SlideShare a Scribd company logo
1 of 24
Download to read offline
DEFINICIONES BÁSICAS
SISTEMAS NUMÉRICOS
PROFESOR: MOLINA JUAN
INTEGRANTES:
ARROYO JESUS CI 25143483
DORANTE JORGE CI 22309093
RODRÍGUEZ ORESTE CI 22333012
VEGAS MARIA CI 23814971
YEPEZ JORGEANA CI 21054318
MATERIA: CIRCUITOS DIGITALES
SISTEMA DE NUMERICOS
Se le llama sistema de numeración a un conjunto de símbolos y reglas que
son utilizan para la representación de datos numéricos y cantidades. Estos
se caracterizan por su base. Cuando hablamos de base nos referimos al
número de símbolos distintos que un sistema numérico utiliza, aparte es el
coeficiente el cual determina el valor de cada símbolo dependiendo de la
posición que este ocupe. Ejemplos de sistemas numéricos: Decimal,
binario, octal, hexadecimal.
SISTEMA DECIMAL
 El hombre, desde sus inicios ha tenido la necesidad que conocer y
cuantificar las cosas que los rodea, este ha utilizado el sistema
numérico decimal el cual está basado en diez símbolos (0, 1, 2, 3, 4,
5, 6, 7, 8, 9), que, al combinarlos, permiten representar las
cantidades imaginadas; es por esto que se dice que utiliza la base
10. El sistema decimal se derivó del sistema indoarábigo el cual son
los símbolos más utilizados para representar números, introducidos
por árabes en Europa, aunque, en realidad, su invención surgió en
la India.
EJEMPLOS DE APLICACIÓN:
 Una de las aplicaciones que se encuentra en nuestra cotidianidad es la
representación de números decimales en nuestro sistema de
nacionalidad o C.I como venezolano la cual actualmente se encuentra
alrededor de los treinta millones. Ejemplo: 22333012.
 Al momento de calificar a los alumnos de la Universidad Fermín Toro su
nota final está representada por un sistema decimal que va entre
cincuenta (50) o cien (100). dependiendo la materia a cursar. Ejemplo:
76 pts.
 Igualmente los teléfonos móviles (celulares) o teléfonos fijos poseen
un sistema numérico único para cada línea y así poderlos identificar,
por ejemplo: 02517100167.
 Entre sus aplicaciones en circuitos digitales se encuentra el valor en
los que se encuentran los componentes representados por ejemplos:
un capacitor de 100 µF, una bobina de 15H, una resistencia de
4500Ω. Todos estos están expresados en una enumeración decimal.
CARACTERÍSTICAS:
 Su unión o combinaciones se encuentra en un rango estrictamente
limitado de 10 símbolos los cuales son: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9).
 Su base es 10.
 Es un sistema posicional. Los dígitos adquieren su valor de acuerdo
a la posición relativa que ocupan.
VENTAJAS
 Puede utilizarse para la identificación y conteo sencillos y
concisos de cosas.
 Combinaciones infinitas dentro de su rango de diez
símbolos.
 Históricamente el sistema de numero decimal ha sido el
que ha prevalecido a los otros sistemas debido a su alto
nivel de interpretación y comprensión.
DESVENTAJAS
 Al no poseer caracteres alfabéticos y especiales (código ascii) este
se encuentra limitado a solo realizar combinaciones entre sus 10
símbolos anteriormente mencionados.
 El sistema numero decimal no se presta para una implementación
conveniente en los sistemas digitales. Por ejemplo, es muy difícil
diseñar equipos electrónicos de manera que pueda trabajar con 10
niveles de voltajes distintos.
 En informática es necesario hacer determinadas conversiones de
decimal: octal, binaria, hexadecimal; para así obtener una
operatividad deseada.
SISTEMA BINARIO
 Sistema de numeración en el que los números se
representan únicamente usando dos cifras las cuales son
cero (0) y uno (1). Cada digito (cifra binaria) varía su valor
dependiendo la posición de ubicación de este. El valor de
cada posición es el de una potencia de base 2.
Ejemplo:
El número binario 1011 tiene un valor que se
calcula así:
1*23 + 0*22 + 1*21 + 1*20 , es decir:
8 + 0 + 2 + 1 = 11
EJEMPLOS DE APLICACIÓN
En informática el código binario es utilizado con múltiples métodos para la
codificación de datos, como por ejemplo las cadenas de bits. Un ejemplo
es un CD, las señales que refleja el láser al rebotar en la superficie del CD
son detectadas por un sensor indicando así, si es un cero o un uno. Este
sistema es el utilizado por los computadores para almacenar todo tipo de
información como imágenes, textos, juegos, programas. De igual manera
se puede usar este sistema para hacer que un determinado circuito
funcione o indique si se han cumplido ciertas condiciones.
CARACTERÍSTICAS
 El sistema de numeración binario únicamente consta de dos dígitos. Estos
dígitos binarios (bits) son 0 y 1.
 La posición de un 1 o de un 0 en un número binario indica su valor dentro
del número.
 La distancia entre dos combinaciones es el número de bits que cambian
de una a otra un ejemplo de esto es “si se tienen las combinaciones de
cuatro bits 0010 y 0111 correspondientes al 2 y al 7 en binario natural” se
dirá que la distancia entre ellas es igual a dos ya que de una a otra
cambian dos bits.
 La característica de la adyacencia quiere decir que de una combinación
binaria a la siguiente sólo varía un bit. Esta propiedad se le aplica
solamente a las combinaciones binarias de un código, no al código en sí
mismo.
VENTAJAS
 Este sistema es de suma importancia para la computación, en un
dispositivo es más fácil discernir entre dos estados (0 y 1) que entre
varios (0,1,2,3 ...).
 Gracias a métodos matemáticos se pueden detectar fallos al
momento de transmitir la información.
 Con métodos matemáticos se pueden corregir fallos al momento de
transmitir la información.
 Posee múltiples ventajas en la realización de operaciones aritméticas.
DESVENTAJAS
 Con este sistema no se pueden representar fracciones.
 Es mucho mas largas las representaciones que en otros sistema
como el decimal.
 Este sistema no es el utilizado cotidianamente por los seres humanos
por lo tanto se le hace mas complicado utilizarlo eficazmente.
SISTEMA OCTAL
Es un Sistema de Numeración que sólo utiliza 8 dígitos los
cuales son “0, 1, 2, 3, 4, 5, 6, 7”.
El sistema de numeración octal es muy usado en la
computación debido a que la conversión a binario o
viceversa sea bastante simple.
CARACTERÍSTICAS
 Este sistema no consta con los 8 y 9 y una vez que se llega a la cuenta
7 se pasa a 10. tienen el mismo valor que en el sistema de numeración
decimal.
 Por tener una base que es potencia exacta de 2 o de la numeración
binaria. Esta característica hace que la conversión a binario o
viceversa sea bastante simple.
 Esta compuesto por 8 dígitos los cuales son 0,1,2,3,4,5,6,7.
APLICACIONES
 El sistema de numeración octal es muy usado en la computación
por tener una base que es potencia exacta de 2 o de la
numeración binaria.
 En informática, algunas veces se utiliza la numeración octal en vez
de la hexadecimal. Ya que esta tiene la ventaja de que no requiere
utilizar otros símbolos diferentes de los dígitos.
 Es posible que la numeración octal se usara en el pasado en el
lugar del decimal, por ejemplo, para contar los espacios
interdigitales o los dedos distintos de los pulgares.
VENTAJAS
 La numeración octal es tan buena como la binaria y la
hexadecimal para operar con fracciones, puesto que el único
factor primo para sus bases es 2.
 No requiere utilizar otros símbolos diferentes de los dígitos.
 Es usado en la computación por tener una base que es potencia
exacta de 2 o de la numeración binaria, lo que lo hace atractiva
para la abreviatura de la de números binarios grandes.
DESVENTAJAS
 Esta limitado a una cantidad de siete símbolos que van del 0 al 7.
 En informática para trabajar con bytes o conjuntos de ellos,
asumiendo que un byte es una palabra de 8 bits, suele ser más
cómodo el sistema hexadecimal.
 No se utiliza en la cotidianidad para expresar cantidad debido a su
ineficiencia de no poseer los números 8 y 9 y debido a su nivel de
interpretación y comprensión.
SISTEMA HEXADECIMAL
Es un sistema de base 16 el cual consta de 16 números los cuales son
“0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F”. Igual que en el sistema decimal, cada vez
que teníamos 10 unidades de un determinado nivel, obteníamos una unidad
del nivel superior (diez unidades: una decena, diez decenas: una centena,
etc.) en el hexadecimal cada vez que juntamos 16 unidades de un nivel
obtenemos una unidad del nivel superior. En un sistema hexadecimal debe
haber por tanto 16 dígitos distintos.
EJEMPLOS DE APLICACIÓN
 Se usa con la finalidad: ofrecer un medio eficaz de representación
de números binarios grandes.
 Este sistema de numeración es muy utilizado en informática porque
simplifica la expresión binaria de los objetos. Los computadores
suelen utilizar el byte u octeto como unidad básica de memoria; y,
debido a que un byte representa 28 valores posibles, y esto puede
representarse como, que, según el teorema general de la
numeración posicional, equivale al número en base 16 10016, dos
dígitos hexadecimales corresponden exactamente —permiten
representar la misma línea de enteros— a un byte.
 El sistema hexadecimal es muy importante en el manejo digital de los
colores.
 Los colores primarios son el verde, el rojo y el azul. Cualquier otro color es
mezcla de esos tres colores. Según la cantidad de cada color básico
obtenemos unos colores u otros.
 En el mundo audiovisual se utiliza el sistema RGB para codificar los colores
que se utilizan. El sistema RGB (Reed, Green, Blue) da información sobre la
intensidad de cada color básico para crear el color que nos interese. La
intensidad de un color varía desde 0 hasta 255, y para no escribir muchas
cifras se utiliza un sistema hexadecimal.
 De esa forma a cualquier color le corresponde un código de seis dígitos de
forma que los dos primeros corresponden a la intensidad de rojo, los dos
siguientes al de verde y los dos últimos al de azul.
VENTAJAS
 La ventaja del sistema hexadecimal es que para representar los mismos
valores sólo necesitamos 2 dígitos.
 Teniendo la ventaja de poder convertirse fácilmente al y del binario, y
ser los más compatibles con éste.
 Los números hexadecimales se utilizan a menudo en un sistema digital
como una manera ‘‘abreviada’’ de representar cadenas de bits.
DESVENTAJAS
 Es importante tener en cuenta que la utilidad del hexadecimal se ve
comprometida o limitada al ser aplicada en circuitos digitales ya que como
es bien sabido este trabaja solo en sistema binario.
 Los sistemas hexadecimales solo se utilizan como una conveniencia para los
humanos involucrados al hacer mejor trabajables la representación de bits.
 Al poseer un patrón binario hasta 4 bits distintos se encuentra limitado a
hacer operaciones solamente hasta 15 que equivale a una F.
GRACIAS POR SU
ATENCIÓN

More Related Content

What's hot

ARQUITECTURA DE UN MICROPROCESADOR
ARQUITECTURA DE UN MICROPROCESADORARQUITECTURA DE UN MICROPROCESADOR
ARQUITECTURA DE UN MICROPROCESADORRAFAEL HONORES VERA
 
Sistemas de numeracion diapositivas
Sistemas de numeracion diapositivasSistemas de numeracion diapositivas
Sistemas de numeracion diapositivasarianacastillo
 
APLICACION DEL CALCULO EN LA INFORMATICA
APLICACION DEL CALCULO EN LA INFORMATICAAPLICACION DEL CALCULO EN LA INFORMATICA
APLICACION DEL CALCULO EN LA INFORMATICAJoseph Mendoza
 
Presentacion sistemas numericos
Presentacion sistemas numericosPresentacion sistemas numericos
Presentacion sistemas numericosHenry Paz
 
EJERCICIOS DE ALGORITMOS
EJERCICIOS DE ALGORITMOSEJERCICIOS DE ALGORITMOS
EJERCICIOS DE ALGORITMOS1002pc3
 
Suma, resta y multiplicación de números binarios
Suma, resta y multiplicación de números binariosSuma, resta y multiplicación de números binarios
Suma, resta y multiplicación de números binariosDieguinmc
 
Diagrama de Flujos Ejemplos.
Diagrama de Flujos Ejemplos.Diagrama de Flujos Ejemplos.
Diagrama de Flujos Ejemplos.luismarlmg
 
Sistemas numericos conversiones
Sistemas numericos  conversionesSistemas numericos  conversiones
Sistemas numericos conversionesSuperodi
 
Conclusiones y bibiografias
Conclusiones y bibiografiasConclusiones y bibiografias
Conclusiones y bibiografiaskleidermanch1989
 
Sistemas numericos y de conversion
Sistemas numericos y de conversionSistemas numericos y de conversion
Sistemas numericos y de conversionNadiaCerrud
 
Ejercicio 1 diagrama de flujo
Ejercicio 1 diagrama de flujoEjercicio 1 diagrama de flujo
Ejercicio 1 diagrama de flujolisvancelis
 
PARADIGMA IMPERATIVO
PARADIGMA IMPERATIVOPARADIGMA IMPERATIVO
PARADIGMA IMPERATIVOFredy Olaya
 
Mapa conceptual de algoritmos
Mapa conceptual de algoritmosMapa conceptual de algoritmos
Mapa conceptual de algoritmosFany Duque
 
Mapa conceptual sistemas_ numericos_141160119
Mapa conceptual sistemas_ numericos_141160119Mapa conceptual sistemas_ numericos_141160119
Mapa conceptual sistemas_ numericos_141160119ITP
 
Algoritmos Tiposde datos
Algoritmos Tiposde datos Algoritmos Tiposde datos
Algoritmos Tiposde datos bakura4
 
Matemáticas Discretas - Unidad 1 Sistemas numericos
Matemáticas Discretas - Unidad 1 Sistemas numericosMatemáticas Discretas - Unidad 1 Sistemas numericos
Matemáticas Discretas - Unidad 1 Sistemas numericosJosé Antonio Sandoval Acosta
 
Suma, resta y multiplicacion de numeros binarios
Suma, resta y multiplicacion de numeros binariosSuma, resta y multiplicacion de numeros binarios
Suma, resta y multiplicacion de numeros binariosMadeleyne Santos Rivas
 
Ecuaciones lineales
Ecuaciones linealesEcuaciones lineales
Ecuaciones linealesa12lma
 

What's hot (20)

ARQUITECTURA DE UN MICROPROCESADOR
ARQUITECTURA DE UN MICROPROCESADORARQUITECTURA DE UN MICROPROCESADOR
ARQUITECTURA DE UN MICROPROCESADOR
 
Sistemas de numeracion diapositivas
Sistemas de numeracion diapositivasSistemas de numeracion diapositivas
Sistemas de numeracion diapositivas
 
APLICACION DEL CALCULO EN LA INFORMATICA
APLICACION DEL CALCULO EN LA INFORMATICAAPLICACION DEL CALCULO EN LA INFORMATICA
APLICACION DEL CALCULO EN LA INFORMATICA
 
Presentacion sistemas numericos
Presentacion sistemas numericosPresentacion sistemas numericos
Presentacion sistemas numericos
 
EJERCICIOS DE ALGORITMOS
EJERCICIOS DE ALGORITMOSEJERCICIOS DE ALGORITMOS
EJERCICIOS DE ALGORITMOS
 
Suma, resta y multiplicación de números binarios
Suma, resta y multiplicación de números binariosSuma, resta y multiplicación de números binarios
Suma, resta y multiplicación de números binarios
 
Diagrama de Flujos Ejemplos.
Diagrama de Flujos Ejemplos.Diagrama de Flujos Ejemplos.
Diagrama de Flujos Ejemplos.
 
Sistemas numericos conversiones
Sistemas numericos  conversionesSistemas numericos  conversiones
Sistemas numericos conversiones
 
Conclusiones y bibiografias
Conclusiones y bibiografiasConclusiones y bibiografias
Conclusiones y bibiografias
 
Sistemas numericos y de conversion
Sistemas numericos y de conversionSistemas numericos y de conversion
Sistemas numericos y de conversion
 
Ejercicio 1 diagrama de flujo
Ejercicio 1 diagrama de flujoEjercicio 1 diagrama de flujo
Ejercicio 1 diagrama de flujo
 
ALGORITMO RESUELTOS EN PSEINT
ALGORITMO RESUELTOS EN PSEINTALGORITMO RESUELTOS EN PSEINT
ALGORITMO RESUELTOS EN PSEINT
 
PARADIGMA IMPERATIVO
PARADIGMA IMPERATIVOPARADIGMA IMPERATIVO
PARADIGMA IMPERATIVO
 
Mapa conceptual de algoritmos
Mapa conceptual de algoritmosMapa conceptual de algoritmos
Mapa conceptual de algoritmos
 
Mapa conceptual sistemas_ numericos_141160119
Mapa conceptual sistemas_ numericos_141160119Mapa conceptual sistemas_ numericos_141160119
Mapa conceptual sistemas_ numericos_141160119
 
Algoritmos Tiposde datos
Algoritmos Tiposde datos Algoritmos Tiposde datos
Algoritmos Tiposde datos
 
Matemáticas Discretas - Unidad 1 Sistemas numericos
Matemáticas Discretas - Unidad 1 Sistemas numericosMatemáticas Discretas - Unidad 1 Sistemas numericos
Matemáticas Discretas - Unidad 1 Sistemas numericos
 
Suma, resta y multiplicacion de numeros binarios
Suma, resta y multiplicacion de numeros binariosSuma, resta y multiplicacion de numeros binarios
Suma, resta y multiplicacion de numeros binarios
 
Ecuaciones lineales
Ecuaciones linealesEcuaciones lineales
Ecuaciones lineales
 
Funciones del Procesador
Funciones del ProcesadorFunciones del Procesador
Funciones del Procesador
 

Similar to definiciones sistema numericos

Análisis sistemas númericos y de conversión.pptx
Análisis sistemas númericos y de conversión.pptxAnálisis sistemas númericos y de conversión.pptx
Análisis sistemas númericos y de conversión.pptxYarielisCarvajal
 
Sistemas y codigos numericos.
Sistemas y codigos numericos.Sistemas y codigos numericos.
Sistemas y codigos numericos.Sthefany Leon
 
sistemas y codigos numericos.
sistemas y codigos numericos.sistemas y codigos numericos.
sistemas y codigos numericos.Alexis Martinez
 
Laboratorio 4_Alan Castillo
Laboratorio 4_Alan Castillo Laboratorio 4_Alan Castillo
Laboratorio 4_Alan Castillo AlanCastillo98
 
Asignacion 3 d informatica
Asignacion 3 d informaticaAsignacion 3 d informatica
Asignacion 3 d informaticatracycedeno
 
Asignación 3 de informática
Asignación 3 de  informáticaAsignación 3 de  informática
Asignación 3 de informática47771886
 
Brito villarroel
Brito villarroelBrito villarroel
Brito villarroelbritojose20
 
SISTEMAS DE NUMERACION-2022 (1).pptx
SISTEMAS DE NUMERACION-2022 (1).pptxSISTEMAS DE NUMERACION-2022 (1).pptx
SISTEMAS DE NUMERACION-2022 (1).pptxYorlandsLealMendoza
 
Matematicas Leslie Mediavilla
Matematicas Leslie MediavillaMatematicas Leslie Mediavilla
Matematicas Leslie MediavillaLeslieMediavilla
 
Sistemas Numericos TIC.pptx
Sistemas Numericos TIC.pptxSistemas Numericos TIC.pptx
Sistemas Numericos TIC.pptxJohny Medina
 
Sistemas numéricos conversiones
Sistemas numéricos   conversionesSistemas numéricos   conversiones
Sistemas numéricos conversionesjavierpinzon16
 

Similar to definiciones sistema numericos (20)

Análisis sistemas númericos y de conversión.pptx
Análisis sistemas númericos y de conversión.pptxAnálisis sistemas númericos y de conversión.pptx
Análisis sistemas númericos y de conversión.pptx
 
Sistemas y codigos numericos.
Sistemas y codigos numericos.Sistemas y codigos numericos.
Sistemas y codigos numericos.
 
sistemas y codigos numericos.
sistemas y codigos numericos.sistemas y codigos numericos.
sistemas y codigos numericos.
 
Actividad 3
Actividad 3Actividad 3
Actividad 3
 
Sistemas numéricos
Sistemas numéricosSistemas numéricos
Sistemas numéricos
 
Pia grupo 11 equipo 3
Pia grupo 11 equipo 3Pia grupo 11 equipo 3
Pia grupo 11 equipo 3
 
Laboratorio 4_Alan Castillo
Laboratorio 4_Alan Castillo Laboratorio 4_Alan Castillo
Laboratorio 4_Alan Castillo
 
Sistemas numericos mari
Sistemas numericos mariSistemas numericos mari
Sistemas numericos mari
 
Algebrabooleana
AlgebrabooleanaAlgebrabooleana
Algebrabooleana
 
Sistemas Numericos
Sistemas NumericosSistemas Numericos
Sistemas Numericos
 
Asignacion 3 d informatica
Asignacion 3 d informaticaAsignacion 3 d informatica
Asignacion 3 d informatica
 
Asignación 3 de informática
Asignación 3 de  informáticaAsignación 3 de  informática
Asignación 3 de informática
 
Brito villarroel
Brito villarroelBrito villarroel
Brito villarroel
 
SISTEMAS DE NUMERACION-2022 (1).pptx
SISTEMAS DE NUMERACION-2022 (1).pptxSISTEMAS DE NUMERACION-2022 (1).pptx
SISTEMAS DE NUMERACION-2022 (1).pptx
 
Matematicas Leslie Mediavilla
Matematicas Leslie MediavillaMatematicas Leslie Mediavilla
Matematicas Leslie Mediavilla
 
Sistemas Numericos TIC.pptx
Sistemas Numericos TIC.pptxSistemas Numericos TIC.pptx
Sistemas Numericos TIC.pptx
 
Taller 2 erika andrade veronica
Taller 2 erika andrade   veronicaTaller 2 erika andrade   veronica
Taller 2 erika andrade veronica
 
Taller 2 erika andrade veronica
Taller 2 erika andrade   veronicaTaller 2 erika andrade   veronica
Taller 2 erika andrade veronica
 
Representacion de la información
Representacion de la informaciónRepresentacion de la información
Representacion de la información
 
Sistemas numéricos conversiones
Sistemas numéricos   conversionesSistemas numéricos   conversiones
Sistemas numéricos conversiones
 

Recently uploaded

PERFORACIÓN Y VOLADURA EN MINERÍA APLICADO
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADOPERFORACIÓN Y VOLADURA EN MINERÍA APLICADO
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADOFritz Rebaza Latoche
 
Ejemplos de cadenas de Markov - Ejercicios
Ejemplos de cadenas de Markov - EjerciciosEjemplos de cadenas de Markov - Ejercicios
Ejemplos de cadenas de Markov - EjerciciosMARGARITAMARIAFERNAN1
 
Practica PLC MIcrologix 1400 con pantalla HMI y servomotor
Practica PLC MIcrologix 1400 con pantalla HMI y servomotorPractica PLC MIcrologix 1400 con pantalla HMI y servomotor
Practica PLC MIcrologix 1400 con pantalla HMI y servomotorkavowog624
 
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...GuillermoRodriguez239462
 
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
01 MATERIALES AERONAUTICOS VARIOS clase 1.pptoscarvielma45
 
introducción a las comunicaciones satelitales
introducción a las comunicaciones satelitalesintroducción a las comunicaciones satelitales
introducción a las comunicaciones satelitalesgovovo2388
 
Tinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiologíaTinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiologíaAlexanderimanolLencr
 
Gestion de proyectos para el control y seguimiento
Gestion de proyectos para el control  y seguimientoGestion de proyectos para el control  y seguimiento
Gestion de proyectos para el control y seguimientoMaxanMonplesi
 
CALCULO SISTEMA DE PUESTA A TIERRA PARA BAJA TENSION Y MEDIA TENSION
CALCULO SISTEMA DE PUESTA A TIERRA PARA BAJA TENSION Y MEDIA TENSIONCALCULO SISTEMA DE PUESTA A TIERRA PARA BAJA TENSION Y MEDIA TENSION
CALCULO SISTEMA DE PUESTA A TIERRA PARA BAJA TENSION Y MEDIA TENSIONJuan Carlos Meza Molina
 
MODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdf
MODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdfMODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdf
MODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdfvladimirpaucarmontes
 
Sesion 6 _ Curso Integrador II_TSZVQJ.pdf
Sesion 6 _ Curso Integrador II_TSZVQJ.pdfSesion 6 _ Curso Integrador II_TSZVQJ.pdf
Sesion 6 _ Curso Integrador II_TSZVQJ.pdfOmarPadillaGarcia
 
Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...Dr. Edwin Hernandez
 
Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano
Estadística Anual y Multianual del Sector Eléctrico EcuatorianoEstadística Anual y Multianual del Sector Eléctrico Ecuatoriano
Estadística Anual y Multianual del Sector Eléctrico EcuatorianoEduardoBriones22
 
Six Sigma Process and the dmaic metodo process
Six Sigma Process and the dmaic metodo processSix Sigma Process and the dmaic metodo process
Six Sigma Process and the dmaic metodo processbarom
 
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZgustavoiashalom
 
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfReporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfMikkaelNicolae
 
4º Clase Laboratorio (2024) Completo Mezclas Asfalticas Caliente (1).pdf
4º Clase Laboratorio (2024) Completo Mezclas Asfalticas Caliente (1).pdf4º Clase Laboratorio (2024) Completo Mezclas Asfalticas Caliente (1).pdf
4º Clase Laboratorio (2024) Completo Mezclas Asfalticas Caliente (1).pdfnicolascastaneda8
 
TIPOS DE SOPORTES - CLASIFICACION IG.pdf
TIPOS DE SOPORTES - CLASIFICACION IG.pdfTIPOS DE SOPORTES - CLASIFICACION IG.pdf
TIPOS DE SOPORTES - CLASIFICACION IG.pdfssuser202b79
 
PRESENTACION NOM-009-STPS-TRABAJOS EN ALTURAS
PRESENTACION NOM-009-STPS-TRABAJOS EN ALTURASPRESENTACION NOM-009-STPS-TRABAJOS EN ALTURAS
PRESENTACION NOM-009-STPS-TRABAJOS EN ALTURASejcelisgiron
 
Aportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der RoheAportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der RoheElisaLen4
 

Recently uploaded (20)

PERFORACIÓN Y VOLADURA EN MINERÍA APLICADO
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADOPERFORACIÓN Y VOLADURA EN MINERÍA APLICADO
PERFORACIÓN Y VOLADURA EN MINERÍA APLICADO
 
Ejemplos de cadenas de Markov - Ejercicios
Ejemplos de cadenas de Markov - EjerciciosEjemplos de cadenas de Markov - Ejercicios
Ejemplos de cadenas de Markov - Ejercicios
 
Practica PLC MIcrologix 1400 con pantalla HMI y servomotor
Practica PLC MIcrologix 1400 con pantalla HMI y servomotorPractica PLC MIcrologix 1400 con pantalla HMI y servomotor
Practica PLC MIcrologix 1400 con pantalla HMI y servomotor
 
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
 
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
01 MATERIALES AERONAUTICOS VARIOS clase 1.ppt
 
introducción a las comunicaciones satelitales
introducción a las comunicaciones satelitalesintroducción a las comunicaciones satelitales
introducción a las comunicaciones satelitales
 
Tinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiologíaTinciones simples en el laboratorio de microbiología
Tinciones simples en el laboratorio de microbiología
 
Gestion de proyectos para el control y seguimiento
Gestion de proyectos para el control  y seguimientoGestion de proyectos para el control  y seguimiento
Gestion de proyectos para el control y seguimiento
 
CALCULO SISTEMA DE PUESTA A TIERRA PARA BAJA TENSION Y MEDIA TENSION
CALCULO SISTEMA DE PUESTA A TIERRA PARA BAJA TENSION Y MEDIA TENSIONCALCULO SISTEMA DE PUESTA A TIERRA PARA BAJA TENSION Y MEDIA TENSION
CALCULO SISTEMA DE PUESTA A TIERRA PARA BAJA TENSION Y MEDIA TENSION
 
MODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdf
MODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdfMODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdf
MODIFICADO - CAPITULO II DISEÑO SISMORRESISTENTE DE VIGAS Y COLUMNAS.pdf
 
Sesion 6 _ Curso Integrador II_TSZVQJ.pdf
Sesion 6 _ Curso Integrador II_TSZVQJ.pdfSesion 6 _ Curso Integrador II_TSZVQJ.pdf
Sesion 6 _ Curso Integrador II_TSZVQJ.pdf
 
Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...Propuesta para la creación de un Centro de Innovación para la Refundación ...
Propuesta para la creación de un Centro de Innovación para la Refundación ...
 
Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano
Estadística Anual y Multianual del Sector Eléctrico EcuatorianoEstadística Anual y Multianual del Sector Eléctrico Ecuatoriano
Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano
 
Six Sigma Process and the dmaic metodo process
Six Sigma Process and the dmaic metodo processSix Sigma Process and the dmaic metodo process
Six Sigma Process and the dmaic metodo process
 
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
ANALISIS Y DISEÑO POR VIENTO, DE EDIFICIOS ALTOS, SEGUN ASCE-2016, LAURA RAMIREZ
 
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdfReporte de simulación de flujo del agua en un volumen de control MNVA.pdf
Reporte de simulación de flujo del agua en un volumen de control MNVA.pdf
 
4º Clase Laboratorio (2024) Completo Mezclas Asfalticas Caliente (1).pdf
4º Clase Laboratorio (2024) Completo Mezclas Asfalticas Caliente (1).pdf4º Clase Laboratorio (2024) Completo Mezclas Asfalticas Caliente (1).pdf
4º Clase Laboratorio (2024) Completo Mezclas Asfalticas Caliente (1).pdf
 
TIPOS DE SOPORTES - CLASIFICACION IG.pdf
TIPOS DE SOPORTES - CLASIFICACION IG.pdfTIPOS DE SOPORTES - CLASIFICACION IG.pdf
TIPOS DE SOPORTES - CLASIFICACION IG.pdf
 
PRESENTACION NOM-009-STPS-TRABAJOS EN ALTURAS
PRESENTACION NOM-009-STPS-TRABAJOS EN ALTURASPRESENTACION NOM-009-STPS-TRABAJOS EN ALTURAS
PRESENTACION NOM-009-STPS-TRABAJOS EN ALTURAS
 
Aportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der RoheAportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
 

definiciones sistema numericos

  • 1. DEFINICIONES BÁSICAS SISTEMAS NUMÉRICOS PROFESOR: MOLINA JUAN INTEGRANTES: ARROYO JESUS CI 25143483 DORANTE JORGE CI 22309093 RODRÍGUEZ ORESTE CI 22333012 VEGAS MARIA CI 23814971 YEPEZ JORGEANA CI 21054318 MATERIA: CIRCUITOS DIGITALES
  • 2. SISTEMA DE NUMERICOS Se le llama sistema de numeración a un conjunto de símbolos y reglas que son utilizan para la representación de datos numéricos y cantidades. Estos se caracterizan por su base. Cuando hablamos de base nos referimos al número de símbolos distintos que un sistema numérico utiliza, aparte es el coeficiente el cual determina el valor de cada símbolo dependiendo de la posición que este ocupe. Ejemplos de sistemas numéricos: Decimal, binario, octal, hexadecimal.
  • 3. SISTEMA DECIMAL  El hombre, desde sus inicios ha tenido la necesidad que conocer y cuantificar las cosas que los rodea, este ha utilizado el sistema numérico decimal el cual está basado en diez símbolos (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), que, al combinarlos, permiten representar las cantidades imaginadas; es por esto que se dice que utiliza la base 10. El sistema decimal se derivó del sistema indoarábigo el cual son los símbolos más utilizados para representar números, introducidos por árabes en Europa, aunque, en realidad, su invención surgió en la India.
  • 4. EJEMPLOS DE APLICACIÓN:  Una de las aplicaciones que se encuentra en nuestra cotidianidad es la representación de números decimales en nuestro sistema de nacionalidad o C.I como venezolano la cual actualmente se encuentra alrededor de los treinta millones. Ejemplo: 22333012.  Al momento de calificar a los alumnos de la Universidad Fermín Toro su nota final está representada por un sistema decimal que va entre cincuenta (50) o cien (100). dependiendo la materia a cursar. Ejemplo: 76 pts.
  • 5.  Igualmente los teléfonos móviles (celulares) o teléfonos fijos poseen un sistema numérico único para cada línea y así poderlos identificar, por ejemplo: 02517100167.  Entre sus aplicaciones en circuitos digitales se encuentra el valor en los que se encuentran los componentes representados por ejemplos: un capacitor de 100 µF, una bobina de 15H, una resistencia de 4500Ω. Todos estos están expresados en una enumeración decimal.
  • 6. CARACTERÍSTICAS:  Su unión o combinaciones se encuentra en un rango estrictamente limitado de 10 símbolos los cuales son: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9).  Su base es 10.  Es un sistema posicional. Los dígitos adquieren su valor de acuerdo a la posición relativa que ocupan.
  • 7. VENTAJAS  Puede utilizarse para la identificación y conteo sencillos y concisos de cosas.  Combinaciones infinitas dentro de su rango de diez símbolos.  Históricamente el sistema de numero decimal ha sido el que ha prevalecido a los otros sistemas debido a su alto nivel de interpretación y comprensión.
  • 8. DESVENTAJAS  Al no poseer caracteres alfabéticos y especiales (código ascii) este se encuentra limitado a solo realizar combinaciones entre sus 10 símbolos anteriormente mencionados.  El sistema numero decimal no se presta para una implementación conveniente en los sistemas digitales. Por ejemplo, es muy difícil diseñar equipos electrónicos de manera que pueda trabajar con 10 niveles de voltajes distintos.  En informática es necesario hacer determinadas conversiones de decimal: octal, binaria, hexadecimal; para así obtener una operatividad deseada.
  • 9. SISTEMA BINARIO  Sistema de numeración en el que los números se representan únicamente usando dos cifras las cuales son cero (0) y uno (1). Cada digito (cifra binaria) varía su valor dependiendo la posición de ubicación de este. El valor de cada posición es el de una potencia de base 2. Ejemplo: El número binario 1011 tiene un valor que se calcula así: 1*23 + 0*22 + 1*21 + 1*20 , es decir: 8 + 0 + 2 + 1 = 11
  • 10. EJEMPLOS DE APLICACIÓN En informática el código binario es utilizado con múltiples métodos para la codificación de datos, como por ejemplo las cadenas de bits. Un ejemplo es un CD, las señales que refleja el láser al rebotar en la superficie del CD son detectadas por un sensor indicando así, si es un cero o un uno. Este sistema es el utilizado por los computadores para almacenar todo tipo de información como imágenes, textos, juegos, programas. De igual manera se puede usar este sistema para hacer que un determinado circuito funcione o indique si se han cumplido ciertas condiciones.
  • 11. CARACTERÍSTICAS  El sistema de numeración binario únicamente consta de dos dígitos. Estos dígitos binarios (bits) son 0 y 1.  La posición de un 1 o de un 0 en un número binario indica su valor dentro del número.  La distancia entre dos combinaciones es el número de bits que cambian de una a otra un ejemplo de esto es “si se tienen las combinaciones de cuatro bits 0010 y 0111 correspondientes al 2 y al 7 en binario natural” se dirá que la distancia entre ellas es igual a dos ya que de una a otra cambian dos bits.  La característica de la adyacencia quiere decir que de una combinación binaria a la siguiente sólo varía un bit. Esta propiedad se le aplica solamente a las combinaciones binarias de un código, no al código en sí mismo.
  • 12. VENTAJAS  Este sistema es de suma importancia para la computación, en un dispositivo es más fácil discernir entre dos estados (0 y 1) que entre varios (0,1,2,3 ...).  Gracias a métodos matemáticos se pueden detectar fallos al momento de transmitir la información.  Con métodos matemáticos se pueden corregir fallos al momento de transmitir la información.  Posee múltiples ventajas en la realización de operaciones aritméticas.
  • 13. DESVENTAJAS  Con este sistema no se pueden representar fracciones.  Es mucho mas largas las representaciones que en otros sistema como el decimal.  Este sistema no es el utilizado cotidianamente por los seres humanos por lo tanto se le hace mas complicado utilizarlo eficazmente.
  • 14. SISTEMA OCTAL Es un Sistema de Numeración que sólo utiliza 8 dígitos los cuales son “0, 1, 2, 3, 4, 5, 6, 7”. El sistema de numeración octal es muy usado en la computación debido a que la conversión a binario o viceversa sea bastante simple.
  • 15. CARACTERÍSTICAS  Este sistema no consta con los 8 y 9 y una vez que se llega a la cuenta 7 se pasa a 10. tienen el mismo valor que en el sistema de numeración decimal.  Por tener una base que es potencia exacta de 2 o de la numeración binaria. Esta característica hace que la conversión a binario o viceversa sea bastante simple.  Esta compuesto por 8 dígitos los cuales son 0,1,2,3,4,5,6,7.
  • 16. APLICACIONES  El sistema de numeración octal es muy usado en la computación por tener una base que es potencia exacta de 2 o de la numeración binaria.  En informática, algunas veces se utiliza la numeración octal en vez de la hexadecimal. Ya que esta tiene la ventaja de que no requiere utilizar otros símbolos diferentes de los dígitos.  Es posible que la numeración octal se usara en el pasado en el lugar del decimal, por ejemplo, para contar los espacios interdigitales o los dedos distintos de los pulgares.
  • 17. VENTAJAS  La numeración octal es tan buena como la binaria y la hexadecimal para operar con fracciones, puesto que el único factor primo para sus bases es 2.  No requiere utilizar otros símbolos diferentes de los dígitos.  Es usado en la computación por tener una base que es potencia exacta de 2 o de la numeración binaria, lo que lo hace atractiva para la abreviatura de la de números binarios grandes.
  • 18. DESVENTAJAS  Esta limitado a una cantidad de siete símbolos que van del 0 al 7.  En informática para trabajar con bytes o conjuntos de ellos, asumiendo que un byte es una palabra de 8 bits, suele ser más cómodo el sistema hexadecimal.  No se utiliza en la cotidianidad para expresar cantidad debido a su ineficiencia de no poseer los números 8 y 9 y debido a su nivel de interpretación y comprensión.
  • 19. SISTEMA HEXADECIMAL Es un sistema de base 16 el cual consta de 16 números los cuales son “0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F”. Igual que en el sistema decimal, cada vez que teníamos 10 unidades de un determinado nivel, obteníamos una unidad del nivel superior (diez unidades: una decena, diez decenas: una centena, etc.) en el hexadecimal cada vez que juntamos 16 unidades de un nivel obtenemos una unidad del nivel superior. En un sistema hexadecimal debe haber por tanto 16 dígitos distintos.
  • 20. EJEMPLOS DE APLICACIÓN  Se usa con la finalidad: ofrecer un medio eficaz de representación de números binarios grandes.  Este sistema de numeración es muy utilizado en informática porque simplifica la expresión binaria de los objetos. Los computadores suelen utilizar el byte u octeto como unidad básica de memoria; y, debido a que un byte representa 28 valores posibles, y esto puede representarse como, que, según el teorema general de la numeración posicional, equivale al número en base 16 10016, dos dígitos hexadecimales corresponden exactamente —permiten representar la misma línea de enteros— a un byte.
  • 21.  El sistema hexadecimal es muy importante en el manejo digital de los colores.  Los colores primarios son el verde, el rojo y el azul. Cualquier otro color es mezcla de esos tres colores. Según la cantidad de cada color básico obtenemos unos colores u otros.  En el mundo audiovisual se utiliza el sistema RGB para codificar los colores que se utilizan. El sistema RGB (Reed, Green, Blue) da información sobre la intensidad de cada color básico para crear el color que nos interese. La intensidad de un color varía desde 0 hasta 255, y para no escribir muchas cifras se utiliza un sistema hexadecimal.  De esa forma a cualquier color le corresponde un código de seis dígitos de forma que los dos primeros corresponden a la intensidad de rojo, los dos siguientes al de verde y los dos últimos al de azul.
  • 22. VENTAJAS  La ventaja del sistema hexadecimal es que para representar los mismos valores sólo necesitamos 2 dígitos.  Teniendo la ventaja de poder convertirse fácilmente al y del binario, y ser los más compatibles con éste.  Los números hexadecimales se utilizan a menudo en un sistema digital como una manera ‘‘abreviada’’ de representar cadenas de bits.
  • 23. DESVENTAJAS  Es importante tener en cuenta que la utilidad del hexadecimal se ve comprometida o limitada al ser aplicada en circuitos digitales ya que como es bien sabido este trabaja solo en sistema binario.  Los sistemas hexadecimales solo se utilizan como una conveniencia para los humanos involucrados al hacer mejor trabajables la representación de bits.  Al poseer un patrón binario hasta 4 bits distintos se encuentra limitado a hacer operaciones solamente hasta 15 que equivale a una F.