ENTITYIDENTIFICATION AND  CLASSIFICATION
MOTIVATION :
Automated Entity Identification and              ExtractionOBJECTIVE :                                               Entit...
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>               PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema...
APPROACH :             <dbpedia>http://dbpedia.org/resource/India</dbpedia>              <ciaFactbook>http://www4.wiwiss.f...
MAJOR STEPS :
DBPedia Query:ARCHITECTURE :                           Pre-                                                  Parsing      ...
Alchemy API :                           Pre-ARCHITECTURE :                                                 Query          ...
RESULT ANALYSIS :                PROBLEMS
India Corruption   Royal WeddingRESULT ANALYSIS :
RESULT ANALYSIS :               PROBLEMS
DBPEDIARESULT ANALYSIS :                               “Anna                              Hazare”                         ...
RESULT ANALYSIS :   ALCHEMY API
RESULT ANALYSIS :   ALCHEMY API
RESULT ANALYSIS :
ALCHEMY API PROBLEMS:RESULT ANALYSIS :
ALCHEMY API PROBLEMS:RESULT ANALYSIS :
ALCHEMY API PROBLEMS:RESULT ANALYSIS :
ALCHEMY API PROBLEMS:RESULT ANALYSIS :
NOUN-PHRASES:DBPEDIA RESULTS:
ALCHEMY API RESULT:
WIKIPEDIA-BASED:
WIKIPEDIA-BASED:
String Similarity Measures:
String Similarity Measures:
STRING SIMILARITY:
RESULTS:Sorted list   Final list ofof entities   entities obtained
For the list of Noun-Phrases as              the candidate set:EVALUATION:
For the DBPedia-obtained              candidate set:EVALUATION:
For the Alchemy-API obtained              candidate set:EVALUATION:
WHAT ELSE :
WHAT MORE TO DO :                    Relation between Entities
LIMITATIONS :
Entity identification and extraction
Upcoming SlideShare
Loading in...5
×

Entity identification and extraction

674

Published on

Research project

Published in: Education, Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
674
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
15
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Entity identification and extraction

  1. 1. ENTITYIDENTIFICATION AND CLASSIFICATION
  2. 2. MOTIVATION :
  3. 3. Automated Entity Identification and ExtractionOBJECTIVE : Entities
  4. 4. PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX owl: <http://www.w3.org/2002/07/owl#> SELECT ?class WHERE { ?class rdfs:subClassOf owl:Thing . ?person rdf:type ?class . ?person <http://www.w3.org/2000/01/rdf-schema#label> "Anna"@en. }APPROACH : http://dbpedia.org/ontology/Stadium http://dbpedia.org/ontology/Bacteria http://dbpedia.org/ontology/Company http://dbpedia.org/ontology/GridironFootballPlayer http://dbpedia.org/ontology/Animal http://dbpedia.org/ontology/PersonFunction http://dbpedia.org/ontology/Athlete http://dbpedia.org/ontology/School http://dbpedia.org/ontology/Governor http://dbpedia.org/ontology/Monarch http://dbpedia.org/ontology/Software http://dbpedia.org/ontology/ComicsCreator
  5. 5. APPROACH : <dbpedia>http://dbpedia.org/resource/India</dbpedia> <ciaFactbook>http://www4.wiwiss.fu- berlin.de/factbook/resource/India</ciaFactbook> <freebase>http://rdf.freebase.com/ns/guid.9202a8c04000641f8000000000 01de20</freebase> <umbel>http://umbel.org/umbel/ne/wikipedia/India</umbel> <opencyc>http://sw.opencyc.org/concept/Mx4rvVj7XJwpEbGdrcN5Y29ycA </opencyc> <yago>http://mpii.de/yago/resource/India</yago>
  6. 6. MAJOR STEPS :
  7. 7. DBPedia Query:ARCHITECTURE : Pre- Parsing processing NOUN DB TWEETS PHRASES Frequency DBPedia Endpoint CANDIDATE SET
  8. 8. Alchemy API : Pre-ARCHITECTURE : Query processing ALCHEMY API DB TWEETS type relevance name count CANDIDATE XML SET PARSER
  9. 9. RESULT ANALYSIS : PROBLEMS
  10. 10. India Corruption Royal WeddingRESULT ANALYSIS :
  11. 11. RESULT ANALYSIS : PROBLEMS
  12. 12. DBPEDIARESULT ANALYSIS : “Anna Hazare” “Anna”
  13. 13. RESULT ANALYSIS : ALCHEMY API
  14. 14. RESULT ANALYSIS : ALCHEMY API
  15. 15. RESULT ANALYSIS :
  16. 16. ALCHEMY API PROBLEMS:RESULT ANALYSIS :
  17. 17. ALCHEMY API PROBLEMS:RESULT ANALYSIS :
  18. 18. ALCHEMY API PROBLEMS:RESULT ANALYSIS :
  19. 19. ALCHEMY API PROBLEMS:RESULT ANALYSIS :
  20. 20. NOUN-PHRASES:DBPEDIA RESULTS:
  21. 21. ALCHEMY API RESULT:
  22. 22. WIKIPEDIA-BASED:
  23. 23. WIKIPEDIA-BASED:
  24. 24. String Similarity Measures:
  25. 25. String Similarity Measures:
  26. 26. STRING SIMILARITY:
  27. 27. RESULTS:Sorted list Final list ofof entities entities obtained
  28. 28. For the list of Noun-Phrases as the candidate set:EVALUATION:
  29. 29. For the DBPedia-obtained candidate set:EVALUATION:
  30. 30. For the Alchemy-API obtained candidate set:EVALUATION:
  31. 31. WHAT ELSE :
  32. 32. WHAT MORE TO DO : Relation between Entities
  33. 33. LIMITATIONS :
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×