Matemática Conjuntos 5to grado

  • 730 views
Uploaded on

producto cartesiano y relaciones

producto cartesiano y relaciones

More in: Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
730
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
4
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Lógico Matemática Conjuntos Lic. Mat. Martín I. Chayán Alache ADEULic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 2. Producto Cartesiano Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 3. Producto Cartesiano Definición se llama así al conjunto de todos los pares ordenados, donde la primera componente ǫ al primer conjunto y la segunda componente ǫ al segundo conjunto. (a, b) donde aǫA y bǫB Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 4. Producto Cartesiano Definición se llama así al conjunto de todos los pares ordenados, donde la primera componente ǫ al primer conjunto y la segunda componente ǫ al segundo conjunto. (a, b) donde aǫA y bǫB Ejemplo: si A = {1; 2; 3} y B = {a; b} ; hallar “A x B” Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 5. Producto Cartesiano Definición se llama así al conjunto de todos los pares ordenados, donde la primera componente ǫ al primer conjunto y la segunda componente ǫ al segundo conjunto. (a, b) donde aǫA y bǫB Ejemplo: si A = {1; 2; 3} y B = {a; b} ; hallar “A x B” Resolución: A x B = {(1, a); (1, b); (2, a); (2, b); (3, a); (3, b)} n(A x B) = 6 pares ordenados Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 6. Producto Cartesiano El producto cartesiano se puede representar de tres formas diferentes: A B B AxB a b b 1 1 (1, a) (1, b) a 2 a 2 (2, a) (2, b) b 3 (3, a) (3, b) 3 A 1 2 3 Diagrama Tabular Diagrama Sagital Diagrama Cartesiano Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 7. Taller No 8 Ejercicio: (1) Rosario hermana de Genoveva tiene 5 blusas y 4 faldas con los siguientes colores: blusas: marrón, rosada, celeste, blanca y verde. faldas: negra, azul, ploma y roja. Si ella desea vestirse con una blusa y una falda ¿De cuántas maneras puede hacerlo? Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 8. Taller No 8 Ejercicio: (1) Rosario hermana de Genoveva tiene 5 blusas y 4 faldas con los siguientes colores: blusas: marrón, rosada, celeste, blanca y verde. faldas: negra, azul, ploma y roja. Si ella desea vestirse con una blusa y una falda ¿De cuántas maneras puede hacerlo? Resolución marrón negra rosado azul celeste ploma blanca verde roja Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 9. Taller No 8 Ejercicio: (1) Rosario hermana de Genoveva tiene 5 blusas y 4 faldas con los siguientes colores: blusas: marrón, rosada, celeste, blanca y verde. faldas: negra, azul, ploma y roja. Si ella desea vestirse con una blusa y una falda ¿De cuántas maneras puede hacerlo? Resolución Combinaciones de Vestimenta {(m, n); (m, a); (m, p); (m, r); marrón negra rosado azul (r, n); (r, a); (r, p); (r, r); celeste blanca ploma (c, n); (c, a); (c, p); (c, r); verde roja (b, n); (b, a); (b, p); (b, r); (v, n); (v, a); (v, p); (v, r)} Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 10. Taller No 8 Ejercicio: (2) se tiene: A = {1, 3, 5, 7, 9} y B = {2, 4, 6, 8} ¿Cuántos números de dos dígitos se formaran, teniendo en cuenta que los elementos de A son las cifras de las decenas y los elementos de B son las unidades Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 11. Taller No 8 Ejercicio: (2) se tiene: A = {1, 3, 5, 7, 9} y B = {2, 4, 6, 8} ¿Cuántos números de dos dígitos se formaran, teniendo en cuenta que los elementos de A son las cifras de las decenas y los elementos de B son las unidades Resolución 1 2 3 4 5 6 7 9 8 Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 12. Taller No 8 Ejercicio: (2) se tiene: A = {1, 3, 5, 7, 9} y B = {2, 4, 6, 8} ¿Cuántos números de dos dígitos se formaran, teniendo en cuenta que los elementos de A son las cifras de las decenas y los elementos de B son las unidades Resolución Números 1 2 3 {12; 14; 16; 18; 32; 34; 36; 38; 4 5 6 52; 54; 56; 58; 72; 74; 76; 78; 7 9 8 92; 94, 96, 98} Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 13. Taller No 8 Ejercicio: (4) Si los pares ordenados (47; y − 13) y (x + 9; 4) son iguales. ¿Cuál es el valor de x e y? Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 14. Taller No 8 Ejercicio: (4) Si los pares ordenados (47; y − 13) y (x + 9; 4) son iguales. ¿Cuál es el valor de x e y? Resolución: se deben igualar las primeras componentes y luego las segundas componentes: x + 9 = 47 x = 38 Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 15. Taller No 8 Ejercicio: (4) Si los pares ordenados (47; y − 13) y (x + 9; 4) son iguales. ¿Cuál es el valor de x e y? Resolución: se deben igualar las primeras componentes y luego las segundas componentes: x + 9 = 47 y − 13 = 4 x = 38 y = 17 Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 16. Taller No 8 Ejercicio: (4) Si los pares ordenados (47; y − 13) y (x + 9; 4) son iguales. ¿Cuál es el valor de x e y? Resolución: se deben igualar las primeras componentes y luego las segundas componentes: x + 9 = 47 y − 13 = 4 x = 38 y = 17 Ejercicio: (7) Si la primera componente del par ordenado (8; 17) es igual a 5x − 2, ¿Cuál es el valor de x? Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 17. Taller No 8 Ejercicio: (4) Si los pares ordenados (47; y − 13) y (x + 9; 4) son iguales. ¿Cuál es el valor de x e y? Resolución: se deben igualar las primeras componentes y luego las segundas componentes: x + 9 = 47 y − 13 = 4 x = 38 y = 17 Ejercicio: (7) Si la primera componente del par ordenado (8; 17) es igual a 5x − 2, ¿Cuál es el valor de x? Resolución: 5x − 2 = 8 Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 18. Taller No 8 Ejercicio: (4) Si los pares ordenados (47; y − 13) y (x + 9; 4) son iguales. ¿Cuál es el valor de x e y? Resolución: se deben igualar las primeras componentes y luego las segundas componentes: x + 9 = 47 y − 13 = 4 x = 38 y = 17 Ejercicio: (7) Si la primera componente del par ordenado (8; 17) es igual a 5x − 2, ¿Cuál es el valor de x? Resolución: 5x − 2 = 8 ⇒ x = 2 Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 19. Relaciones Noción Se dice así a la relación que existe entre dos o mas objetos. Ejemplo 1: Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 20. Relaciones Noción Se dice así a la relación que existe entre dos o mas objetos. Ejemplo 1: Familia Una Familia representada por los padres y sus dos hijos Juana(madre) Isabel Miguel Raúl(padre) Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 21. Relaciones Noción Se dice así a la relación que existe entre dos o mas objetos. Ejemplo 1: Familia Una Familia representada por los padres y sus dos hijos Establece las relaciones Juana(madre) Isabel Raúl Miguel Raúl(padre) Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 22. Relaciones Noción Se dice así a la relación que existe entre dos o mas objetos. Ejemplo 1: Familia Una Familia representada por los padres y sus dos hijos Establece las relaciones Juana(madre) Isabel Raúl es padre de Miguel Miguel Raúl Raúl(padre) Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 23. Relaciones Noción Se dice así a la relación que existe entre dos o mas objetos. Ejemplo 1: Familia Una Familia representada por los padres y sus dos hijos Establece las relaciones Juana(madre) Isabel Raúl es padre de Miguel Miguel Raúl es padre de Isabel Juana Raúl(padre) Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 24. Relaciones Noción Se dice así a la relación que existe entre dos o mas objetos. Ejemplo 1: Familia Una Familia representada por los padres y sus dos hijos Establece las relaciones Juana(madre) Isabel Raúl es padre de Miguel Miguel Raúl es padre de Isabel Juana es madre de Miguel Juana Raúl(padre) Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 25. Relaciones Noción Se dice así a la relación que existe entre dos o mas objetos. Ejemplo 1: Familia Una Familia representada por los padres y sus dos hijos Establece las relaciones Juana(madre) Isabel Raúl es padre de Miguel Miguel Raúl es padre de Isabel Juana es madre de Miguel Juana es madre de Isabel Miguel Raúl(padre) Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 26. Relaciones Noción Se dice así a la relación que existe entre dos o mas objetos. Ejemplo 1: Familia Una Familia representada por los padres y sus dos hijos Establece las relaciones Juana(madre) Isabel Raúl es padre de Miguel Miguel Raúl es padre de Isabel Juana es madre de Miguel Juana es madre de Isabel Miguel es hermano de Isabel Isabel Raúl(padre) Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 27. Relaciones Noción Se dice así a la relación que existe entre dos o mas objetos. Ejemplo 1: Familia Una Familia representada por los padres y sus dos hijos Establece las relaciones Juana(madre) Isabel Raúl es padre de Miguel Miguel Raúl es padre de Isabel Juana es madre de Miguel Juana es madre de Isabel Miguel es hermano de Isabel Isabel es hermana de Miguel Raúl(padre) Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 28. Ejemplo Ejemplo 2: Sean los conjuntos N = {6; 8; 12} y M = {3; 4; 16} formar una relación S de N en M ; que satisfaga la siguiente regla de correspondencia “x > y” Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 29. Ejemplo Ejemplo 2: Sean los conjuntos N = {6; 8; 12} y M = {3; 4; 16} formar una relación S de N en M ; que satisfaga la siguiente regla de correspondencia “x > y” Resolución: primero se debe realizar un diagrama: S M N M 15 6 3 8 4 4 12 3 15 N 0 6 8 12 Conjunto de Partida Conjunto de Llegada Lic. Mat. Martín I. Chayán Alache Lógico Matemática
  • 30. Ejemplo Ejemplo 2: Sean los conjuntos N = {6; 8; 12} y M = {3; 4; 16} formar una relación S de N en M ; que satisfaga la siguiente regla de correspondencia “x > y” Resolución: primero se debe realizar un diagrama: S M N M 15 6 3 8 4 4 12 3 15 N 0 6 8 12 Conjunto de Partida Conjunto de Llegada Luego: S = {(6; 3), (6; 4), (8; 3), (8; 4), (12; 3), (12; 4)} Lic. Mat. Martín I. Chayán Alache Lógico Matemática