Animal Biotechnology Issue Brief


Published on

1 Comment
1 Like
No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Animal Biotechnology Issue Brief

  1. 1. OCTOBER 2006 ANIMAL BIOTECHNOLOGY Overview of Animal Biotechnology: What is Animal Biotechnology? A Long History The Technology Involved Its Applications The Future of Animal Biotechnology Related Issues: Food Safety Environmental Considerations Legal Implications OVERVIEW OF ANIMAL BIOTECHNOLOGY What is Animal Biotechnology? Animal biotechnology is the use of science and engineering to modify living organisms. The goal is to make products, to improve animals and to develop microorganisms for specific agricultural uses. Examples of animal biotechnology include creating transgenic animals (animals with one or more genes introduced by human intervention), using gene knock out technology to make animals with a specific inactivated gene and producing nearly identical animals by somatic cell nuclear transfer (or cloning). A Long History The animal biotechnology in use today is built on a long history. Some of the first biotechnology in use includes traditional breeding techniques that date back to 5000 B.C.E. Such techniques include crossing diverse strains of animals (known as hybridizing) to produce greater genetic variety. The offspring from these crosses then are bred selectively to produce the greatest number of desirable traits. For example, female horses have been bred with male donkeys to produce mules, and male horses have been bred with female donkeys to produce hinnies, for use as work animals, for the past 3,000 years. This method continues to be used today. Ethical and Social Considerations: Animal Welfare Religious Issues Educational Activity: Thinking Critically Additional Resources: A Glossary of Terms Relevant Links
  2. 2. OCTOBER 2006 ANIMAL BIOTECHNOLOGY 2 The modern era of biotechnology began in 1953, when American biochemist James Watson and British biophysicist Francis Crick presented their double-helix model of DNA. That was followed by Swiss microbiologist Werner Arber’s discovery in the 1960s of special enzymes, called restriction enzymes, in bacteria. These enzymes cut the DNA strands of any organism at precise points. In 1973, American geneticist Stanley Cohen and American biochemist Herbert Boyer removed a specific gene from one bacterium and inserted it into another using restriction enzymes. That event marked the beginning of recombinant DNA technology, or genetic engineering. In 1977, genes from other organisms were transferred to bacteria, an achievement that led eventually to the first transfer of a human gene. The Technology Involved Animal biotechnology in use today is based on the science of genetic engineering. Under the umbrella of genetic engineering exist other technologies, such as transgenics and cloning, that also are used in animal biotechnology. Transgenics Transgenics (also known as recombinant DNA) is the transferal of a specific gene from one organism to another. Gene splicing is used to introduce one or more genes of an organism into a second organism. A transgenic animal is created once the second organism incorporates the new DNA into its own genetic material. In gene splicing, DNA cannot be transferred directly from its original organism, the donor, to the recipient organism, or the host. Instead, the donor DNA must be cut and pasted, or recombined, into a compatible fragment of DNA from a vector — an organism that can carry the donor DNA into the host. The host organism often is a rapidly multiplying microorganism such as a harmless bacterium, which serves as a factory where the recombined DNA can be duplicated in large quantities. The subsequently produced protein then can be removed from the host and used as a genetically engineered product in humans, other animals, plants, bacteria or viruses. The donor DNA can be introduced directly into an organism by techniques such as injection through the cell walls of plants or into the fertilized egg of an animal. This transferring of genes alters the characteristics of the organism by changing its protein makeup. Proteins, including enzymes and hormones, perform many vital functions in organisms. Individual genes direct an animal’s characteristics through the production of proteins. Cloning Scientists use reproductive cloning techniques to produce multiple copies of mammals that are nearly identical copies of other animals, including transgenic animals, genetically superior animals and animals that produce high quantities of milk or have some other desirable trait. To date, cattle, sheep, pigs, goats, horses, mules, cats, rats and mice have been cloned, beginning with the first cloned animal, a sheep named Dolly, in 1996. Reproductive cloning begins with somatic cell nuclear transfer (SCNT). In SCNT, scientists remove the nucleus from an egg cell (oocyte) and replace it with a nucleus from a donor adult somatic cell, which is any cell in the body except for an oocyte or sperm. For reproductive cloning, the embryo is implanted into a uterus of a surrogate female, where it can develop into a live being. Other Technologies In addition to the use of transgenics and cloning, scientists can use gene knock out technology to inactivate, or “knock out,” a specific gene. It is this technology that creates a possible source of replacement organs COURTESY MAX PLANCK INSTITUTE FOR MOLECULAR BIOMEDICINE An oocyte undergoing removal of its maternal chromosomes prior to SCNT.
  3. 3. OCTOBER 2006 3 ANIMAL BIOTECHNOLOGY for humans. The process of transplanting cells, tissues or organs from one species to another is referred to as xenotransplantation. Currently, the pig is the major animal being considered as a viable organ donor to humans. Unfortunately, pig cells and human cells are not immunologically compatible. Pigs, like almost all mammals, have markers on their cells that enable the human immune system to recognize them as foreign and reject them. Genetic engineering is used to knock out the pig gene responsible for the protein that forms the marker to the pig cells. Its Applications Animal biotechnology has many potential uses. Since the early 1980s, transgenic animals have been created with increased growth rates, enhanced lean muscle mass, enhanced resistance to disease or improved use of dietary phosphorous to lessen the environmental impacts of animal manure. Transgenic poultry, swine, goats and cattle that generate large quantities of human proteins in eggs, milk, blood or urine also have been produced, with the goal of using these products as human pharmaceuticals. Human pharmaceutical proteins include enzymes, clotting factors, albumin and antibodies. The major factor limiting the widespread use of transgenic animals in agricultural production systems is their relatively inefficient production rate (a success rate of less than 10 percent). A specific example of these particular applications of animal biotechnology is the transfer of the growth hormone gene of rainbow trout directly into carp eggs. The resulting transgenic carp produce both carp and rainbow trout growth hormones and grow to be one-third larger than normal carp. Another example is the use of transgenic animals to clone large quantities of the gene responsible for a cattle growth hormone. The hormone is extracted from the bacterium, is purified and is injected into dairy cows, increasing their milk production by 10 to 15 percent. That growth hormone is called bovine somatotropin or BST. Another major application of animal biotechnology is the use of animal organs in humans. Pigs currently are used to supply heart valves for insertion into humans, but they also are being considered as a potential solution to the severe shortage in human organs available for transplant procedures. The Future of Animal Biotechnology While predicting the future is inherently risky, some things can be said with certainty about the future of animal biotechnology. The government agencies involved in the regulation of animal biotechnology, mainly the Food and Drug Administration (FDA), likely will rule on pending policies and establish processes for the commercial uses of products created through the technology. In fact, as of March 2006, the FDA was expected to rule in the next few months on whether to approve meat and dairy products from cloned animals for sale to the public. If these animals and animal products are approved for human consumption, several companies reportedly are ready to sell milk, and perhaps meat, from cloned animals — most likely cattle and swine. It also is expected that technologies will continue to be developed in the field, with much hope for advances in the use of animal organs in human transplant operations. RELATED ISSUES The potential benefits of animal biotechnology are numerous and include enhanced nutritional content of food for human consumption; a more abundant, cheaper and varied food supply; agricultural land-use savings; a decrease in the number of animals needed for the food supply; improved health of animals and humans; development of new, low-cost disease treatments for humans; and increased understanding of human disease. Yet despite these potential benefits, several areas of concern exist around the use of biotechnology in animals. To date, a majority of the American public is uncomfortable with genetic modifications to animals.
  4. 4. ANIMAL BIOTECHNOLOGY OCTOBER 2006 According to a survey conducted by the Pew Initiative on Food and Biotechnology, 58 percent of those polled said they opposed scientific research on the genetic engineering of animals. And in a Gallup poll conducted in May 2004, 64 percent of Americans polled said they thought it was morally wrong to clone animals. Concerns surrounding the use of animal biotechnology include the unknown potential health effects to humans from food products created by transgenic or cloned animals, the potential effects on the environment and the effects on animal welfare. Before animal biotechnology will be used widely by animal agriculture production systems, additional research will be needed to determine if the benefits of animal biotechnology outweigh these potential risks. Food Safety The main question posed about the safety of food produced through animal biotechnology for human consumption is, “Is it safe to eat?” But answering that question isn’t simple. Other questions must be answered first, such as, “What substances expressed as a result of the genetic modification are likely to remain in food?” Despite these questions, the National Academies of Science (NAS) released a report titled Animal Biotechnology: Science-Based Concerns stating that the overall concern level for food safety was determined to be low. Specifically, the report listed three specific food concerns: allergens, bioactivity and the toxicity of unintended expression products. The potential for new allergens to be expressed in the process of creating foods from genetically modified animals is a real and valid concern, because the process introduces new proteins. While food allergens are not a new issue, the difficulty comes in how to anticipate these adequately, because they only can be detected once a person is exposed and experiences a reaction. Another food safety issue, bioactivity, asks, “Will putting a functional protein like a growth hormone in an animal affect the person who consumes food from that animal?” As of May 2006, scientists cannot say for sure if the proteins will. Finally, concern exists about the toxicity of unintended expression products in the animal biotechnology process. While the risk is considered low, there is no data available. The NAS report stated it still needs be proven that the nutritional profile does not change in these foods and that no unintended and potentially harmful expression products appear. Environmental Considerations Another major concern surrounding the use of animal biotechnology is the potential for negative impact to the environment. These potential harms include the alteration of the ecologic balance regarding feed sources and predators, the introduction of transgenic animals that alter the health of existing animal populations and the disruption of reproduction patterns and their success. To assess the risk of these environmental harms, many more questions must be answered, such as: What is the possibility the altered animal will enter the environment? Will the animal’s introduction change the ecological system? Will the animal become established in the environment? and Will it interact with and affect the success of other animals in the new community? Because of the many uncertainties involved, it is challenging to make an assessment. 4 COURTESY USDA / PEGGY GREB An example of a cow that is safe from “mad cow disease” thanks in large part to research on the disease and others like it by the USDA’s Agricultural Research Service.
  5. 5. ANIMAL BIOTECHNOLOGY OCTOBER 2006 5 To illustrate a potential environmental harm, consider that if transgenic salmon with genes engineered to accelerate growth were released into the natural environment, they could compete more successfully for food and mates than wild salmon. Thus, there also is concern that genetically engineered organisms will escape and reproduce in the natural environment. It is feared existing species could be eliminated, thus upsetting the natural balance of organisms. Legal Implications Regulations The regulation of animal biotechnology currently is performed under existing government agencies. To date, no new regulations or laws have been enacted to deal with animal biotechnology and related issues. The main governing body for animal biotechnology and their products is the FDA. Specifically, these products fall under the new animal drug provisions of the Food, Drug, and Cosmetic Act (FDCA). In this use, the introduced genetic construct is considered the “drug.” This lack of concrete regulatory guidance has produced many questions, especially because the process for bringing genetically engineered animals to market remains unknown. Currently, the only genetically engineered animal on the market is the GloFish, a transgenic aquarium fish engineered to glow in the dark. It has not been subject to regulation by the FDA, however, because it is not believed to be a threat to the environment. Many people question the use of an agency that was designed specifically for drugs to regulate live animals. The agency’s strict confidentiality provisions and lack of an environmental mandate in the FDCA also are concerns. It still is unclear how the agency’s provisions will be interpreted for animals and how multiple agencies will work together in the regulatory system. When animals are genetically engineered for biomedical research purposes (as pigs are, for example, in organ transplantation studies), their care and use is carefully regulated by the Department of Agriculture. In addition, if federal funds are used to support the research, the work further is regulated by the Public Health Service Policy on Humane Care and Use of Laboratory Animals. Labeling Whether products generated from genetically engineered animals should be labeled is yet another controversy surrounding animal biotechnology. Those opposed to mandatory labeling say it violates the government’s traditional focus on regulating products, not processes. If a product of animal biotechnology has been proven scientifically by the FDA to be safe for human consumption and the environment and not materially different from similar products produced via conventional means, these individuals say it is unfair and without scientific rationale to single out that product for labeling solely because of the process by which it was made. On the other hand, those in favor of mandatory labeling argue labeling is a consumer “right-to-know” issue. They say consumers need full information about products in the marketplace — including the processes used to make those products — not for food safety or scientific reasons, but so they can make choices in line with their personal ethics. COURTESY GLOFISH.COM Examples of the only genetically engineered animal currently on the market — the GloFish.
  6. 6. ANIMAL BIOTECHNOLOGY Intellectual Property On average, it takes seven to nine years and an investment of about $55 million to develop, test and market a new genetically engineered product. Consequently, nearly all researchers involved in animal biotechnology are protecting their investments and intellectual property through the patent system. In 1988, the first patent was issued on a transgenic animal, a strain of laboratory mice whose cells were engineered to contain a cancer-predisposing gene. Some people, however, are opposed ethically to the patenting of life forms, because it makes organisms the property of companies. Other people are concerned about its impact on small farmers. Those opposed to using the patent system for animal biotechnology have suggested using breed registries to protect intellectual property. Ethical and social considerations surrounding animal biotechnology are of significant importance. This especially is true because researchers and developers worry the future market success of any products derived from cloned or genetically engineered animals will depend partly on the public’s acceptance of those products. Animal biotechnology clearly has its skeptics as well as its outright opponents. Strict opponents think there is something fundamentally immoral about the processes of transgenics and cloning. They liken it to “playing God.” Moreover, they often oppose animal biotechnology on the grounds that it is unnatural. Its processes, they say, go against nature and, in some cases, cross natural species boundaries. Still others question the need to genetically engineer animals. Some wonder if it is done so companies can increase profits and agricultural production. They believe a compelling need should exist for the genetic modification of animals and that we should not use animals only for our own wants and needs. And yet others believe it is unethical to stifle technology with the potential to save human lives. While the field of ethics presents more questions than it answers, it is clear animal biotechnology creates much discussion and debate among scientists, researchers and the American public. Two main areas of debate focus on the welfare of animals involved and the religious issues related to animal biotechnology. Animal Welfare Perhaps the most controversy and debate regarding animal biotechnology surrounds the animals themselves. While it has been noted that animals might, in fact, benefit from the use of animal biotechnology — through improved health, for example — the majority of discussion is about the known and unknown potential negative impacts to animal welfare through the process. For example, calves and lambs produced through in vitro fertilization or cloning tend to have higher birth weights and longer gestation periods, which leads to difficult births that often require cesarean sections. In addition, some of the biotechnology techniques in use today are extremely inefficient at producing fetuses that survive. Of the transgenic animals that do survive, many do not express the inserted gene properly, often resulting in anatomical, physiological or behavioral abnormalities. There also is a concern that proteins designed to produce a pharmaceutical product in the animal’s milk might find their way to other parts of the animal’s body, possibly causing adverse effects. ETHICAL AND SOCIAL CONSIDERATIONS COURTESY USDA / SCOTT BAUER A Senopol surrogate mother with Romosinuano embryo transfer calf. Senopols, a tropically adapted breed from the Caribbean, are becoming increasingly popular throughout the warmer regions of the United States. OCTOBER 2006 6
  7. 7. ANIMAL BIOTECHNOLOGY OCTOBER 2006 7 Animal “telos” is a concept derived from Aristotle and refers to an animal’s fundamental nature. Disagreement exists as to whether it is ethical to change an animal’s telos through transgenesis. For example, is it ethical to create genetically modified chickens that can tolerate living in small cages? Those opposed to the concept say it is a clear sign we have gone too far in changing that animal. Those unopposed to changing an animal’s telos, however, argue it could benefit animals by fitting them for living conditions for which they are not “naturally” suited. In this way, scientists could create animals that feel no pain. Religious Issues Religion plays a crucial part in the way some people view animal biotechnology. For some people, these technologies are considered blasphemous. In effect, God has created a perfect, natural order, they say, and it is sinful to try to improve that order by manipulating the basic ingredient of all life, DNA. Some religions place great importance on the “integrity” of species, and as a result, those religion’s followers strongly oppose any effort to change animals through genetic modification. Not all religious believers make these assertions, however, and different believers of the same religion might hold differing views on the subject. For example, Christians do not oppose animal biotechnology unanimously. In fact, some Christians support animal biotechnology, saying the Bible teaches humanity’s dominion over nature. Some modern theologians even see biotechnology as a challenging, positive opportunity for us to work with God as “co-creators.” Transgenic animals can pose problems for some religious groups. For example, Muslims, Sikhs and Hindus are forbidden to eat certain foods. Such religious requirements raise basic questions about the identity of animals and their genetic makeup. If, for example, a small amount of genetic material from a fish is introduced into a melon (in order to allow it grow to in lower temperatures), does that melon become “fishy” in any meaningful sense? Some would argue all organisms share common genetic material, so the melon would not contain any of the fish’s identity. Others, however, believe the transferred genes are exactly what make the animal distinctive; therefore the melon would be forbidden to be eaten as well. EDUCATIONAL ACTIVITY Thinking Critically The following questions are intended for middle school and high school students studying animal biotechnology. They are designed to stimulate critical thinking about the many ethical issues involved in the use of animal biotechnology: Is it acceptable to create an animal that feels no pain through the use of animal biotechnology? Why or why not? What are the benefits and to whom? What about the concept of “telos,” or an animal’s true nature? Making an animal that is incapable of feeling pain goes against an animal’s telos. Is this acceptable? An animal has been used to create a promising new drug for the treatment of many types of cancer. However, the process involved might bring pain to the animal used to make the drug. Is this acceptable considering the end result? Why or why not? Should we make the animal incapable of pain in this case? Why or why not? 1. • • 2. • A scultpure of the Greek philosopher Aristotle, the man from whom the concept of animal “telos” is derived.
  8. 8. ANIMAL BIOTECHNOLOGY Companies have begun to apply for and receive patents to protect their often expensive investments in animal biotechnology. The average investment these companies make is about $55 million over seven to nine years. Based on this expense, should companies be able to patent a living organism? Why or why not? How is this different from a patent issued to a company for a nonliving product, such as new software? What alternatives can you think of for the patenting system? 3. • • OCTOBER 2006 8
  9. 9. ANIMAL BIOTECHNOLOGY ADDITIONAL RESOURCES OCTOBER 2006 9 A Glossary of Terms Allergy: A reaction by the body’s immune system after exposure to a particular substance, often a protein. Biotechnology: A set of biological techniques developed through basic research and now applied to research and product development. Biotechnology refers to the use of recombinant DNA, cell fusion and new bioprocessing techniques. Biotechnology-derived: The use of molecular biology and/or recombinant DNA technology, or in vitro gene transfer, to develop products or to impart specific capabilities to plants or other living organisms. Bovine spongiform encephalopathy (BSE): A disease of cattle, related to scrapie of sheep, also known as mad cow disease. It is thought to be caused by a prion, or small protein, that alters the structure of a normal brain protein, which in turn results in destruction of brain neural tissue. Cell: The lowest denomination of life thought to be possible. Most organisms consist of more than one cell, which becomes specialized into particular functions to enable the whole organism to function properly. Cells contain DNA and many other elements to enable the cell to function. Chromosomes: The self-replicating genetic structure of cells containing the cellular DNA. Humans have 23 pairs of chromosomes. Clone: A genetic replica of an organism created without sexual reproduction. DNA (deoxyribonucleic acid): The genetic material of all cells and many viruses and the molecule that encodes genetic information. DNA is a double-stranded molecule held together by weak bonds between base pairs of nucleotides. The four nucleotides in DNA contain the bases adenine (A), guanine (G), cytosine (C) and thymine (T). In nature, base pairs form only between A and T and between G and C — thus the base sequence of each single strand can be deduced from that of its partner. Embryonic stem (ES) cell: Primitive (undifferentiated) cell from the embryo that has the potential to become a wide variety of specialized cell types. Enucleated oocyte: An egg cell from which the nucleus has been removed mechanically. The remaining intact cytoplasm of the cell is known as a cytoplast. Epitope: The part of an antigen that stimulates an immune response. Gene: The fundamental physical and functional unit of heredity. A gene is an ordered sequence of nucleotides located in a particular position on a particular chromosome that encodes a specific functional product (such as a protein or an RNA molecule). Gene splicing: The isolation of a gene from one organism followed by the introduction of that gene into another organism using techniques of biotechnology. Genetic engineering: The technique of removing, modifying or adding genes to a DNA molecule to change the information it contains. By altering this information, genetic engineering changes the type or amount of proteins an organism is capable of producing, thus enabling it to make new substances or to perform new functions.
  10. 10. ANIMAL BIOTECHNOLOGY OCTOBER 2006 10 Genetically modified organism (GMO): The label GMO and the term transgenic often refer to organisms that have acquired novel genes from other organisms by laboratory gene transfer methods. Genetics: The study of the patterns of inheritance of specific traits. Genome: All the genetic material in the chromosomes of a particular organism; its size generally is given as its total number of base pairs. Genomics: The mapping and sequencing of all the genetic material in the DNA of a particular organism as well as the use of information derived from genome sequence data to further reveal what genes do, how they are controlled and how they work together. Genotype: The genetic identity of an individual. Genotype often is evident by outward characteristics. Hybrid: Seed or plants produced as the result of controlled cross-pollination as opposed to seed produced as the result of natural pollination. Hybrid seeds are selected to have higher quality traits (yield or pest tolerance, for example). Knock in: Replacement of a gene by a mutant version of the same gene. Knock out: The process of purposely removing a particular gene or trait from an organism. Labeling of foods: The process of developing a list of ingredients contained in foods. Labels imply the list of ingredients can be verified. The Food and Drug Administration has jurisdiction over what is stated on food labels. Microinjection: The introduction of DNA into the nucleus of an oocyte, embryo or other cell by injection through a very fine needle. Mutation: Any inheritable change in DNA sequence. Nuclear transfer (NT): The generation of a new animal nearly identical to another one by injection of the nucleus from a cell of the donor animal into an enucleated oocyte of the recipient. Oocyte: A female germ cell in the process of development. It gives rise to the ovum, which can be fertilized. Ovum: A mature female reproductive cell. Prion-related protein (PrP): A normal protein, expressed in the nervous system of animals, whose structure when altered (by interaction with altered copies of itself) is the cause of scrapie in sheep, bovine spongiform encephalopathy in cattle and Creutzfeldt-Jakob disease in humans. Protein: A large molecule composed of one or more chains of amino acids in a specific order. The order is determined by the base sequence of nucleotides in the gene that codes for the protein. Proteins are required for the structure, function and regulation of the body’s cells, tissues and organs, and each protein has unique functions. Examples include hormones, enzymes and antibodies. Recombinant DNA molecules (rDNA): A combination of DNA molecules of different origin that are joined using recombinant DNA technologies.
  11. 11. ANIMAL BIOTECHNOLOGY OCTOBER 2006 11 Recombinant DNA technology: Procedure used to join together DNA segments in a cell-free system (an environment outside a cell or organism). Under appropriate conditions, a recombinant DNA molecule can enter a cell and replicate there, either autonomously or after it has become integrated into a cellular chromosome. Recombination: The process by which progeny derive a combination of genes different from that of either parent. Selective breeding: Making deliberate crosses or mating of organisms so the offspring will have a desired characteristic derived from one of the parents. Somatic cell nuclear transfer (SCNT): The transfer of a cell nucleus from a somatic cell into an enucleated egg (one from which the nucleus has been removed). In SCNT, a nucleus from a patient’s body cell, such as a skin cell, is introduced into an unfertilized egg from which the original genetic material has been removed. The egg then is used to produce a blastocyst whose stem cells could be used to create tissue that would be compatible with that of the patient. This is the procedure used for cloning. Tissue culture: 1. A process of growing a plant in the laboratory from cells rather than from seeds. The technique is used in traditional plant breeding as well as when using techniques of agricultural biotechnology. 2. The growth of animal or plant cells in vitro in an artificial culture medium for experimental research. Also known as cell culture. Traditional breeding: Modification of plants and animals through selective breeding. Practices used in traditional plant breeding can include aspects of biotechnology such as tissue culture and mutation breeding. Transgenic: 1. Containing genes altered by insertion of DNA from an unrelated organism. 2. Taking genes from one species and inserting them into another species to get that trait expressed in the offspring. Vector: A type of DNA, such as a plasmid or a phage, that is self-replicating and that can be used to transfer DNA segments among host cells. Xenograft: The transplanted tissue in a xenotransplantation. Xenotransplantation: Transplantation of cells, tissues or organs from one species to another. Relevant Links The Biotechnology and Biological Sciences Research Council (BBSRC) is the United Kingdom’s principal funder of basic and strategic biological research. To deliver its mission, the BBSRC supports research and training in universities and research centers and promotes knowledge transfer from research to applications in business, industry and policy, and public engagement in the biosciences. The site contains extensive articles on the ethical and social issues involved in animal biotechnology. The Department of Agriculture provides leadership on food, agriculture, natural resources and related issues through public policy, the best available science and efficient management. The Cooperative State Research, Education and Extension Service is an agency created by Congress in 1994. The site contains information about the science behind animal biotechnology and a glossary of terms. Related topics also are searchable, including animal breeding, genetics and many others.
  12. 12. ANIMAL BIOTECHNOLOGY OCTOBER 2006 12 The National Academies Press (NAP) was created by the National Academies to publish the reports issued by the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council, all operating under a charter granted by Congress. The NAP publishes more than 200 books a year on a wide range of topics in science, engineering and health, capturing the most authoritative views on important issues in science and health policy. Its site contains several books on the subject of animal biotechnology that are readable in their entirety. Of particular interest is Animal Biotechnology: Science Based Concerns, the 182-page report prepared for the FDA by the National Research Council. All of these sources can be accessed through the site’s search engine. The Pew Initiative on Food and Biotechnology was established in 2001 to be an independent and objective source of credible information on agricultural biotechnology for the public, media and policy-makers. Funded by a grant from the Pew Charitable Trusts to the University of Richmond, the initiative advocates neither for nor against agricultural biotechnology. Instead, the initiative is committed to providing information and encouraging debate and dialogue so consumers and policy-makers can make their own informed decisions. The site contains an animal biotechnology link on its home page as well as the full conference proceedings from two workshops on genetically engineered animals and detailed reports and papers. PubMed Central is the National Institutes of Health’s (NIH) free, digital archive of biomedical and life sciences journal literature. NIH, a part of the Department of Health and Human Services, is the primary federal agency for conducting and supporting medical research. The site includes a search engine for locating detailed research articles on many topics, including animal biotechnology.