Entity identification and extraction
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
806
On Slideshare
619
From Embeds
187
Number of Embeds
1

Actions

Shares
Downloads
14
Comments
0
Likes
0

Embeds 187

http://wiki.knoesis.org 187

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. ENTITYIDENTIFICATION AND CLASSIFICATION
  • 2. MOTIVATION :
  • 3. Automated Entity Identification and ExtractionOBJECTIVE : Entities
  • 4. PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX owl: <http://www.w3.org/2002/07/owl#> SELECT ?class WHERE { ?class rdfs:subClassOf owl:Thing . ?person rdf:type ?class . ?person <http://www.w3.org/2000/01/rdf-schema#label> "Anna"@en. }APPROACH : http://dbpedia.org/ontology/Stadium http://dbpedia.org/ontology/Bacteria http://dbpedia.org/ontology/Company http://dbpedia.org/ontology/GridironFootballPlayer http://dbpedia.org/ontology/Animal http://dbpedia.org/ontology/PersonFunction http://dbpedia.org/ontology/Athlete http://dbpedia.org/ontology/School http://dbpedia.org/ontology/Governor http://dbpedia.org/ontology/Monarch http://dbpedia.org/ontology/Software http://dbpedia.org/ontology/ComicsCreator
  • 5. APPROACH : <dbpedia>http://dbpedia.org/resource/India</dbpedia> <ciaFactbook>http://www4.wiwiss.fu- berlin.de/factbook/resource/India</ciaFactbook> <freebase>http://rdf.freebase.com/ns/guid.9202a8c04000641f8000000000 01de20</freebase> <umbel>http://umbel.org/umbel/ne/wikipedia/India</umbel> <opencyc>http://sw.opencyc.org/concept/Mx4rvVj7XJwpEbGdrcN5Y29ycA </opencyc> <yago>http://mpii.de/yago/resource/India</yago>
  • 6. MAJOR STEPS :
  • 7. DBPedia Query:ARCHITECTURE : Pre- Parsing processing NOUN DB TWEETS PHRASES Frequency DBPedia Endpoint CANDIDATE SET
  • 8. Alchemy API : Pre-ARCHITECTURE : Query processing ALCHEMY API DB TWEETS type relevance name count CANDIDATE XML SET PARSER
  • 9. RESULT ANALYSIS : PROBLEMS
  • 10. India Corruption Royal WeddingRESULT ANALYSIS :
  • 11. RESULT ANALYSIS : PROBLEMS
  • 12. DBPEDIARESULT ANALYSIS : “Anna Hazare” “Anna”
  • 13. RESULT ANALYSIS : ALCHEMY API
  • 14. RESULT ANALYSIS : ALCHEMY API
  • 15. RESULT ANALYSIS :
  • 16. ALCHEMY API PROBLEMS:RESULT ANALYSIS :
  • 17. ALCHEMY API PROBLEMS:RESULT ANALYSIS :
  • 18. ALCHEMY API PROBLEMS:RESULT ANALYSIS :
  • 19. ALCHEMY API PROBLEMS:RESULT ANALYSIS :
  • 20. NOUN-PHRASES:DBPEDIA RESULTS:
  • 21. ALCHEMY API RESULT:
  • 22. WIKIPEDIA-BASED:
  • 23. WIKIPEDIA-BASED:
  • 24. String Similarity Measures:
  • 25. String Similarity Measures:
  • 26. STRING SIMILARITY:
  • 27. RESULTS:Sorted list Final list ofof entities entities obtained
  • 28. For the list of Noun-Phrases as the candidate set:EVALUATION:
  • 29. For the DBPedia-obtained candidate set:EVALUATION:
  • 30. For the Alchemy-API obtained candidate set:EVALUATION:
  • 31. WHAT ELSE :
  • 32. WHAT MORE TO DO : Relation between Entities
  • 33. LIMITATIONS :