mediaX_1-15-13

246 views
189 views

Published on

mediaX at Stanford University connects businesses with Stanford University’s world-renowned faculty to study new ways for people and technology to intersect.

We are the industry affiliate program to Stanford’s H-STAR Institute. We help our members explore how the thoughtful use of technology can impact a range of fields, from entertainment to learning to commerce. Together, we’re researching innovative ways for people to collaborate, communicate, and interact with the information, products, and industries of tomorrow.

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
246
On SlideShare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
4
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

mediaX_1-15-13

  1. 1. January  15,  2013   at S T A N F O R D U N I V E R S I T YMartha  G  Russell,  Execu9ve  Director     Innova9on  Ecosystems  Network  
  2. 2. •  Innova9ons  stakeholders  are  global.  •  Form,  interface,  content  and  business  models  are  s9ll  changing.  •  Future  scenarios  will  include:   –  Personalized  data  with  social  intelligence  and  context   –  Exponen9al  augmenta9on  of  human  capability  •  Network  orchestra9on  is  a  key  management  skill.  •  With  shared  vision  transforma9ons  can  be  accelerated.   at S T A N F O R D U N I V E R S I T Y
  3. 3. The REAL Issueat S T A N F O R D U N I V E R S I T Y Deep Knowledge with Wide Applicability IN  THE  HEART  OF  SILICON  VALLEY    IN  A  CULTURE  OF  RAPID  ITERATION,  WHERE  DISRUPTION  IS  CELEBRATED    WHERE  TALENT,  INFORMATION  AND  CAPITAL  RESOURCES  FLOURISH   THE  ISSUE  IS  NOT  THE  RATE    TECHNOLOGY  TRANSFER    THE  ISSUE  IS  THE  EFFECTIVENESS  OF  INNOVATION  AND  KNOWLEDGE  TRANSFER      WE  CALL  THIS  “COLLABORATIVE  DISCOVERY”     The  Media  X  approach    WORK  ON  BOLD  IDEAS  WITH  BUSINESS,  TEST  SUCCESS/FAILURE  CONDITIONS,      ITERATE  RESULTS  QUICKLY,  TRANSFER  INSIGHTS  AT  EVERY  STAGE  
  4. 4. H-­‐STAR     HUMAN  SCIENCES  AND  TECHNOLOGIES    at S T A N F O R D U N I V E R S I T Y ADVANCED  RESEARCH  INSTITUTE   RELATIONSHIP  INTERFACES  FOR  DISCOVERY  COLLABORATIONS     Goal:  Do  something  together  neither  of  us  could  do  by  ourselves.     Research  on  people  and  technology  —  how  people  use  technology,  how  to  be[er  design   technology  to  make  it  more  usable,  how  technology  affects  people’s  lives,  and  the  innovaEve   use  of  technologies  in  research,  educa9on,  art,  business,  commerce,  entertainment,   communica9on,  security,  and  other  walks  of  life.    
  5. 5. Stanford University Medical Media ! & Information Technology ! SUMMIT Distributed Vision Lab ! a t S T A N F O R D U! I V E R S I T Y N DVL Discovery Collaborations ! Electrical Engineering Psychology Span Stanford Labs! Computer Science EE Psy Linguistics Communication Between HumansPhilosophy Ling and Interactive Media CS CHIMe Phil SHL Stanford Humanities Lab Graduate School VHIL GSB Of BusinessVirtual Human Stanford CenterInteraction Lab SCIL for Innovations in Learning Center for the Study Of CSLI Language & Information Art Digital Art CenterEngineeringEng & Product Design School of Education; Ed Education and PBLL Law Learning SciencesWorkTechnology & Center forOrganization SSP Legal Des Stanford Joint PBLL Program in Design Project Based Informatics d.school Learning Symbolic LIFE Laboratory Systems Program Learning in Informal and Formal Environments
  6. 6. Stanford  spin-­‐offs  Over  2000  companies  started  by  faculty  students  and  alumni   •  Abrizio   •  NVIDIA   •  ASK  Computer  systems   •  Orbitz   •  Cisco  Systems,  Inc.   •  Octel  CommunicaEons  Corp.   •  Dolby  Systems   •  Odwalla   •  eBay   •  ONI  Systems   •  E*Trade   •  PayPal   •  Electronic  Arts   •  Pure  SoVware,  Inc.   •  Excite,  Inc.   •  Rambus,  Inc.   •  Gap   •  RaEonal  SoVware   •  Google   •  Silicon  Graphics,  Inc.   •  HewleQ-­‐Packard   •  Sun  Microsystems   •  IDEO   •  Tandem  Computers,  Inc.   •  Intuit,  Inc.   •  Taiwan  Semiconductor   •  Learning  Company   •  Tensillica   •  Linked-­‐In   •  Tesla  Motors   •  Logitech   •  Trilogy   •  Mathworks   •  Varian  Associates,  Inc.   •  MIPS  Technologies,  Inc.   •  Vmware   •  Nike   •  Whole  Earth  Catalog   •  NeUlix   •  Yahoo!  Inc.  
  7. 7. Infrastructure  for  Resource  Flows                                                                                -­‐  -­‐  -­‐  Rela9onships   The Way We USED to Think About Organizations New  Organiza9onal  Chart  Based  on  Rela9onships   Relationship Capital for Co-Created Infrastructure (Companies  are  interlocked  through  key   people  –  informaPon  flow,  norms,   mental  models.(Davis,1996)  
  8. 8. Alumni  Networks  
  9. 9. Silicon  Valley   Don’t  try  to  replicate  –  instead  collaborate  Geographically  concentrated,  very  ac9ve  human  network    Researchers,  business  leaders,  entrepreneurs,  funders  High  density  of  some  very  big  technology  companies  Powerful,  wealthy  university  (Stanford)  with  a  culture  of  involvement  with  industry  and  of  entrepreneurial  spinoffs  Nearby  world  class,  large  state  university  (Cal  Berkeley)  Good  local  supply  of  skilled  employees  (San  Jose  State  University)  Culture  of  risk  taking  and  acceptance  of  failure   The  world  sees  Silicon  Valley  as  a  loca9on  of  great  successes   Here  we  know  it  is  a  loca9on  of  a  great  many  “failures”  Easy  access  to  “free”  advice  and  assistance  at  the  start  Massive  amounts  of  government  funding  for  basic  research  Large  amount  of  private  funding  to  exploit  the  research  A  highly  fluid  workforce    You  can  change  employer  without  having  to  move  your  home  Anyone  can  play   Admi[ance  and  acceptance  are  based  en9rely  on  your  ideas  and  abili9es   You  are  only  as  good  as  your  latest  idea  A[rac9ve  place  to  live,  good  climate,  tolerant  and  accep9ng  culture  
  10. 10. Five  Rules  for  Successful  Failure  •  Iterate  quickly   –  If  it  doesn’t  work,  change  something  –  ASAP  •  Take  personal  responsibility   –  Don’t  blame  anyone  •  Share  what  you  learned   –  Each  failure  includes  lessons  for  success  •  Start  again     –  Immediately!  •  Don’t  do  it  alone   –  Know,  cul9vate  and  orchestrate  your  network  
  11. 11. Media  X’s  Unique  proposi9on  •  Pose  a  ques9on  to  the  Stanford  thought  leaders   that  will  create     –  Opportuni9es  for  discovery  collabora9ons     –  On  novel  research   –  That  leverages  the  latest  research  interests   –  To  iden9fy  the  new  ques9ons  that  will  lead  to   –  Insights  that  address  edge  ques9ons     –  3  to  5  years  out  •  Par9cipate  in  the  discovery  process  to  learn  •  The  best  ques9ons  and  how  to  pursue  them  •  Ra9onale  of  research  pathways  –  why?  why  not?   at S T A N F O R D U N I V E R S I T Y
  12. 12. Members  Provide  the  Direc9on  •  Accel  Partners   •  HKUST  •  ACERP   •  Konica  Minolta  •  Apollo  Group   •  Nissan  •  BT  Group   •  Orange  •  Cisco   •  Philips  •  CO3   •  Sabia  Experience  •  Danish  Innova9on  •  Edelman   •  Singularity  University  •  Fu[on   •  TEKES   at S T A N F O R D U N I V E R S I T Y
  13. 13. Build  Capacity  for  Insights  -­‐  Sooner  •  Time  advantage     –  3  years  ahead  of  reading  the  latest  publica9ons  •  Relevance  advantage   –  Ques9ons  relevant  to  Konica  Minolta’s  future  •  Lower  risk  of  explora9on   –  Rapid  itera9on   –  Know  sooner  what  works   –  Externalizes  high  risk  •  Capacity  building   –  Iden9fy  new  exper9se  needed   –  Enhance  exis9ng  exper9se   –  Leverage  the  Stanford  network   at S T A N F O R D U N I V E R S I T Y
  14. 14. Analysis  of  EIT  ICT  Labs:  Trento  included  as  the  sixth  node,  more  ci9es  connected  to  coloca9on  centers,  updated  data  and  transforma9on  in  place    S9ll,  Huhtamäki,  Russell,  Rubens  (2012).  Transforming  InnovaPon  Ecosystems  Through  Network  OrchestraPon:  Case  EIT  ICT  Labs  
  15. 15. Adding  San   Francisco  Bay   Area  as  “the   seventh  EIT  ICT   Labs  node”  for   contrast,   interconnec9ons,   comparison  and   benchmark  S9ll,  Huhtamäki,  Russell,  Rubens  (2012).  Transforming  InnovaPon  Ecosystems  Through  Network  OrchestraPon:  Case  EIT  ICT  Labs  
  16. 16. CLICK  TO  PUBLISH  Rela?onship  Networks  Reveal  Compe?ng  Fac?ons  and  Shared  Visions     in  the  Publishing  Industry   RelaEonship  Network     analysis  can  show:   We  see:   •  The  structure  and   Dynamic  innovaEon     coherence  of  compeEng   •  University  parEcipaEon facEons   •  Eager  investors   •  Emergence  of  shared   Many  related  sectors   visions  and  value   •  Digital  media,  Saas   proposiEons   •  Social  media,  mobile   •  Indicators  of  industry   •  eBooks   evoluEon,  signaling   Many  geographic  areas   transiEon  from   •  NY,  SF,  LA,  London   ‘emerging’  to  ‘growth’     stage     What  this  means  is:   •  RelaEonships  are   pipelines  for  talent,   informaEon  and  financial   resources.   •  Value  chains  are  co-­‐ created  through   relaEonships.   SIPX, Inc.InnovaEon  Ecosystem  VisualizaEon  and  Analysis:  A  Study  of  the  Emerging  Publish-­‐on-­‐Demand  Industry  Martha  G  Russell,  Stanford  University;  Neil  Rubens,  University  of  Electro-­‐Communica9on;  Rahul  C.  Basole,  Georgia  Ins9tute  of  Technology;  Jukka  Huhtämaki,  Tampere  University  of  Technology,    Tim  McCormick,  Palo  Alto,  CA;  Russell  Thomas,  George  Mason  University;  Kaisa  S9ll,  VTT;  and  Jiafeng  Yu,  Shanghai,  CA        
  17. 17. Personalized  Data  Will  Include  Context  and  Social  Intelligence   Exponen9al  Augmenta9on  of  Human  Poten9al   at S T A N F O R D U N I V E R S I T Y EducaEon  -­‐  -­‐  -­‐  Business  -­‐  -­‐  -­‐  Entertainment   Context,  Content  and  Control  for  Personalized  Data   17  
  18. 18. Total Engagement at Work and Play at S T A N F O R D U N I V E R S I T YGamification - Empowering Self-organizing organizations - Time to Autonomy –
  19. 19. Multi-tasking Data – Integration - Semantics •  Personal Area Networks: New Rules, New Metrics •  Semantic and functional integration across –  TV –  Computer –  Phone –  Home –  Car •  From clouds to the edge •  Ambient and intelligent •  Personalized •  Privacy-controlled •  Fluid media –  With many IP issues and measurement challenges at S T A N F O R D U N I V E R S I T YRussell, M.G. 2009 A Call for New Metrics for New Media,http://jiad.org/article117
  20. 20. On  the  Horizon:  Transparency,  Iden9ty  &  Persuasion  
  21. 21. Semantic Integration Technologies •  Sensors •  Mobile devicesOn the Horizon: The Intelligent Coach for Health and Well-being
  22. 22. Digital Footprints When People Become the Content of Media Interact with Your Digital SelfInfinite Reality Emotional Interfaces Social Affordances
  23. 23. Quantified Self On the Horizon: The Quantified Self
  24. 24. Skill  of  the  Future  =    Network  Orchestra9on   25
  25. 25. Shared Vision Transforms Iterative Impact Alignment Co-Create Value Shared   Vision   Transforma9on   Event Coalition Interact & FeedbackMartha G. Russell, Kaisa Still, Jukka Huhtamaki, and Neil Rubens, “Transforming innovation ecosystems through shared visionand network orchestration,” Triple Helix IX Conference, Stanford University, July 13, 2011.
  26. 26. What Can We Do Together That Neither of Us Could Do Alone? at S T A N F O R D U N I V E R S I T Y Thank You Martha.Russell@stanford.edu www.innovation-ecosystems.org http://mediax.stanford.edu•  Innovation Ecosystems Require Network Orchestration –  Know –  Cultivate –  Orchestrate

×