Your SlideShare is downloading. ×
Surface analysisversion3
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Surface analysisversion3

1,069
views

Published on


0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,069
On Slideshare
0
From Embeds
0
Number of Embeds
7
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide
  • Nicky
  • Nicky
  • Nils
  • Nils
  • Nils
  • Nils?
  • Nicky
  • Nicky
  • Nicky
  • Nicky
  • Nicky
  • Nicky
  • Nicky
  • Nicky
  • Nicky
  • Nicky
  • Transcript

    • 1. It’s what’s on the outside that counts, true story! 1Promotor: Pieter-Jan Sabbe & Dr. A. Adriaens Bachelorstudents: Nils De Rybel, Nicky Huys, Maria Gomez Rodriguez
    • 2. Outline• Why study surfaces?• Goal of project• Corrosion layers of copper• Spectroscopic techniques used• Conclusion 2
    • 3. Goal• Make copper corrosion layers• Study surface specific techniques• Apply surface specific techniques• Compare the layers 3
    • 4. Why study surfaces? Polymer biodegradation Surface tension control Catalysis Adsorption, desorption SensorsSurface hardening Friction control Behaviour determined Applications by surface Corrosion Crystal growthControlled release polymers Optical recording media Anti-reflection coatings Magnetic recording media 4
    • 5. Corrosion of copperName Chemical formulaCuprite Cu2ONantokite CuClAtacamite Cu2Cl(OH)3Paratacamite Cu2Cl(OH)3Tenorite CuOChalcokite Cu2S
    • 6. Optical Microscopy
    • 7. Optical Microscopy• Cupper coupon:• Chalcokite
    • 8. Optical Microscopy• Cuprite.• Nantokite
    • 9. Optical microscopy• Atacamite.• Paratacamite
    • 10. Optical microscope• Tenorite• Chalcokite
    • 11. X-ray Diffraction (XRD)
    • 12. X-ray Diffraction (XRD)
    • 13. X-ray Diffraction (XRD)ParatacamiteCopperNantokite
    • 14. X-ray Diffraction (XRD)ParatacamiteCopperNantokite
    • 15. X-ray Diffraction (XRD)ChalcokiteCopper
    • 16. X-ray Photoelectron Spectroscopy (XPS) 16
    • 17. X-ray PhotoelectronSpectroscopy (XPS) S-Probe Monochromatized XPS spectrometer from Surface Science Instruments (VG) AlKα x-ray (1486.6 eV) 1x10-9 mbar Analysis surface : 250 x 1000 μm 17
    • 18. Standard spectra 18
    • 19. Spectra 300000 Copper peaks 250000 200000Intensity (CPS) Tenorite (CuO) 150000 Nantokite (CuCl) Cuprite (Cu2O) 100000 Chalcocite (Cu2S) Paratacamite (Cu2Cl(OH)3) 50000 0 900 910 920 930 940 950 960 970 980 990 Binding energy (eV) 19
    • 20. Auger Electron Spectroscopy (AES) Scanning depth is 1-5nm and lateral resolution ~10nm Sensitivity is about 1 to 100ppm Sample conductive Mutch more specific then XPS 20
    • 21. X-ray Excited Optical Luminescence (XEOL)• How it works 21
    • 22. X-ray Excited Optical Luminescence (XEOL)• Source 22
    • 23. X-ray Excited Optical Luminescence (XEOL) Nantokite Paratacamite(?) 20.00 18.00 Ref. Nantokite (CuCl) 16.00 Nantokite Paratacamite(?) 14.00 Normalized Intensity 12.00 10.01 Ref. Paratacamite (Cu2Cl(OH)3) 08.01 06.01 04.01 02.01 00.01 889.20 891.00 892.79 894.59 896.38 898.18 899.97 901.77 903.56 905.36 907.15 -2 Energy / keV 10 23
    • 24. Scanning Electron Microscopy (SEM) 24
    • 25. Scanning Electron Microscopy (SEM) 25
    • 26. Scanning Electron Microscopy (SEM) 26
    • 27. Scanning Electron Microscopy (SEM) 1 - 30 keV 0.5 - 10 nm 27
    • 28. Scanning Electron Microscopy (SEM)• Secondary electrons 28
    • 29. Scanning Electron Microscopy (SEM)• Backscattered electrons 29
    • 30. Scanning Electron Microscopy (SEM) 30

    ×