Your SlideShare is downloading. ×
  • Like
Suma de riemann
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Now you can save presentations on your phone or tablet

Available for both IPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Suma de riemann

  • 3,190 views
Published

definicion de la suma de riemann

definicion de la suma de riemann

Published in Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
3,190
On SlideShare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
15
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Suma de Riemann<br />De Wiki Matemática<br /> Es aquella sumatoria en la cual se hacen varias subdivisiones del área bajo la curva y se van calculando las partes de una función por medio de rectángulos con base en un incremento en el eje X, ya que la suma de toda las áreas de los rectángulos va ser el área total. Dicha área es conocida como la suma de Riemann <br />Dada f(x) en el intervalo [a,b] para encontrar el área bajo la curva: Dividimos la región "S" en franjas de anchos iguales. El ancho de cada franja es: <br />Teniendo los intervalos: <br />La ecuación para la suma de Riemann es la siguiente: <br />donde haciendo de esta como un promedio entre la suma superior e inferior de Darboux. <br />Para esta suma es importante saber las siguientes identidades: <br />Sabiendo que: <br />Podemos obtener las siguientes igualdades: <br />473801-3810<br />(Donde C es constante) <br />Ejemplo # 1<br />Evaluando la suma de Riemann en cuatro sub intervalos tomando los puntos de la derecha de la siguiente función: <br />, límites <br />La suma de Riemann representa la suma de las áreas sobre el eje, menos la suma de las areas debajo del eje; esa es el área neta de los rectángulos respecto al eje. <br />