Peningkatan daya saing industri tekstil melalui konservasi energi bppt (full)
Upcoming SlideShare
Loading in...5
×
 

Peningkatan daya saing industri tekstil melalui konservasi energi bppt (full)

on

  • 246 views

sharing knowledge

sharing knowledge

Statistics

Views

Total Views
246
Views on SlideShare
246
Embed Views
0

Actions

Likes
0
Downloads
16
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Peningkatan daya saing industri tekstil melalui konservasi energi bppt (full) Peningkatan daya saing industri tekstil melalui konservasi energi bppt (full) Presentation Transcript

  • CENTER FOR ENERGY CONVERSION AND CONSERVATION TECHNOLOGY DR EDI HILMAWAN PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI, BPPT PENINGKATAN DAYA SAING INDUSTRI TEKSTIL MELALUI KONSERVASI ENERGI DISAMPAIKAN PADA SEMINAR NASIONAL TEKSTIL DAN BUSINESS GATHERING 2014 BALAI BESAR TEKSTIL BANDUNG, 24 MARET 2014
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI OUTLINE • Kondisi Keenergian Nasional • Industri Tekstil dan Penggunaan Energinya • Konservasi Energi di Industri Tekstil • Manajemen Energi di Industri Tekstil • Teknologi Konservasi Energi di Industri Tekstil • Penutup
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI KONDISI KEENERGIAN NASIONAL ENERGY SUPPLY - DEMAND • Laju Pertumbuhan Kebutuhan Energi Primer 6,2%/yr • Ketergantungan terhadap Bahan Bakar Fosil (95%) (Diolah dari data Pusdatin - KESDM, 2011) • Peningkatan Energi Final 5,6%/yr • Sektor Industri dan Transportasi adalah Pengguna Energi Terbesar - 200 400 600 800 1.000 1.200 1.400 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Millions Geothermal Hydro Gas Oil Coal - 100 200 300 400 500 600 700 800 900 Millions Other Transportation Commercial Households Non-Energy Industry 24% 47% 24% 4% 1% Primary Energy Composition Coal Oil Gas Hydro Geothermal 39% 11%10% 4% 32% 4% Final Energy User Industry Non-Energy Households Commercial Transportation Other
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI KONSUMSI ENERGI FINAL DI SEKTOR INDUSTRI 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Listrik 20850 21819 22578 22373 24719 26021 26736 28077 29405 28323 31254 LPG 1073 972 1093 808 1101 1131 1453 1242 1124 955 1045 BBM 74979 78033 75690 68493 74718 64239 57203 52418 48856 49952 57602 Gas Bumi 59868 59050 54662 65127 60416 61537 58982 54837 62925 89101 85729 Briket 85 78 83 77 80 94 94 89 155 219 285 Batubara 36060 37021 38698 68264 55344 65744 89043 121904 74939 80466 136540 Biomasa 58981 55186 52305 50167 46917 43920 46676 42108 44235 44496 43302 0 50.000 100.000 150.000 200.000 250.000 300.000 350.000 400.000 Sumber: Pusdatin, KESDM (RibuSBM) pertumbuhan 2000-2010 50% -3% -23% 43% 235% 279% -27%
  • CENTER FOR ENERGY CONVERSION AND CONSERVATION TECHNOLOGY 5
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI PROYEKSI KEBUTUHAN ENERGI KE DEPAN Konsumsi energi final tahun 2011 mencapai 1.044 juta SBM. Dengan laju pertumbuhan GDP rata-rata 7,1% per tahun, kebutuhan energi meningkat sekitar 4,7% per tahun Perkiraan kebutuhan energi final nasional tahun 2025 sekitar 1960 juta SBM (2 kali lipat dalam kurun waktu 15 tahun) dan 2518 juta SBM di tahun 2030 (2,5 kali lipat dalam kurun waktu 20 tahun). Ketergantungan terhadap Bahan Bakar Fosil masih tinggi Sumber: BPPT Outlook Energi Indonesia 2013 Konsumsi energi terbesar ada di sektor industri. Meningkat dari 37% pada tahun 2011, menjadi 41% di tahun 2015 dan 42% di tahun 2025. Proyeksi kebutuhan energi final per sektor pengguna Proyeksi kebutuhan energi final per sektor pengguna Sumber: BPPT Outlook Energi Indonesia 2013
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI INTENSITAS ENERGI INDUSTRI Besi dan Baja –Indonesia: 650 kWh/Ton –India: 600 kWh/Ton –Japan: 350 kWh/Ton Semen –Indonesia: 800 Kcal/kg clinker –Jepang: 773 Kcal/kg clinker Keramik –Indonesia: 16,6 GJ/Ton –Vietnam: 12,9 GJ/Ton Gelas Indonesia: 12 MJ/ton Korea: 10 MJ/ton Tekstil Spinning Indonesia: 9,59 GJ/Ton India: 3,2 GJ/Ton Weaving Indonesia: 33 GJ/Ton India: 31 GJ/Ton Sumber: BPPT, Kemenperin
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI POHON INDUSTRI TPT
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI KONDISI INDUSTRI TPT NASIONAL Tahun 2010 Tahun 2010
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI JUMLAH MESIN INDUSTRI USIA 20 TAHUN Pemintalan Pertenunan Perajutan Finishing Pakaian Jadi 64,40% 82,10% 84,10% 93,20% 78,00% Jumlah Mesin Industri Usia 20 tahun
  • CENTER FOR ENERGY CONVERSION AND CONSERVATION TECHNOLOGY 11
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI ENERGY FOOTPRINT INDUSTRI (EXP. INDUSTRI TEKSTIL) Sumber: DOE – USA Machine Drives Process Cooling Process Heating
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI DISTRIBUSI PENGGUNAAN ENERGI DI INDUSTRI Subsektor Process Heating (%) Process Cooling (%) Machine Drives (%) Makanan dan Minuman 75,0 8,5 16,5 Tekstil dan Pakaian 59,0 6,8 34,2 Kayu dan Mebel 80,4 0,5 19,1 Pulp dan Kertas 80,4 0,5 19,1 Pupuk dan Kimia 76,7 7,2 16,1 Karet dan Plastik 49,6 7,5 42,9 Keramik dan Gelas 90,5 0,9 8,6 Semen 87,8 0,3 11,9 Besi dan Baja 91,8 0,6 7,6 Peralatan dan Permesinan 51,9 4,8 43,3 Industri Lainnya 61,3 3,9 34,8 Sumber: DOE
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI POLA PEMAKAIAN ENERGI Facilities 18% Steam 28% Motor driven systems 28% Process cooling 4% Fired heater 20% Other 2% Final Energy End-Use in the U.S. Textile Industry Pump; 19% Fan; 14% Compressed; 15% Refrigeration; 7% Materials Handling; 11% Materials Processing; 31% Other Systems; 3% Motor Systems Energy Use in the U.S. Textile Industry
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI TYPICAL FINAL ENERGY USE IN SPINNING PLANT 78% 3% 3% 16% Machines Compressors Lighting Humidification plant 7% 1% 5% 12% 11% 7% 20% 37% 0% 5% 10% 15% 20% 25% 30% 35% 40%
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI THERMAL ENERGY USE IN DYEING PLANT, AND WET PROCESS Product heating 16% Product drying 17% Waste water loss 25% Heat released from equipment 12% Exhaust gas loss 9% Idling 4% Evaporation from liquid surface 5% Un- recovered condensate 4% Loss during condensate recovery 1% Others 7% Breakdown of Thermal Energy Use in Dyeing Plant Product form / Machine type Process Energy requirement (GJ/ton output) Desize unit Desizing 1.0–3.5 Kier Scouring/bleaching 6.0–7.5 J-box Scouring 6.5–10.0 Open width range Scouring/bleaching 3.0–7.0 Low energy steam purge Scouring/bleaching 1.5–5.0 Jig/winch Scouring 5.0–7.0 Jig/winch Bleaching 3.0–6.5 Jig Dyeing 1.5–7.0 Winch Dyeing 6.0–17.0 Jet Dyeing 3.5–16.0 Beam Dyeing 7.5–12.5 Pad/batch Dyeing 1.5–4.5 Continuous/thermosol Dyeing 7.0–20.0 Rotary Screen Printing 2.5–8.5 Steam cylinders Drying 2.5–4.5 Stenter Drying 2.5–7.5 Stenter Heat setting 4.0–9.0 Package/yarn Preparation/dyeing (cotton) 5.0–18.0 Package/yarn Preparation/dyeing (polyester) 9.0–12.5 Continuous hank Scouring 3.0–5.0 Hank Dyeing 10.0–16.0 Hank Drying 4.5–6.5
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI TYPICAL ELECTRICITY AND THERMAL ENERGY USED IN A COMPOSITE TEXTILE PLANT Spinning (ring spinning); 41% Weaving preparation; 5% Weaving preparation; 13% Humidificatio n; 19% Wet- processing; 10% Lighting; 4% Others; 8% Typical Electricity Use in a Composite Textile Plant Bleaching and finishing; 35% Dyeing and printing; 15% Humidificat ion, sizing and others; 15% Boiler plant losses; 25% Steam distribution losses; 10% Typical Thermal Use in a Composite Textile Plant
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI PENDEKATAN KONSERVASI ENERGI TERINTEGRASI Energy Conservati on Energy Managem ent Energy Efficiency Improvem ent Energy Efficient Design EXISTING SYSTEMNEW SYSTEM Monitoring and Control System Operation and Maintenance Energy Efficiency Standard Low Energy System Design Energy Efficient Technology System Optimization
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI PENDEKATAN KONSERVASI ENERGI TERINTEGRASI Energy Conservati on Energy Managem ent Energy Efficiency Improvem ent Energy Efficient Design NEW SYSTEM Monitoring and Control System Operation and Maintenance Energy Efficiency Standard Low Energy System Design Energy Efficient Technology System Optimization Energy Management Information System Implementation of ISO 50001 EnMS Advanced Control System Low Energy Process High Eff Furnace Cogeneration Regenerative Burners Material Preheater VSD for motors etc .... Pump System Steam System Waste heat Recovery Compressed Air Water Suppy System Process Integration COGENERATION High eff Boiler High eff Cooling System High Eff Burner High Eff Compressor Green Industry
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI ISO 50001 ENERGY MANAGEMENT • Management Participation – Management Representative – Energy Policy – Management Review • Energy Planning Energy review, Significant Energy User, EnPI, Baseline and Target, Action Plan 20 • Control and Monitoring –Nonconformities, –correction, corrective and preventive action • Implementation and Operation –Operational Control –Maintenance Control –Training and Socialization –Energy Efficient Design –Procurement
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI 0 5Years -25% -20% -15% -10% -5% 0 +5% Costs Biaya Tinggi  Audit Energi Tindakan Penghematan Terkendali Biaya naik lagi: Kapan audit terakhir ? Mulai sekali lagi! Manajemen Energi : Pendekatan Konvensional vs Pendekatan Sistemik
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI PENDEKATAN SISTEMATIS Komitmen Senior Manajemen 0 3Years -20% -25% -15% -10% -5% 0 +5% Costs Investment Penghematan Awal Terjaga Mulai dari housekeeping  Investasi tinggi Menjadi Budaya Perusahaan
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI MANAJEMEN ENERGI : AUDIT ENERGI • Audit energi adalah aktifitas yang dilakukan untuk mengevaluasi pola penggunaan energi sebuah sistem, baik itu berupa industri maupun bangunan, guna mengidentifikasi peluang-peluang penghematan yang dapat dilakukan. • Audit Energi adalah bagian dari Manajemen Energi • Sasaran – Memperoleh Gambaran Pola Penggunaan Energi • Fluktuasi Penggunaan Energi (faktor berpengaruh • Neraca/Distribusi energi (input = output ?) • Efisiensi Penggunaan Energi – Mengidentifikasi sumber-sumber pemborosan energi dan menyusun langkah-langkah pencegahannya • Waste Energy (reduce, reuse, recycle) • Rasionalisasi dan optimalisasi penggunaan energi – Dasar untuk melakukan peningkatan efisiensi penggunaan energi • Perbaikan manajemen operasi dan perawatan peralatan konversi energi • Reparasi alat dan retrofit • Instalasi peralatan baru/teknologi hemat energi PRELIMINARY AUDIT EFISIEN ? MONITORING DETIL AUDIT REKOMENDASI NO/LOW COST MEDIUM COST HIGH COST Implementasi Feasibility Study REKOMENDASI AWAL Tidak Ya
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI MANAJEMEN ENERGI: OPERATION AND MAINTENANCE 24 Fan masih menyala pada saat mesin tidak beroperasi Contoh Kasus: Stenter Machine Motor beroperasi hanya setengah dari daya terpasangnya  Pemasangan inverter Sumber: JICA – BPPT Study (2008) Pabrik A Pabrik B
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI MANAJEMEN ENERGI: OPERATION AND MAINTENANCE 25 Contoh Kasus: Cylinder Dryer Sumber: JICA – BPPT Study (2008) Temp Silinder rendah, distribusi uap tidak merata, kondensat tidak terbuang dengan baik Temp kain turun, Pemanasan kurang efektif, Pemborosan Uap
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI MANAJEMEN ENERGI: OPERATION AND MAINTENANCE 26 Contoh Kasus: Washing Machine Sumber: JICA – BPPT Study (2008) TDS di bak 2 rendah, Indikasi kebanyakan air, Temp rendah, PH terjaga tinggi Sistem individu, air limbah dibuang Sistem Counterflow Kontrol temperatur
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI MANAJEMEN ENERGI: PERFORMANCE MONITORING • Regresi Linier : Konsumsi energi vs faktor yang mempengaruhi (ex. Produksi vs Electricity) y = 3,3272x + 4784,8 R² = 0,71 0 20.000 40.000 60.000 80.000 100.000 120.000 140.000 160.000 0 10.000 20.000 30.000 40.000 Electricity[kWh] Production Electricity vs Production Y = 3,3272 X + 4784,8 Slope Intercept = Baseload Baseload menunjukkan konsumsi energi ketika tidak ada produksi Seharusnya nol !  Hindari penggunaan energi saat tidak berproduksi Persamaan regresi dapat juga digunakan sebagai : • baseline untuk menentukan target (persamaan baru) • Tool untuk monitor kinerja energi, baseline target Regresi lainnya : Multivariable regression (Y = b + a1 X1 + a2 X2 + ...) Polynomial regression, Non Linier Regression Gunakan metoda paling sederhana dan mudah diterapkan
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI MANAJEMEN ENERGI: PERFORMANCE MONITORING (SPINNING PLANT) Annual Electricity Consumption - 2011 : 25.061.873 - 2012 : 26.169.520 Cummulative Saving - Baseline 2011 : - Per Des 2012 : 1.551.140 (5,6%) - Per Agustus 2013 : 3.056.024 (6,4%) - Baseline 2012 : - Per Agustus 2013 : 441.099 (2,4%)
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI MANAJEMEN ENERGI: PERFORMANCE MONITORING (FINISHING PLANT) Annual Steam Consumption (ton) - 2011 : 111.311 - 2012 : 114.552 Cummulative Saving - Baseline 2011 : - Per Des 2012 : 38.140 (25,0%) - Per Agustus 2013 : 105.796 (37,8%) - Baseline 2012 : - Per Agustus 2013 : 9.089 (13,2%) Sumber: UNIDO Pilot Project (2013)
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI ENERGY EFFICIENCY IMPROVEMENT A. Application of Energy Efficient Technology • High Efficiency Energy Conversion Technology – Boiler, Power Generation, Air Compressor, Cogeneration System, etc • Low Energy Consumption Process Equipment – (Process Specific for each industries) • Waste Heat Recovery Equipment – WHRB, Economizer, Preheater, etc • Energy and Process Management – Process Automation – Energy Monitoring and Control System • Renewable Energy – Biomass – Geothermal B. System Optimization • Electrical System, HVAC System, Steam System, Pump System, Compressed Air system, etc • Process Integration 30
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI EE TECHNOLOGY IN SPINNING AND WEAVING PROCESS no Technologies Electricity Saving Installation Cost Preparasi 1 High Speed Carding Machine Ring Frame 2 The use of lighter spindle 23 MWh/year/ring frame 13,500 /ring frame 3 Installation of energy-efficient motor 6.3 -18.83 MWh/year/motor 1950 - 2200 /motor 4 The use of light weight bobbins 10.8 MWh/year/ring frame 660 /ring frame Windings, Doubling, and finishing process 5 Installation of Variable Frequency Drive on Autoconer machine 331.2 MWh/year/plant 19500/plant 6 Replacing the Electrical heating system with steam heating system for the yarn polishing machine 19.5 MWh/year/machine 980/ humidification plant Air conditioning and Humidification system 7 Installation of Variable Frequency Drive (VFD) for washer pump motor, Humidification System Fan Motor, Humidification system Pumps 20 MWh/year/humidification plant 1100/ humidification plant
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI EE TECHNOLOGY IN SPINNING AND WEAVING PROCESS no Technologies Electricity Saving Installation Cost 8 Replacement of the existing Aluminium alloy fan impellers with high efficiency F.R.P (Fiberglass Reinforced Plastic) impellers in humidification fans and cooling tower fans 55.5 MWh/year/fan 650/ fan General 9 Replacement of Ordinary ‘V – Belts’ by Cogged ‘V – Belts’ 1.5 MWh/year/belt 12.2/belt Weaving Process 10 Energy efficiency of compressed air system in the Air- jet weaving plant US$440,000 /year (for 500 air jet looms)
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI EE TECHNOLOGY IN WET PROCESS no Technologies Energy Saving Installation Cost Preparasi Cold-Pad-Batch pretreatment 38% of fuel use 50% of electricity use Bleach bath recovery system ** US$38,500 -US$118,400 saving 80000 -246,000 Use of Counter-flow Current for washing 41% - 62% of washing energy use Dyeing and Printing Process Installation of Variable Frequency Drive on pump motor of Top dyeing machines 26.9 MWh/year/machine 3100 /machine Cold-Pad-Batch dyeing system 1215000/ system Single-rope flow dyeing machines 2.5 kg steam /kg fabric 0.16 - 0.20 kWh/kg fabric Microwave dyeing equipment 96% fuel saving 90% electricity saving 450000/ machine Use of steam coil instead of direct steam heating in batch dyeing machines (Winch and Jigger) 4580 GJ/year/plant 165500/plant Heat recovery of hot waste water in Autoclave 554 MJ/batch product
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI EE TECHNOLOGY IN DRYING AND FINISHING no Technologies Energy Saving Installation Cost Drying Introduce Mechanical Pre-drying Avoid Overdrying, intermediate drying Recover Condensate and Flash Steam The use of Low Pressure Microwave drying machine for bobbin drying instead of dry-steam heater 107 kWh/tonne yarn 500000/plant High-frequency reduced-pressure dryer for bobbin drying after dyeing process 200 kWh/tonne product 500000/machine Finishing Conversion of Thermic Fluid heating system to Direct Gas Firing system in Stenters and dryers 11000 GJ/year/plant 120 MWh/year/plant 50000/plant Introduce Mechanical De-watering or Contact Drying Before Stenter 13% - 50% of stenter energy use Optimize exhaust humidity in stenter 670 GJ/year US$600 Install heat recovery equipment in stenter 30% energy saving US$77,000 to US$460,000 General The recovery of condensate in wet-processing plants Heat recovery from the air compressors for use in drying woven nylon nets
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI CROSS CUTTING TECHNOLOGY • Electrical demand control • Energy-efficiency improvement opportunities in electric motors • Energy-efficiency improvement opportunities in compressed air systems • Energy-efficiency improvement opportunities in pumping systems • Energy-efficiency improvement opportunities in fan systems • Energy-efficiency improvement opportunities in lighting system • Energy-efficiency improvement opportunities in steam systems
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI CONTOH KASUS : PENERAPAN HIGH EFFICIENT COMPRESSOR DI INDUSTRI TEKSTIL 36 Investment Cost (Rp) 180.000.000,- Equipment & Installation 180.000.000,- Benefit (Rp/Year) 580.500.000,- Net Electricity Saving 580.500.000,- Simple Pay Back (year) 0,31 Electricty Consumption Old : 32 kWh/bale New : 19 kWh/bale
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI CONTOH KASUS : PENERAPAN TEKNOLOGI MICROTURBIN COGENERATION DI PABRIK LAMPU * Operasi 8 jam/hr before after Investment Cost (Rp) 641.250.000,- Equipment Installation 498.750.000,- 142.500.000,- Benefit (Rp/Year) 116.000.000,- Net Electricity Saving* 116.000.000,- Simple Pay Back (year) 5,53
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI OPTIMASI SISTEM : PUMP SYSTEM OPTIMIZATION 38 Sumber (UNIDO)
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI ENERGY EFFICIENT DESIGN : ENERGY EFFICIENCY STANDARD • Energy Performance Standard for Equipments (High Energy Perfomance Standard, Minimum Energy Performance Standard) – Boiler – Motor – Air Conditioner – Compressor – Pumps – Lamps • Energy Performance Standard for System – Green Industry – Green Building 39 EU Thailand Cina Hong kong India Malaysia Using Energy Efficiency Standard as reference to purchase new equipments and/or design new system
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI ENERGY EFFICIENT DESIGN : COGENERATION • Cogeneration is a thermal energy conversion system that simultaneously produce electricity and heat at the same time • Another term: Combined Heat and Power, CHP C65 C65 C65 C65 C65 C65 C65 C65 C65 C65 C65 C65 C65 C65 C65 C65 Ads Chiller 180 TR Ads Chiller 180 TR Ads Chiller 180 TR ELECTRICAL LOAD COOLING LOAD HOT WATER C65 C65 Microturbine MT + CHP module Electrical Line Flue Gas Line Hot Water Line Chilled Water Line Multi Pack Eff 35% Eff 80% Trigeneration Application of Microturbine Cogenerations in a Commercial Building
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI ENERGY EFFICIENT DESIGN : PROCESS INTEGRATION IN INDUSTRY Process Integration Optimizing waste heat utilization to minimize needs of hot and/or cold utilities
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI PENDEKATAN LIFE CYCLE COST UNTUK PENILAIAN INVESTASI Proyek Efisiensi Energi harus mampu menghitung semua keuntungan/penghematan yang diperoleh terhadap biaya-biaya yang timbul akibat proyek tersebut. Keuntungan (benefit) dalam proyek efisiensi energi mencakup •Keuntungan secara finansial •Keuntungan dalam penghematan penggunaan energi •Keuntungan secara lingkungan (biaya eksternal) •Peningkatan produktifitas akibat meningkatnya efisiensi dan manajemen operasi dan perawatan peralatan yang optimal Biaya-biaya dalam proyek efisiensi energi mencakup •Biaya Langsung Proyek (Direct project cost) •Biaya tambahan Operasi dan Perawatan (Additional operations and maintenance cost) •Capacity Building Cost (Training of personnel on new technology etc.) Penilaian Investasi mencakup : •Simple Payback Period (PBP) •Return on Investmen (RoI) •Net Present Value (NPV) •Internal Rate of Return (IRR) Investasi Ops Ops Ops Ops Disposal Investasi Ops Disposal Ops Ops Ops Live Cycle Cost Analysis benefit TotalCost Existing New
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI PENUTUP • Pendekatan Konservasi Energi di Industri tekstil harus dilakukan secara sistematik dan terintegrasi, mulai dari manajemen energi, penerapan teknologi efisien dan optimasi sistem, disain dan pengadaan sistem baru yang hemat energi • Penerapan Manajemen Energi berbasis SNI ISO 50001 terbukti mampu mengendalikan dan menurunkan konsumsi energi secara berkelanjutan, dimulai dari pembenahan manajemen operasional dan perawatan peralatan • Penerapan standard minimum efisiensi dan pendekatan Life Cycle Cost Analysis perlu dilakukan untuk pengadaan peralatan-peralatan baru untuk pabrik 43
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI TERIMA KASIH Contact Dr Edi Hilmawan Ka Bidang Konservasi Energi, Pusat Teknologi Konversi dan Konservasi Energi, BPPT HP : 081380731007 Email : hilmi0374@yahoo.com
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI REFERENSI
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI Name : Dr Edi Hilmawan . Place/Date of Birth : Malang, 10 Maret 1974 Contact : 081380731007 (HP) hilmi0374@yahoo.com Current Job : Head of Energy Conservation Division, Center for Energy Conversion and Conservation Technology, Agency for Assessment and Application of Technology (PTKKE-BPPT) Expertise/Specialization : Process and Chemical Engineer, Heat Transfer and Energy Analyst, Thermodynamics, System Analysis and Optimization Last Academic Achievement : Doctor of Engineering from Graduate School of Natural Science and Technology, Kanazawa University, Japan (2001) Work Experiences (2002-now) • Project Director/Chief Engineer/Engineer in several energy related projects • Instructur of Energy Management Trainings • Lead Consultant on Energy Efficiency Consultation Projects • Lead Energy Auditors on Industries and Commercial Buildings
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI CONTOH KASUS : PENERAPAN HIGH EFFICIENT COMPRESSOR DI INDUSTRI TEKSTIL 48 Investment Cost (Rp) 180.000.000,- Equipment & Installation 180.000.000,- Benefit (Rp/Year) 580.500.000,- Net Electricity Saving 580.500.000,- Simple Pay Back (year) 0,31 Electricty Consumption Old : 32 kWh/bale New : 19 kWh/bale
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI CONTOH KASUS : PENERAPAN TEKNOLOGI MICROTURBIN COGENERATION DI PABRIK LAMPU * Operasi 8 jam/hr before after Investment Cost (Rp) 641.250.000,- Equipment Installation 498.750.000,- 142.500.000,- Benefit (Rp/Year) 116.000.000,- Net Electricity Saving* 116.000.000,- Simple Pay Back (year) 5,53
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI ENERGY EFFICIENT DESIGN : COGENERATION • Cogeneration is a thermal energy conversion system that simultaneously produce electricity and heat at the same time • Another term: Combined Heat and Power, CHP C65 C65 C65 C65 C65 C65 C65 C65 C65 C65 C65 C65 C65 C65 C65 C65 Ads Chiller 180 TR Ads Chiller 180 TR Ads Chiller 180 TR ELECTRICAL LOAD COOLING LOAD HOT WATER C65 C65 Microturbine MT + CHP module Electrical Line Flue Gas Line Hot Water Line Chilled Water Line Multi Pack Eff 35% Eff 80% Trigeneration Application of Microturbine Cogenerations in a Commercial Building
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI ENERGY EFFICIENT DESIGN : PROCESS INTEGRATION IN INDUSTRY Process Integration Optimizing waste heat utilization to minimize needs of hot and/or cold utilities
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI POTENSI PENGHEMATAN ENERGI DI INDUSTRI 52
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI PENGHEMATAN ENERGI SEKTOR INDUSTRI (SKENARIO RENDAH DAN TINGGI) Skenario Penghematan (juta SBM) 2010 2015 2020 2025 Konservasi Rendah 2.05 17.48 46.45 99.74 Konservasi Sedang 4.09 34.95 92.90 199.48 Konservasi Tinggi 6.14 52.43 139.34 299.22 (BPPT, 2011)
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI POTENSI PENGHEMATAN ENERGI INDUSTRI TEKSTIL • Penghematan energi industri tekstil sebesar 40 juta SBM pada tahun 2030 atau sebesar38%. • Total Listrik yang bisa dihemat 2010 – 2030 adalah 19,6 TWh atau setara dengan daya pembangkit 2,8 GW pada tahun 2030. • Kumulatif penghematan energi final non listrik 2010 – 2030 adalah sebesar 170 juta SBM atau setara dengan 6,5 bulan lifting minyak sebesar 0,9 juta SBM per hari
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI ISO 50001 ENERGY MANAGEMENT STANDARD • Based on the PDCA concept Source ISO50001:2011
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI MANAGEMENT RESPONSIBILITY • Is the top management really comitted? • Will you support the system? • This is a decision point! • If not, we can all go for more coffee now! • Will you make the necessary resources available (technical, financial and human) • We assume you will if you believe there is an adaquate return on your effort or investment
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI POLICY • Management commitment • Not just a signature! • Define scope of EnMS • Appropriate to scale • Commitment to continual improvement • Make resources available • Framework for target setting and review organizations
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI PLANNING • How much energy are you using? • Where are you using it? – Which are the biggest users? • What is driving this use? • What is your baseload? • Who is influencing its use? • Is an energy audit required – focus it? • System Optimization • Renewable energy options • Develop baseline & indicators • Set objectives and targets • Action Plan
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI IMPLEMENTATION & OPERATION • Competence, training and awareness • Documentation • Operational control • KEY AREA • Operation & Maintenance • Service contractors • Training • Implement your action plan • Communication • Design – Energy Efficient Design (EED) • Purchasing energy, services, goods
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI CHECKING  Technical checking • Monitoring and targeting (software may be justifiable?) • Equipment checking  System checking • Is everyone doing what is required? • Corrective and preventive action • Non-conformities  Performance checking • Check Energy Performance Indicators (EnPIs)
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI MANAGEMENT REVIEW • Regular presentation • Frequency based on requirements • How are we getting on? • Is performance improving as targeted? • Problems and barriers to overcome? • Achievements • What is the plan for next year? • What do we need to achieve this plan?
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI YOU’RE NOT FINISHED – THIS IS NOT A PROJECT! • Then • you • start • all • over • again!!
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI ENERGY MANAGEMENT SYSTEM ISO 5001 STEP 1. TOP MANAGEMENT COMMITMENT Komitmen manajemen • Menunjuk MR • Membentuk tim • Membuat policy
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI ENERGY MANAGEMENT SYSTEM ISO 5001 STEP 2. PLANNING Planning: •Analisis Data Energi •Identifikasi Pengguna Energi Signifikan (SEUs) •Tetapkan Faktor Pendorong •Tetapkan Indikator Kinerja Energi, Baseload, Baseline •Identifikasi Peluang Perbaikan •Tetapkan Tujuan dan Target •Susun Rencana Aksi
  • PUSAT TEKNOLOGI KONVERSI DAN KONSERVASI ENERGI ENERGY MANAGEMENT SYSTEM ISO 5001 STEP 3. IMPLEMENTATION OPERATION & CHECKING Implementation: •Competence, training and awareness •Documentation •Operational Control •Communication •Design •Purchasement Checking: •Check Operations • Operator record, maintenance record, equipment checking •Check the System •Check Performance • EnPIs, Trends, cost •Check Progress • Against plans