0
SAP Business Intelligence Fundamentals Mikko Valtonen, BI Immediate
Business Intelligence Architecture Data Warehouse ETL / Data Acquisition Source System (ERP system) Reporting Planning
DataWarehouse <ul><li>Data is stored In Tables </li></ul>Row = Record  Column= Field
Data in DataWarehouse Generic Transaction  Spesific Numeric Non- Numeric Sales Order number Customer  Vendor Customer text...
SAP Business Intelligence Architecture DataMart Layer Detail Transaction Data Normalized DataBase Optimized for transactio...
SAP Business Intelligence Architecture SAP BI Data Warehouse, Any hardware ETL / Data Acquisition Source System (ERP syste...
DataWarehouse tables <ul><li>Data is stored In Tables </li></ul><ul><ul><li>Transaction Data – 2 Different Tables </li></u...
SAP BI Data in DataWarehouse Generic data is in the the Master Data Tables  Transaction Specific data is in the TrD Tables...
Business Intelligence Architecture DataMart Layer is Implemented  with InfoCubes Detail Data Normalized Database Optimized...
Objects in ETL Process BI 7.0 Target (Kohde) Source System (ERP system) DataSource (Tietolähde) DataSource (Replica) (Tiet...
Objects in ETL Process BW 3.5 Target (Kohde) Source System (ERP system) DataSource DataSource (Tietolähde) Update Rule (Pä...
Upcoming SlideShare
Loading in...5
×

Business Intelligence Fundamentals

10,310

Published on

Business Intelligence Fundamentals and Basic SAP BI concepts

Published in: Technology, Business
1 Comment
3 Likes
Statistics
Notes
No Downloads
Views
Total Views
10,310
On Slideshare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
119
Comments
1
Likes
3
Embeds 0
No embeds

No notes for slide

Transcript of "Business Intelligence Fundamentals"

  1. 1. SAP Business Intelligence Fundamentals Mikko Valtonen, BI Immediate
  2. 2. Business Intelligence Architecture Data Warehouse ETL / Data Acquisition Source System (ERP system) Reporting Planning
  3. 3. DataWarehouse <ul><li>Data is stored In Tables </li></ul>Row = Record Column= Field
  4. 4. Data in DataWarehouse Generic Transaction Spesific Numeric Non- Numeric Sales Order number Customer Vendor Customer text Description Material Color Material STD weight Eg, Sales € Salaries, Purchased PC
  5. 5. SAP Business Intelligence Architecture DataMart Layer Detail Transaction Data Normalized DataBase Optimized for transaction processing Aggregated Transaction Data Denormalized DataBase Optimized for fast reading EDW Layer Denormalized DataBase Optimized for historical storage Detail Transaction Data Source System (ERP system): Tables
  6. 6. SAP Business Intelligence Architecture SAP BI Data Warehouse, Any hardware ETL / Data Acquisition Source System (ERP system) Reporting: SAP BI Business Explorer Suite Planning: SAP BI Integrated Planning
  7. 7. DataWarehouse tables <ul><li>Data is stored In Tables </li></ul><ul><ul><li>Transaction Data – 2 Different Tables </li></ul></ul><ul><ul><li>Master Data – 3 Different Tables </li></ul></ul>Row = Record Column = Field = SAP BI InfoObject
  8. 8. SAP BI Data in DataWarehouse Generic data is in the the Master Data Tables Transaction Specific data is in the TrD Tables Numeric Fields are KeyFigures InfoObjects Non-Numeric fields are Chracterisitics InfoObjects Sales Order number Customer Vendor Customer text Description Material Color Material STD weight Sales € Salaries, Purchased PC
  9. 9. Business Intelligence Architecture DataMart Layer is Implemented with InfoCubes Detail Data Normalized Database Optimized for transaction processing Aggregated Data Demoralized Database Optimized for fast reading EDW Layer Is implemented with Data Store Objects Demoralized Database Optimized for historical storage Source System (ERP system)
  10. 10. Objects in ETL Process BI 7.0 Target (Kohde) Source System (ERP system) DataSource (Tietolähde) DataSource (Replica) (Tietolähde) Transformation (Muunto) InfoPackage DTP
  11. 11. Objects in ETL Process BW 3.5 Target (Kohde) Source System (ERP system) DataSource DataSource (Tietolähde) Update Rule (Päivityssäännöt) InfoSource (Info Lähde) Tranfer Rules (Siirto Säännöt) InfoPackage
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×