ENERGY EFFICIENT SUSTAINABLE DESIGN MANFRED HEGGER

5,858 views
5,649 views

Published on

Published in: Technology, Business
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
5,858
On SlideShare
0
From Embeds
0
Number of Embeds
1,384
Actions
Shares
0
Downloads
101
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

ENERGY EFFICIENT SUSTAINABLE DESIGN MANFRED HEGGER

  1. 1. ee1 German American Chambers of Commerce 1st German American Energy Efficiency Conference 2009 Energy Efficiency in Buildings New York, April 28th, 2009 Prof. Manfred Hegger Energy Efficient Building Design – Sustainability in Architecture
  2. 2. ee2 1980 founded as Partnership (BGB) Doris Hegger, Manfred Hegger, Günter Schleiff 2001 change to closely held Stock Company (AG) stocks in the hands of the members of the office 5 Directors 25 Staff 1999 foundation of Eurolabors Integrated Laboratories Planning (AG) Hegger Hegger Schleiff HHS Planer+Architekten AG
  3. 3. ee3 HHS key competences Fields of Work Master Planning, Programming, Feasibility Studies Urban Planning Integral Architectural Design, General Planning Major Subjects Sustainability in Architecture Energy Efficient Architectural Design Innovation, Building Research Major Types of Building Office and Industrial Buildings Educational and Research Buildings Public Buildings Housing
  4. 4. ee4 ee Technische Universität Darmstadt Department of Architecture Energy Efficient Architectural Design Unit Unit founded in 2001 University Course Teaching and Further Education Activities Research and Consultancy Work from 2005: ee-Concept founded as Spin-off run by former Unit Members from 2008: Bachelor and Master Courses replacing Diploma Course. planned: Post-Graduate Master Course on Sustainable Design 5 Teaching Staff 15 Researchers 20 Student Research Assistants 4 External Lecturers
  5. 5. ee5 ee key competences teaching activities Sustainable Building Design Life-cycle of Buildings Construction Materials Energy-efficient Architecture Methodology of the Architectural Design Process research Life-cycle Costing Integration of Renewable Energy Systems into Architecture Evaluation of Sustainability in Architecture consulting Sustainability Advice and Auditing, CO2-Reduction Projects Energy Concepts for new and existing Buildings Consulting to national and intenational Institutions (UIA, UNEP, EU)
  6. 6. ee6 Key Drivers | Energy Demand for Buildings Transport Industry Buildings Quelle: AG Energiebilanzen / VDEW / RWE / TU München 1998
  7. 7. ee7 Key Drivers | Limited Resources and Exploding Prices Limited Reserves • Oil: 41 years • Natural Gas: 62 years • Coal: 200 years Unsafe Producing Countries Increasing conflicts
  8. 8. ee8 Key Drivers | Share of fossile Energy Sources worldwide 80 % Share of Fossile Energy Sources to World-Wide Energy Supply
  9. 9. ee9 Key Drivers | CO2 Emissions per Person North America Australia Europe Asia South America Africa Climate friendly
  10. 10. ee10 Key Drivers | IPCC-Report on Climate Change (2007) 1,5°C > 3°C > 4,5°C
  11. 11. ee11 [+] Climatic-natural Dimension [+] Regulatory - market economical dimension [–] [–] Winners from Climate Chance under Government regulations Double Winners Double Losers Food Industry Tourism Mechanical and Electrical Engineering Traffic Sector Paper and Metal Industries Car Industry Fossile Energy Companies Financial Sector Agriculture and Forestry Winners of governmental interventions carrying climatic risks Renewable Energies Chemical Industry Textiles and Clothing Source: Klimawandel und Branchen: Manche mögens heiß, Deutsche Bank 2007 Building and building related sectors Key Drivers | Winners and losers of climate change
  12. 12. ee12 Global Radiation Flat Geothermal Warmth Atmospheric Energy Wind Sea Warmth Sea Current Wave Energy Running Water Biomass Production Nuclear Energy Coal Oil Natural Gas Deep Geothermal Heat Tidal Energy Nuclear Energy Solar Radiation Geothermal Gravitation Past radiation Current radiation Non renewable Renewable 88 % 12 %current use in Germany Key Drivers | Available Sources of Energy
  13. 13. ee13 0 100 200 300 400 500 600 Wasserkraft Windenergie Photovoltaik Solarthermie Oberflächennahe Wärme Geothermie Biomasse (fest) Biomasse (gasförmig) Biomasse (flüssig) TWh Gesamtpotenzial: 2.410 TWh Endenergieverbrauch 2000: 2.570 TWhca. 75 % ca. 7 % ca. 5 % < 0,01 % < 1 % < 1 % < 1 % < 0,01 % < 0,01 % Key Drivers | Available sources of renewable energy and their current use Biomass (fluid) Biomass (gas) Biomass (solid) Geothermal Surface Geothermal Solar Thermal Photovoltaics Wind Energy Water Power
  14. 14. ee14 Key Drivers | Energy Mix Forecast of German Federal Government 2000 - 2100
  15. 15. ee15 History of Architecture | The Megaron House (Socrates) Quelle: Solpower
  16. 16. ee16 History of Architecture | The Ticino House
  17. 17. ee17 Das wachsende Haus, Martin Wagner, 1931 History of Arcitecture | The Growing House (Martin Wagner)
  18. 18. ee18 Architecture | Solar Houses 1992 Stuttgart/Germany IGA Houses Stuttgart/Germany, HHS Planer + Architekten
  19. 19. ee19 Architecture | Solar Houses 1992 Stuttgart/Germany IGA Houses Stuttgart/Germany, HHS Planer + Architekten
  20. 20. ee20 IGA Houses Stuttgart/Germany, HHS Planer + Architekten Architecture | Solar Houses 1992 Stuttgart/Germany
  21. 21. ee21 Architecture | Office Building/Passive House 1995 Kassel/Germany Office Building/Passive House Kassel/Germany, HHS Planer + Architekten
  22. 22. ee22 Architecture | Office Building/Passive House 1995 Kassel/Germany Office Building/Passive House Kassel/Germany, HHS Planer + Architekten
  23. 23. ee23 Architecture | Office Building/Passive House 1995 Kassel/Germany Office Building/Passive House Kassel/Germany, HHS Planer + Architekten
  24. 24. ee24 Architecture | Office Building/Passive House 1995 Kassel/Germany
  25. 25. ee25 Architecture | Office Building/Passive House 1995 Kassel/Germany
  26. 26. ee26 Academy Mont-Cenis Herne, Jourda Architectes/HHS Planer + Architekten Architecture | Office Building/Passive House 1995 Kassel/Germany
  27. 27. ee27 ___Heating Demand ___Economically Optimized Energy Standard ___Energetically Optimized Energy Standard a Erste Wärmeschutzverordnung b Zweite Wärmeschutzverordnung c Dritte Wärmeschutzverordnung d Low Energy Standard e Passive House Standard Heating Demand in KWh/m²a Housing stock in total Options | Development of Heating Demand in German Homes
  28. 28. ee28 Time EnergyLossesEnergyGains 2000 Options | Energy and Homes | State of the Past
  29. 29. ee29 Time EnergyLossesEnergyGains 2000 Options | Energy and Homes | State of the Art
  30. 30. ee30 Options | Energy and Homes | Increased User Comfort
  31. 31. ee31 Jourda Architectes/HHS Architekten, Fortbildungsakademie Mont-Cenis Herne > 2000
  32. 32. ee32 Jourda Architectes/ HHS Planer & Architekten; Fortbildungsakademie Jourda Architectes/HHS Architekten, Fortbildungsakademie Mont-Cenis Herne > 2000
  33. 33. ee33 Jourda Architectes/HHS Architekten, Fortbildungsakademie Mont-Cenis Herne > 2000
  34. 34. ee34 Jourda Architectes/HHS Architekten, Fortbildungsakademie Mont-Cenis Herne > 2000
  35. 35. ee35 Jourda Architectes/HHS Architekten, Fortbildungsakademie Mont-Cenis Herne > 2000
  36. 36. ee36 Jourda Architectes/HHS Architekten, Fortbildungsakademie Mont-Cenis Herne > 2000
  37. 37. ee37 Jourda Architectes/HHS Architekten, Fortbildungsakademie Mont-Cenis Herne > 2000
  38. 38. ee38 HHS Architekten, Grubengas-BHKW Herne 2000
  39. 39. ee39 Jourda+Perraudin/ HHS Planer & Architekten; Fortbildungsakademie HHS Architekten, Fortbildungsakademie Mont-Cenis Herne > 2000
  40. 40. ee40 Jourda+Perraudin/ HHS Planer & Architekten; Fortbildungsakademie HHS Architekten, Fortbildungsakademie Mont-Cenis Herne > 2000
  41. 41. ee41 Architecture | Academy Mont-Cenis Nutzung Academy Mont-Cenis Herne, Jourda Architectes/HHS Planer + Architekten
  42. 42. ee42 1900 Social Issues 1920 1940 1960 1980 2000 Sustainability | The Development of Sustainable Building in Europe
  43. 43. ee43 1900 Social Issues Economic Issues 1920 1940 1960 1980 2000 Sustainability | The Development of Sustainable Building in Europe
  44. 44. ee44 1900 Social Issues Economic Issues Environmental Issues 1920 1940 1960 1980 2000 Sustainability | The Development of Sustainable Building in Europe
  45. 45. ee45 Environmental Issues > Materials: Availability Environmental Impact Hazardous Ingredients Unbuilding Properties > Energy in Use: Heating and Cooling Warm Water Electricity > Site and Landscape: Footprint Landscape > Infrastructure Mobility Waste Processing Economic Issues > Building Qualities Location Structural Qualities Technical Qualities Architectural Qualities > Investment Cost: Financing External Cost > Running Cost: Cost in Use Ease of Modernisation > Life Cycle Cost: Social Issues > Society: Integration, Social Mix Social Contacts Solidarity, Justice Participation > Design: Spacial Identity Individual Design Personalisation > Accessability, Use: Serving Basic Needs Mixed Use Public Transport Accessability for all > Health and Comfort: Safety Light Indoor Air Quality Radiation Heat Protection Noise Protection Sustainability Sustainability | The Issues of Sustainable Building
  46. 46. ee46 HHS Planer + Architekten, Gründerzentrum Hambau, Ökozentrum Hamm 1997 Architecture | Low Energy, Low Impact, Re-Use | Hambau Hamm
  47. 47. ee47 HHS Planer + Architekten, Gründerzentrum Hambau, Ökozentrum Hamm 1997 Architecture | Low Energy, Low Impact, Re-Use | Hambau Hamm
  48. 48. ee48 HHS Planer + Architekten, Gründerzentrum Hambau, Ökozentrum Hamm 1997 Architecture | Low Energy, Low Impact, Re-Use | Hambau Hamm
  49. 49. ee49 HHS Planer + Architekten, Gründerzentrum Hambau, Ökozentrum Hamm 1997 Architecture | Low Energy, Low Impact, Re-Use | Hambau Hamm
  50. 50. ee50 HHS Planer + Architekten, Gründerzentrum Hambau, Ökozentrum Hamm 1997 Architecture | Low Energy, Low Impact, Re-Use | Hambau Hamm
  51. 51. ee51 HHS Planer + Architekten, Gründerzentrum Hambau, Ökozentrum Hamm 1997 Architecture | Low Energy, Low Impact, Re-Use | Hambau Hamm
  52. 52. ee52 Architecture | Re-Use of Buildings | A new Lease of Life Luczak Architekten; Wohnen im Hochbunker ,Köln 2004
  53. 53. ee53 Luczak Architekten; Wohnen im Hochbunker, Köln 2004 Architecture | Re-Use of Buildings | A new Lease of Life
  54. 54. ee54 East Germany Concrete Prefab Remodelling, Berlin 2004 Architecture | Re-Use of Buildings | A new Lease of Life
  55. 55. ee55 Rudi Ricciotti/HHS Architekten, Nikolaisaal Potsdam 2000 Architecture | Re-Use of Building Elements | A new Lease of Life
  56. 56. ee56 Materials | Life Cycles Text xyz 60 years + Primary Structure 20 years+ Building Envelope 15 years Technical Equipment 10 years Internal Works 5 years Furniture 3 years Decoration Exchange Cycles: 1x 3x 4x 20x6x 12x
  57. 57. ee57 Materials | Life Cycles Building Element: Structure Roofing Windows/Doors Services Floorings Coatings years
  58. 58. ee58 productfabrication production of raw materials period of use recycling energywaste emissionsmachines energy machineswaste emissions fabrication of machines energy generation waste emissions waste emissions energy energy system border Materials | Environmental Performance of Products | Procedure and Elements
  59. 59. ee59 Materials | Construction Materials Performance Information
  60. 60. ee60 Quelle: Baustoffatlas Materials | Environmental Performance of Building Elements
  61. 61. ee61 Solar Decathlon 2007 + 2009 Contributions of Technische Universität Darmstadt
  62. 62. ee62 - International University Competition - „Year 2015 Prototype Home“ - Issued by US Department of Energy - Bi-Annually - 20 prequalified Universities - Located on National Mall, - Washington D.C. Solar Decathlon 2007 | Competition Rules
  63. 63. ee63 Passive Provisions . Compact Building Form . Highly insulated Building Envelope Passive Solar Gains South . Phase Change Material for Heat Storage . Natural Ventilation . Passive Cooling System Solar Decathlon 2007 | Passive Provisions (Architectural Means)
  64. 64. ee64 Active Measures . Photovoltaic Modules (Roof opaque and transparent, on shading devices) . Solar Thermal Collectors . Heat Pump/Heat Recovery System Solar Decathlon 2007 | Active Measures (Technical Systems)
  65. 65. ee65 6. Mai 2009 | Fachbereich Architektur | Fachgebiet Entwerfen und Energieeffizientes Bauen | Prof. Manfred Hegger | 65 Solar Decathlon 2007 | Publication
  66. 66. ee66 Follow-up Solar Decathlon 2007 | Plus Energy Exhibition Building
  67. 67. ee67 Follow-up Solar Decathlon 2007 | Plus Energy Exhibition Building
  68. 68. ee68 Follow-up Solar Decathlon 2007 | Plus Energy Exhibition Building
  69. 69. ee69 Follow-up Solar Decathlon 2007 | Plus Energy Exhibition Building
  70. 70. ee70 Solar Decathlon 2009 | Building Design (Status 04/2009)
  71. 71. ee71 Solar Decathlon 2009 Ein Raum – verschiedene Ebenen Solar Decathlon 2009 | Building Design (Status 04/2009)
  72. 72. ee72 Solar Decathlon 2009 | Building Design (Status 04/2009)
  73. 73. ee73 Energy and Sustainability | New Information
  74. 74. ee74 HHS Architekten | Energy autonomous SMA-Academy Building Niestetal 2009
  75. 75. ee75 HHS Architekten | Energy Plus Converter Production Building SMA Kassel 2008
  76. 76. ee76 Transport Industrie Gebäude Urban Energies | Strenghten urban autonomy, reduce vulnerability, improve self-esteem Masdar City, Abu Dhabi, Zero Energy City www.dlr.de
  77. 77. ee77 Urban Energies | Digital Environmental Simulation Tools
  78. 78. ee78 Sustainability in Architecture | Providing a new compass .
  79. 79. ee79 5. Schlussfolgerungen | Vernetzt planen Thank you! Thank you for your attention! www.ee.tu-darmstadt.de www.solardecathlon.de www.solardecathlon2009.de www.hhs-architekten.de Prof. Dipl.-Ing. M. Sc. Econ. Manfred Hegger HHS Planer + Architekten AG Technische Universität Darmstadt, Fachbereich Architektur, fachgebiet Entwerfen und Energieeffzientes Bauen

×