset of DCH active set (decided by SRNC)E-HICH (cells belonging to the same RLS)Same RLS : same MAC-e entity (same Node B)Same as the set of cells sending identical TPC bits– excluding the cells which are not in E-DCH active setHave the same contentsCombined by UEE-DCH Absolute GrantSingle Serving E-DCH cellServing E-DCH cell and HS-DSCH Serving cell shall be identical (RRC signaling is independent)E-RGCHEach cell of E-DCH active setSame RLS RGCHs same contents : combinedNon-serving E-DCH RLS RGCHs cell specific : cannot be combinedL1 MACACK/NACKs after combiningAG from the servince cellRGsOne from the Serving E-DCH RLS after combingOne from each Non-serving RL
  • 83. HSUPA : Rel.6 Compliant Solution - Intra-frequency E-DCH MobilityNon ServingCell#3ServingCellNon ServingCell#2Node-B Node-B Node-BUEDCH inMacrodiversityNonServingCellMaximum Radio CombiningIn Serving Node-BE-HICHAbsolute GrantE-DCH control and dataAssociated DCH (in SHO)
  • 84. HSUPA : Rel.6 Compliant Solution - Macro DiversityNonServingCellServingRL CellE-RGCH & E-HICHE-AGCHE-DPCCH & E-DPDCHNonServingCellNode-BNode-BNode-BRel.6 UEE-DCH inMacroDiversityNonServingCellAssociated DCHE-DCH Macro Div existencedepending on availableprocessing resources !!!!!e-DCH Macro diversity:One serving e-DCH cell (i.e. E-AGCH)Multiple Node-B E-DCH control-E-DPCCH-E-DPDCH demodulationE-HICH & E-RGCH from different cells-serving and non-serving cells• Associated DCH still in classical Rel.99 Macro Diversity• Best Effort E-DCH Macro Diversity• Macro Div link level gain on E-DPDCH traffic• Intra and Inter Node-B scheduling (i.e. E-RGCH mgt)
  • 85. HSUPA : Rel.6 Compliant Solution - Macro DiversityPros and ConsGain on link level performancePros– The higher number of SHO branches, the larger the e-DCH coverage– The higher number of SHO branches, the higher the e-DCH throughput at cell edgeCons– The higher the data rate on e-DCH in SHO, the higher the impact on neighboring NodeB processing capacity– 3GPP best effort E-DCH SHO (no E-DCH SHO if neighboring Node B processing capacityis not enough)Real seamless user connectivityPros– Robust radio connection quite useful for RT servicesCons– As HSDPA, not requested for I/B (best-effort) trafficInter-cell managementPros– Neighboring non-serving cells can regulate the load impact of surrounding serving E-DCH cell activityCons– Peak E-DCH user data rate could be limited by neighboring cell E-RGCH management
  • 86. HSUPA : Load Management in Node BReceived Total Wideband Power (RTWP, TS25.215)CellMeasurement at the Rx antenna connectorUL load : =N0 : corresponds to the thermal noise constant (-173dBm/Hz)Nf : noise factor of the BTS (2dB)W : bandwidth (3.84MHz)RTWP : current total wideband received power in the cell: thermal noiseReference RTWP that corresponds to the amount of power received in the cell when the load is 0N0 = kT ~ -174dBm/Hz– K is Boltzmann constant : 1.381 x 10-23 J/K– T is the temperature expressed in Kelvin : T=290K (16.84oC)Maximum Noise Rise allowed to E-DCH cell : RoTmax = RTWPmax - RTWPrefE-DCH scheduler must know the RoTmaxHSUPA max load = 1-10 - Noise_Rise_HSUPA (in dB) /10 (RoTmax=7dB 80% max UL load for R99/E-DCH)RTWPWNN fUL01−=ηRTWPRTWPrefUL −=1ηWNN f0 Thermal NoiseCS12.2CS12.2PS64CS64Max allowed UL loadAvailableUL load forE-DCHschedulingRSSI
  • 87. HSUPA : Load Management in Node BUL load indicationUL PS384 RAB (SF4)About 3 calls may generate a noise rise higher than 3dB, corresponding to 50% of UL loadWhat will be happened for EDCH SF4x2+SF2x2 service ?Beyond 75% load system may be destabilizedSignificant neighboring cell interferenceCell coverage reductionCall drop0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 102468101214161820UL loadNoiseRise(dB)Noise Rise vs. UL load
  • 88. HSUPA : E-DCH Power Allocation – 10ms TTI E-DCH Transport Block Size Table 1117968147584011514804740391995012011460794422381986011911178784404371927811811124774086361918811710824764068351860611610788753750341851611510488743732331791611410452733396321784411310152723378311246885543044354312186845412432042121328350944218611185082507641180TB Size (bits)E-TFCITB Size (bits)E-TFCITB Size (bits)E-TFCI
  • 89. 1 2 3 4 5 6 7 8 900.20.40.60.811.21.41.6SF256 SF128 SF64 SF32 SF16 SF8 SF4 2xSF4Throughput(Mbps)eDCH throughput vs physical channel configuration type table 1PhCH Index (3GPP TS25212 definition)70.837.25(1xSF16)1448.4306154.835.41.8Max user MAC-ethroughput (kbps)337.8169.885.818.61.8Min user MAC-ethroughput (kbps)8(2xSF4)7(1xSF4)6(1xSF8)4(1xSF32)1(1xSF256)PhCH Index(SF)PhCH Index 1 for userScheduling Informationdata flow @ 1.8kbps on E-DPDCH (3GPP TS25.309)RLC PDU size @ 336bitstoo big to match with PhCHIndex 2 & 3 TrBlock sizeUE Rate Matching as function ofUE Tx Pw availability,RF conditions,Node-B grants,…HSUPA : E-DCH Power Allocation – MAC-e Throughput
  • 90. HSUPA : E-DCH Power AllocationE-DPDCH powerRelative to DPCCH powerSignalled by RNConly 8 "References E-TFC" are signalled by RNCΔHARQ = an additionnal offset (in dB)The 8 "References E-TFC" signalledETFC-iref: 0 - 127Index of amplitude offset of a single channel : 0-31Computed by the UE128 E-TFCi ⇔ 128 power offsets-9.5dB ~ 28.7dB22,,ciediedednββ=Δ29942889278526792571246222471711PO indexETFC indexExample of reference E-TFC
  • 91. HSUPA : E-DCH Power Allocation – An Example of Reference Signaled E-TFCI5/1506/1517/1528/1539/15411/15512/15613/15715/158106/1525119/1526134/1527150/1528168/1529Quantized amplitude ratiosAed =βed/βcSignaled values for ∆E-DPDCH2994828897278562679525714246232247217111referenceEtfciPowerOffsetreferenceEtfciReferenceEtfciListScheduling Grant Table (-9.5~28.7dB)
  • 92. HSUPA : E-DCH Power Allocation – An Example of TB size vs. E-DPDCH Power0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2x 104051015202530TB size (bits)E-DPDCHpowerrelativtoDPCCH(dB)E-DPDCH power vs. transport block sizeReference signaled E-TFCI
  • 93. HSUPA : E-DCH Power Allocation•E-DPCCH gain factor :•E-DPDCH gain factor : takes a different value for each E-TFC and HARQ offset•Gain factors for different E-TFCs and HARQ offsets are computed, based on reference gain factors of E-TFCs•Gain factors of E-TFCs are signaled as reference E-TFCs (HARQ offset : 0~6dB)•Reference gain factor (reference E-TFC) :E-TFCIref,1 < E-TFCIref,2 < … < E-TFCIref,ME-TFCIref,m <= E-TFCIj < E-TFCIref,m+1 (reference is m-th E-TFC)eccec A⋅= ββedcrefed A⋅= ββ ,20, ,, , ,, ,10harqe ref e jed j harq ed refe j e refL KL Kβ βΔ⎛ ⎞⎜ ⎟⎜ ⎟⎝ ⎠= ⋅
  • 94. HSUPA : E-DCH Absolute Grant Value (25.212 Table 16B)16(75/15)217(84/15)218(95/15)219(106/15)220(119/15)221(134/15)222(150/15)223(168/15)224(95/15)2x425(150/15)2x226(119/15)2x427(134/15)2x428(150/15)2x429(168/15)2x430(150/15)2x631(168/15)2x60INACTIVE*1ZERO_GRANT*2(7/15)23(11/15)24(15/15)25(19/15)26(24/15)27(27/15)28(30/15)29(34/15)210(38/15)211(42/15)212(47/15)213(53/15)214(60/15)215(67/15)22. edn β < signaled grant value
  • 95. HSUPA : HARQ Recombining for E-DPDCH+ HARQ bufferReceived bitsReceived soft bitsunpuncturingRecombined soft bitsDecoding, CRC checkrsnE-DPCCHdefense
  • 96. HSUPA : HARQ103381123700136010351033411233112221031101000rsRVRSNTransmission112380103711236010351123401033010221121101000rsRVRSNTransmissioncoding rate < 1/2 coding rate > 1/2repetitions orlow puncturing ratehigh puncturing rate(s,r) punc./repet. bit selectionbasedonTTI
  • 97. HSUPA : HARQ - E-DPCCH DefenseE-DPCCH error managementNon detection vs. False alarmBad decodingE-DPCCHdefenseE-DPCCH : RSN, ETFCiHARQbuffer managementretransmissionindexE-HICHACK / NACK / DTXCRC
  • 98. HSPA Common Issue
  • 99. HSPA : Radio Resource ManagementRRM (RNC/Node B - UE)Resource allocationPacket schedulingPower control / Load controlHARQAdmission controlMobility ManagementCongestion controlNo congestionDelay build-upLost packetsQoS parameterization
  • 100. HSPA : Transport Channel Type SelectionSome possible rulesCS RAB is established on a DCH channelStreaming RAB is established on a DCH channelFor a R5 UE (HSDPA capable)DL PS I/B RB is preferred on HSDPAFor a R6 UE (HSDPA and HSUPA capable)DL PS I/B RB is preferred on HSDPAUL PS I/B RB is preferred on HSUPA
  • 101. HSPA : QoS DifferentiationService differentiationPS data services have different QoS requirementsNeed to provide QoS differentiation among these different servicesStreaming video, web browsing, …Treat PS services differently when performing admission controlSubscribers differentiationPreferential treatment can be granted to premium usersConsuming a high volume of dataQoS attributes (by RNC)Traffic ClassAllocation/Retention PriorityTraffic Handling Priority (only defined for Interactive TC)GBRDifferential prioritySubscriber priorityMAC logical channel priorityScheduling priority indicator
  • 102. HSPA : CACRAB matchingAny PS RAB request with I/B traffic class HSDPA/HSUPA RB configurationIf HSDPA/HSUPA capableIf primary cell of the active set supports HSDPA/HSUPAHSUPA not supported in the cell (but HSDPA present)Request is mapped on UL DCH/DL HSDPANeither HSUPA nor HSDPA supported in the cellRequest is mapped on UL/DL DCHCACRNC CACAny I/B RAB request is admitted on HSDPA/HSUPA– Until the maximum number of simultaneous users allowed on HSDPA/HSUPA is reachedNot enough HSDPA/HSUPA resources– DCH fallback mechanism is triggeredNode B CAC : can be applied after RNC procedure
  • 103. HSPA : RLC Reconfiguration (by Bearer Transition)RLC reconfiguration, if neededChanel type switching between DCH and HS-DSCHOptional (PS I/B RAB – only RLC AM parameters)Tune RLC settings (like timers) to the characteristics of the transport channelRB reconfiguration (due to mobility or Always-On)Done simultaneously with the transport channel reconfigurationRB addition/delete (due to RAB assignment/release)Cannot be performed simultaneously with the RB addition/deletionRLC PDU size/queue size cannot be changed
  • 104. Annex A : RLC ModesRLC - SDURLC - PDURLCRLC – SDU #1RLC – Segment.RLC – SDU #2RLC – Segment.RLCHeaderRLCHeaderRLC PDU RLC PDUSegmentationConcatenationRLC-PDU 1 RLC-PDU 2RLC-SDU1RLC-PDU not receivedRLC-PDU 3 RLC-PDU 4 RLC-PDU 5 RLC-PDU 6lost RLC-SDU RLC-SDU3Transparent Mode (All CS, some kinds of PS)UM/AM Mode (PS)AM = UM + some properties-ACK for RLC-PDU transmitted-Flow control (suspend/resume)-Error correction through retransmissionSequence Number Check
  • 105. Annex B : MAC Functions (1/2)Transport ChannelsCommon transport channelsRACHFACHHS-DSCHBCHPCHDedicated transport channelsDCHE-DCHLogical channels Broadcast Control Channel (BCCH)Paging Control Channel (PCCH)Dedicated Control Channel (DCCH)Common Control Channel (CCCH)Control ChannelDedicated Traffic Channel (DTCH)Traffic ChannelCommon Traffic Channel (CTCH)Shared Channel Control Channel (SHCCH)MBMS point-to-multipoint Control Channel (MCCH)MBMS point-to-multipoint Traffic Channel (MTCH)MBMS point-to-multipoint Scheduling Channel (MSCH)
  • 106. Annex B : MAC Functions (2/2)MAC specific functionsControl of HS-DSCH transmission and receptionNetwork operation– Scheduler, HARQUE operation– HARQ, Reordering, ReassemblyControl of E-DCH transmission and receptionUE operation– HARQ, Multiplexing and TSN setting, Serving Grant Update, E-TFC selection, Happy bitsetting, Scheduling Information reportingNode B operation– HARQ, De-multiplexing, SchedulerRNC operation– Reordering