Your SlideShare is downloading. ×
0
Geometría ángulos 1er año
Geometría ángulos 1er año
Geometría ángulos 1er año
Geometría ángulos 1er año
Geometría ángulos 1er año
Geometría ángulos 1er año
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Geometría ángulos 1er año

1,217

Published on

diapositivas de ángulos

diapositivas de ángulos

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,217
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Matemática/ Geometría Ángulos Lic. Mat. Martín I. Chayán Alache mcha1@hotmail.com ADEU ángulos1er*año.tex– Matemática/ Geometría– Lic. Mat. Martín I. Chayán Alache– 13/4/2011– 22:10– p. 1/6
  • 2. Definición y ElementosSe forma al unir dos rayos a través de un punto en comúnllamado vértice. B do Vértice: O La −→ − − → Lados: OA y OB α Notación: ∠AOB O Lado A m∠AOB = αCongruentes: Son los ángulos que tienen igual medida. ∼ = α α A B ángulos1er*año.tex– Matemática/ Geometría– Lic. Mat. Martín I. Chayán Alache– 13/4/2011– 22:10– p. 2/6
  • 3. BisectrizRayo que divide al ángulos en otros dos ánguloscongruentes. B α Bisectriz O α M A ∢BOM ∼ ∡M OA = m(∢BOM ) = m(∡M OA) ángulos1er*año.tex– Matemática/ Geometría– Lic. Mat. Martín I. Chayán Alache– 13/4/2011– 22:10– p. 3/6
  • 4. Clasificación Agudo 0o < α < 90o Recto β = 90o Medida Obtuso 90o < θ < 180o Adyacentes lado común Clasificación Par lineal adyacentes, suman 180o Posición Consecutivos 3 ó más adyacentes Opuestos por el vértice = medida Complementarios = 90o Relación Suplementarios = 180o ángulos1er*año.tex– Matemática/ Geometría– Lic. Mat. Martín I. Chayán Alache– 13/4/2011– 22:10– p. 4/6
  • 5. Ejemplos −→ 1. AOB es un ángulo recto y OC un rayo interior, tal que m∠AOC = 72o . Hallar m∠COB A C m∠COB = 90 − 72 = 18o 72o O B 2. a = 3x − 17; b = 23 − x, son medidas de dos ángulos opuestos por el vértice. Hallar el valor de x. por ser ángulos opuestos por el vértice: 3x − 17 = 23 − x 4x = 40⇒x = 10o ángulos1er*año.tex– Matemática/ Geometría– Lic. Mat. Martín I. Chayán Alache– 13/4/2011– 22:10– p. 5/6
  • 6. Ejemplos 3. Dos ángulos complementarios se diferencian en 24o . Hallar la medida del menor. α = x; β = 90 − x⇒x − (90 − x) = 24 2x = 110⇒x = 57o Rpta: 33 4. Uno de los ángulos suplementarios mide el triple del otro. Calcular el menor α = x; β = 180 − x⇒x = 3(180 − x) 4x = 540⇒x = 135o Rpta: 45 ángulos1er*año.tex– Matemática/ Geometría– Lic. Mat. Martín I. Chayán Alache– 13/4/2011– 22:10– p. 6/6

×