Your SlideShare is downloading. ×
  • Like
Richard Friebe DIY - Bio and Biohacking - a new citizen science for the age of genes and omics
Upcoming SlideShare
Loading in...5

Thanks for flagging this SlideShare!

Oops! An error has occurred.


Now you can save presentations on your phone or tablet

Available for both IPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Richard Friebe DIY - Bio and Biohacking - a new citizen science for the age of genes and omics



Published in Technology , Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads


Total Views
On SlideShare
From Embeds
Number of Embeds



Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

    No notes for slide


  • 1. Amateurs                  Amateurs                                Amateurs  
  • 2.      Do  you  know  these  guys?  Maybe  not  the  dude  with  that  telescope,  but   surely  that  li;le  guy  with  the  pea  plant.  It’s  Gregor  Mendel.  He  was  an   amateur  scienAst,  he  was  a  biohacker.  His  21st  century  successors  are  the   people  I’m  going  to  talk  about  here.  Here’s  what  I’ve  called  these  few   minutes…  
  • 3.          Biohacking    A  new  CITIZEN  SCIENCE   for  the  age      of  genes  and  –omics   richard  friebe   !  Cathal  Gravey’s  ‘Dremelfuge’  
  • 4. Mendel  is  arguably  the  most  influenAal  experimental  scienAst  the  field  of   biology  has  hitherto  seen.    
  • 5.      CiAzen  scienAsts:        innovators        oUen  no  degree        oUen  li;le  money        enough  Ame        many  ideas   ….L.  da  Vinci,  O.  Brunfels,  C.  Haas,   G.W.  Leibniz,  J.  Priestley,  A.  van   Leeuwenhoek,  T.  Jefferson,  J.W.   Goethe,  E.&C.  Darwin,  G.  Mendel….  
  • 6. He  found  out  how  inheritance  works,  and  he  did  so  without  having  a  science   degree,  without  working  at  an  insAtute  or  a  university  or  a  biotech   company.  What  he  was,  as  a  monk,  was  an  employee  with  a  secure  income   and  a  roof  over  his  head  with  a  lot  of  spare  Ame,  with  an  interest  in   science,  with  ingenuity  and  paAence.   We  tend  to  think  that  science  and  engineering  is  something  really   sophisAcated,  expensive,  oUen  dangerous,  which  is  only  for  professionals   with  doctorates  who  work  away  on  extremely  complicated  stuff  with   extremely  complicated  equipment  behind  thick  walls  in  germ-­‐free  labs.   And  it’s  largely  been  like  this  for  the  past  100  or  so  years.  But  before  that,   lots  of  the  most  important  science,  lots  of  the  most  important  thinking,   lots  of  the  most  important  invenAons  and  engineering    mankind  is  sAll   relying  on,  were  made  by  amateurs.    
  • 7. They  were  priests,  parsons  or  monks  like  Mendel,  but  also  drapers  like  Antonie   van  Leuwenhoek  who  invented  the  microscope,  or  librarians  like  Goaried   Wilhelm  Leibniz,  or  housewifes  like  Fanny  Hesse  who  started  culturing  bacteria   on  agar,  something  sAll  done  today.  They  were  ciAzen  scienAsts.   In  fact,  science  and  engineering  have  never  seized  to  profit  from  a  large  influx   from    amateurs,  as  everyone  here  will  surely  be  aware  of.  Even  in  the  20th   century,  for  example  some  major  astronomical  discoveries  were  made  by   people  with  no  astronomy  degree,  who  just  loved  the  night  skies  and  had  a   telescope.  And  some  of  the  most  important  invenAons  were  made  by  Ankerers   and  college  drop-­‐outs.     For  biology,  especially  the  kind  of  biology  which  calls  itself  molecular,  it’s  been  a   different  story.  Equipment  was  expensive,  supplies  hard  to  come  by,  methods   were  really  difficult  and  required  really  sophisAcated  and  clean  procedures.  
  • 8. Things  have  changed.  Today  there’s  people  like  these.  The  girl  is  Kay  Aull,  and   she’s  the  first  person  known  to  have  hacked  her  own  genes,  sefng  up  her   own  li;le  lab  in  her  bedroom  closet  in  Cambridge,  Massachuse;s,   analysing  her  own  genome  for  a  disease  mutaAon  she  might  have  had   inherited  from  her  father.     The  guy  is  Mac  Cowell,  credited  as  one  of  the  founding  fathers  of  what’s  today   called  DIY  Biology  and  Biohacking.  And  they’re  sifng  not  in  a  university   lab  here,  but  in  a  community  lab  in  a  li;le  town  near  Boston  where  you   can  actually  do  geneAc  analysis  and,  if  you’re  paAent  and  clever  like  old   Mendel,  even  some  geneAc  engineering.    
  • 9. Cheap  second  hand  equipment     easier  protocols   Lots  of  info  online   DIY  building  of  equipment   Supplies  (and  yes:  genes)  available   online,  in  pharmacies,  supermarkets,   hardware  stores   DIY  Bio  network   !This  is  our  PCR  machine,  which  used  to   cost  as  much  as  a  home  in  the  suburbs  20   years  ago,  and  our  centrifuge.  Cost  of   both  combined:  <  400  Euro  
  • 10. Why  is  that  happening  now?  Because  it  can.  There  is  now  second  hand   equipment  available  via  ebay,  lab  kits  which  are  much  less  complicated   then  just  some  years  ago,  supplies  are  available  online,  in  pharmacies  and   hardware  stores,  protocols  are  available  online,  and  there  is  a  networked   community  helping  each  other  out.    
  • 11. These  two  guys  and  I,  we  wanted  to  know  what  these  biohackers  and  DIY   Biologists  do,  so  we  set  out  on  a  project  to  find  them  and  also  try  to   become  biohackers  ourselves.  We  set  up  our  own  lab  here  in  Berlin.  We   wanted  find  out  for  ourselves  how  hard  or  easy  it  really  is  to  build  a  lab   and  to  hack  genes.  The  answer  is,  it’s  not  easy,  but  it’s  possible.  We   analysed  sushi  to  see  if  it’s  really  got  the  tuna  in  it  that  it’s  got  on  the  label,   we  went  on  to  take  dog  poop  to  our  lab  and  collect  dog  saliva  in  the  park   to  find  out  which  puppy  it  was  that  regularly  defecated  outside  our  door.   We  looked  at  our  own  endurance  and  sprinter’s  genes.  We  even  -­‐  to  check   for  possible  hazards  and  implicaAons  -­‐  went  as  far  as  legally  possible  along   the  way  of  doing  something  which  might  be  interesAng  for  prospecAve   bioterrorists.    
  • 12. We  wrote  down  our  experience  of  more  than  two  years  of  both  journalisAc   and  lab  work  in  this  book,  and  also  what  we  think  about  chances  and  risks   of  this  movement.  The  book’s  got  about  300  pages,  so  I  can  only  sum  up   quickly  here  what  I  think  is  especially  relevant  in  the  context  of  this   conference.     The  fact  is  that  all  over  the  world,  there  are  now  people  who  do  molecular   biology  outside  of  insAtuAonalized  labs.  In  garages,  in  kitchens,  in   basements,  oUen  in  community  labs  which  are  being  set  up  by   enthusiasAc  amateurs,  but  also  by  professionals  who  believe  in  the  power   of  this  new  kind  of  ciAzen  science.      
  • 13. From  Spifng  to  Biohacking   The  hand  axe  of  DIY  biology:     …collect  saliva,  spit  in  a  shot  glass,   add  some  salt,  a  drop  of  dish   detergent,  a  drop  of  contact  lens   cleaner,  shake  carefully,  carefully   pour  high-­‐percentage  hard  liquor   over  it,  and  you’ll  see  your  very   own,  very  unique,  very  you-­‐defining   DNA…  may  fish  it  out  with  a   toothpick…  and  may  actually  go  on   and  analyze  it,  using  methods  which   are  a  li;le  more  sophisAcated…  
  • 14. They  can  do  much  more  than  just  extract  some  of  their  own  DNA  using  liquor   and  dish  detergent,  as  shown  here…  Serious  DIY  biologists  today  make   bioarts,  try  to  send  probes  into  the  stratosphere  to  collect  what  might  be   living  there,  try  syntheAc  biology,  collect  and  analyse  microbes  from   people’s  skin  or  from  people’s  ponds  and  contribute  their  work  to  big   networked  projects,  and  much  more.  
  • 15. !The  glove  of  the  first  personal  biotech  billionaire?   Maybe…   What’s  more  important:   -­‐EducaAon   -­‐Out  of  the  box  innovaAon   -­‐Networked,  parAcipatory  science  involving   all  levels  of  sophisAcaAon  and  personal   ability   -­‐DemocraAc  enlightened  parAcipaAon  in  a   century-­‐defining  technology  and  it’s  use  ad   regulaAon   -­‐Challenging  elites     -­‐PrevenAng  and  counteracAng  “black  hat”   hacking  
  • 16. They  are  invenAve  in  terms  of  what  they  use  -­‐  a  camping  cooker  can  make  for   an  excellent  Bunsen  burner,  or  a  Dremel  drill  as  shown  in  an  earlier  slide   can  be  used  to  turn  a  centrifuge.  But  above  all  they  are  invenAve  in  what   experiments  they  come  up  with.       They  try  to  make  plants  glow  in  the  dark  and  promise  people  who  fund  such  a   project  to  send  them  some  seeds  once  they’re  done.  You  might  have   heard  of  that  project  and  the  controversial  discussions  around  it.  So   they’re  also  tesAng  the  waters,  they  challenge  society  to  think  about   biotech  by  pufng  it  out  in  the  open.   There  has  been  a  lot  of  speculaAon  about  whether  among  those  garage   biologist  there  might  be  the  Steve  Jobs  or  Bill  Gates  of  the  of  personal   biotech.  Maybe,  maybe  not.  There  are  certainly  parallels  between  the   computer  hacking  movement  some  decades  back  and  the  biohacking   movement  today,  but  for  sure  they’re  not  the  same.    
  • 17. But  let  me  tell  you  what  I  think  is  most  important:  All  this  provides  people   with  the  opportunity  to  take  a  technology  which  has  huge  transformaAve   powers,  which  comes  with  huge  risks  and  opportuniAes,  back  into  their   own  hands.  It  can  on  the  one  hand  create  innovaAon  by  people  who  are   not  in  the  academic  science  box  and  thus  are  able  to  think  out  of  that  box.     But  more  importantly,  it  provides  an  opportunity  to  learn  about  this   technology  hands  on,  it  will  help  people  make  up  their  minds  about  this   technology,  will  enable  them  to  take  part  in  the  democraAc  processes   about  regulaAon  of  the  technology,  in  an  educated,  enlightened  way.  It  can   put  an  end  to  the  exclusive  access  that  scienAfic,  economic  and  poliAcal   elites  have  unAl  now  had  to  this  technology.  
  • 18. Don’t   illegalize     it!   …it’s  already  regulated  by  law  in   many  countries  (Germany:   Gentechnik-­‐,  Chemikalien-­‐,   InfekAonsschutzgesetz  etc.),  new   regulaAon  should  be  flexible,   liberal,  trying  to  make  sure  that   biohackers  aren’t  pushed   underground!  
  • 19. There  of  course  is  the  issue  of  whether  it’s  dangerous  to  let  this  happen,  to  let   kids  Anker  with  genes.  There  is  a  simple  answer:  Yes,  it  might,  but  if  we   want  to  keep  living  in  a  free  society  where  knowledge  about  a  key   technology  is  not  locked  away  and  decisions  are  made  by  people  with   vested  interests  behind  closed  doors,  there  is  just  no  other  opAon  but  to   be  liberal  about  this,  too.  Otherwise,  people  who  really  want  to  do  this   stuff  will  go  underground.     We  all  know  from  alcohol  prohibiAon  and  drug  laws  that  as  long  as  there  is  a   demand  and  a  technology  to  supply  that  demand,  prohibiAons  never   work,  they  just  make  things  worse  and  more  dangerous  and  harder  to   control.  Biotech  is  out  there,  and  it´s  becoming  doable  for  a  wider  public   and  it  has  its  uses.  We  cannot  turn  back  Ame,  instead  we  need  to  look  for   ways  how  to  make  working  with  this  technology  as  safe  as  possible,  for   example  by  providing  access  to  school-­‐  and  community  labs  and  enable   safe  and  meaningful  experimentaAon  there,  and  not  shufng  them  down   as  has  recently  happened  in  Germany,  and  to  get  the  best  out  of  it.    
  • 20. And  there  is  one  lesson  from  the  computer  hacking  movement  and  from   general  social  experience:  Most  people  have  good  intenAons,  only  very   few  people  want  to  do  harm  just  for  fun,  or  for  Allah  or  whatever.  And   most  “black  hat”  hackers  unAl  today  have  met  their  masters  in  that  huge   majority  of  well  meaning  people  out  there.     This  is  a  crucial  Ame  in  history,  when  the  switches  need  to  be  worked  for  how   biotechnology  should  be  used  in  the  future.  If  more  people  acAvely  use   and  get  to  know  this  key  technology,  there  will  be  a  greater  chance  that   this  will  go  in  the  right  direcAon.  
  • 21. Where  to  look  for  more  info:   !!!This  book   Thanks  to:   -­‐Robert  Bosch  SAUung  (financial   support)   -­‐Science  secAon  of     Frankfurter  Allgemeine  Sonntagszeitung   (editorial  support)   -­‐Sascha  Karberg,  Hanno  Charisius   (friends,  co-­‐authors,  co–biohackers   -­‐Veronique  Ansorge  (illustraAons)  
  • 22. This  is  our  book     CHARISIUS,  FRIEBE,  KARBERG  Biohacking  -­‐  Gentechnik  aus  der  Garage     ISBN  978-­‐3-­‐446-­‐43502-­‐5.  Hanser  Verlag  2013   which    you  get  from  your  local  book  dealer  or  via  the  known  sources  online,   and  some  places  to  go  to  on  the  web.  Also  some  thanks.  All  illustaAons  by   Veronique  Ansorge,  Photos  by  the  authors  of  “Biohacking”   THE  END.     This  work  is  licensed  under  a  CreaAve  Commons  A;ribuAon-­‐NonCommercial-­‐NoDerivs  3.0  Unported  License.   h;p://­‐nc-­‐nd/3.0/deed.en