Your SlideShare is downloading. ×
Bernoulli ejemplos
Bernoulli ejemplos
Bernoulli ejemplos
Bernoulli ejemplos
Bernoulli ejemplos
Bernoulli ejemplos
Bernoulli ejemplos
Bernoulli ejemplos
Bernoulli ejemplos
Bernoulli ejemplos
Bernoulli ejemplos
Bernoulli ejemplos
Bernoulli ejemplos
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Bernoulli ejemplos

667

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
667
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
8
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Ejemplos Bernoulli1) Una maestra enumera a sus alumnos del 1 al 16, para así poder darles unpremio, pero la maestra los seleccionará con los ojos cerrados, ¿ Cual es laprobabilidad de que salga el alumno numero 16?° La probabilidad de que seleccione al alumno numero 16. P(x=1) = (1/16) 1 * (15/16) 0 = 1/16 = 0.0625° La probabilidad de que NO seleccione al alumno numero 16. P(x=0) = (1/9)0 * (15/16)1 = 15/16 = 0.93752) Hay una urna con 342 boletos, para ganar un automóvil, al momento desacar alguno de ellos ¿que probabilidad hay para que pueda salir premiado elboleto número 342?° La probabilidad de que saque el boleto número 342. P(x=1) = (1/342) 1 * (341/342) 0 = 1/342 = 0.00292° La probabilidad de que NO seleccione al alumno numero 342. P(x=0) = (1/342)0 * (341/342)1 = 341/342 = 0.997073) "Lanzar una moneda, probabilidad de conseguir que salga cruz".Se trata de un solo experimento, con dos resultados posibles: el éxito (p) seconsiderará sacar cruz. Valdrá 0,5. El fracaso (q) que saliera cara, que vale (1 -p) = 1 - 0,5 = 0,5.La variable aleatoria X medirá "número de cruces que salen en unlanzamiento", y sólo existirán dos resultados posibles: 0 (ninguna cruz, esdecir, salir cara) y 1 (una cruz).Por tanto, la v.a. X se distribuirá como una Bernoulli, ya que cumple todos losrequisitos.° La probabilidad de obtener cruz.
  • 2. P(x=1) = (0.5) 1 * (0.5) 0 = 0.5 = 0.5° La probabilidad de no obtener cruz. P(x=0) = (0.5)0 * (0.5)1 = 0.5 = 0.54) 1) Tenemos cartas que están enumeradas del 1 al 9 ¿Cuál es la probabilidadde sacar la carta 9?° La probabilidad de que obtengamos la carta 9. P(x=1) = (1/9) 1 * (8/9) 0 = 1/9 = 0.111° La probabilidad de que NO obtengamos la carta 9. P(x=0) = (1/9)0 * (8/9)1 = 8/9 = 0.888 Distribución Binomial
  • 3. En un examen formado por 20 preguntas, cada una de las cuales se responde declarando“verdadero” o “falso”, el alumno sabe que, históricamente, en el 75% de los casos larespuesta correcta es “verdadero” y decide responder al examen tirando dos monedas, pone“falso” si ambas monedas muestran una cara y “verdadero” si al menos hay una cruz. Sedesea saber qué probabilidad hay de que tenga al menos 14 aciertos.Hay que proporcionarle a Epidat 3.1 los parámetros de la distribución y el punto k a partirdel cual se calculará la probabilidad. En este caso n=20, p=0,75 y el punto k=14.Resultados con Epidat 3.1Cálculo de probabilidades. Distribuciones discretasBinomial (n,p)n: Número de pruebas 20p: Probabilidad de éxito 0,7500Punto K 14Probabilidad Pr[X=k] 0,1686Cola Izquierda Pr[X<=k] 0,3828Cola Derecha Pr[X>k] 0,6172Media 15,0000Varianza 3,7500
  • 4. La probabilidad de que el alumno tenga más de 14 aciertos se sitúa en 0,61. Poisson. • Ejemplo.- 1 Si ya se conoce que solo el 3% de los alumnos de contabilidad son muy inteligentes ¿ Calcular la probabilidad de que si tomamos 100 alumnos al azar 5 de ellos sean muy inteligentes • n= 100 • P=0.03 • =100*0.03=3 • x=5 • Ejemplo2.- La producción de televisores en Samsung trae asociada una probabilidad de defecto del 2%, si se toma un lote o muestra de 85 televisores, obtener la probabilidad que existan 4 televisores con defectos. • n=85 • P=0.02 • P(x5)=(e^-17)(1.7^4)/4!=0.0635746 • X=4
  • 5. • =1.7• Ejemplo3.- una jaula con 100 pericos 15 de ellos hablan ruso calcular la probabilidad de que si tomamos 20 al azar 3 de ellos hablan ruso• n=20• P=0.15 P (x=3)=(e^-8)(3^3)/3!=0.2240418• X=3• =3• Ejemplo4.- El 8% de los registros contables de una empresa presentan algún problema, si un auditor toma una muestra de 40 registros ¿Calcular probabilidad de que existan 5 registros con problemas?• n=40• P=0.08 P(X=5)(e^3.2)(3.2^5)/5!=0.1139793• =3.2• X=5 Ejemplo.-5 Se calcula que la ciudad el 20% de las personas tienen defecto de la vista si tomamos una muestra de 50 personas al azar ¿Calcular Probabilidad que existan 5 registros con problemas? n=40 P=0.08 =10
  • 6. Un fabricante de focos afirma que su producto durará unpromedio de 500 horas de trabajo. Para conservar este promedio esta persona verifica 25focos cada mes. Si el valor y calculado cae entre –t 0.05 y t 0.05, él se encuentra satisfecho conesta afirmación. ¿Qué conclusión deberá él sacar de una muestra de 25 focos cuya duraciónfue?: 520 521 511 513 510 µ=500 h 513 522 500 521 495 n=25 496 488 500 502 512 Nc=90% 510 510 475 505 521 X=505.36 506 503 487 493 500 S=12.07
  • 7. SOLUCIÓN. t= x -μ SI n α = 1- Nc = 10%v = n-1 = 24t = 2.22 Enseguida se muestra la distribución del problema según el grafico sig. El profesor Pérez olvida poner su despertador 3 de cada10 días. Además, ha comprobado que uno de cada 10 días en los que pone el despertadoracaba no levantándose a tiempo de dar su primera clase, mientras que 2 de cada 10 días en losque olvida poner el despertador, llega a tiempo adar su primera clase.(a) Identifica y da nombre a los sucesos que aparecen en el enunciado.(b) ¿Cual es la probabilidad de que el profesor Pérez llegue a tiempo a dar su primera clase?Solución: En primer lugar conviene identificar el experimento aleatorio que estamosrealizando. Este consiste en tomar un dia al azar en la vida del profesor Pérez y analizarlo enbase a los siguientes sucesos.(a) Para un día al azar decimos que se ha dado el suceso:O ≡ cuando el profesor ha olvidado poner el despertadorT ≡ cuando el profesor ha llegado tarde a su primera clase.
  • 8. Notemos que tanto {O, O} como {T, T} forman un sistema completo de sucesos. A continuacióntraducimos en términos de probabilidad de los sucesos anteriores todos los datos que nos danen el enunciado. P(O) = , P (T |O) = , P(O) = , P(T |O) = .(b) El suceso”llegar a tiempo a su clase” es el complementario de T , por tanto nos piden quecalculemos P(T¯). Puesto que {O, O} es un sistema completo de sucesos, podemos aplicar laformulas de la probabilidad total, de donde tenemos que: P (T¯) = P (T |O¯) P(O) + P (T | ¯ O¯) P (O¯).En la expresión anterior aparecen varios de los datos que nos ha proporcionando el enunciado,sin embargo no conocemos directamente el valor de P(T |¯ O¯). Para calcularlo utilizamos queP(T |¯ O¯) = 1 − P(T |O¯) = 1 − = De esta forma, la expresión anterior se puede escribir como:P(T¯) = + =0.69 La longitud de los tornillos fabricados en una fábrica tienen mediaμ=10 mm y desviación s=1 mm, calcular la probabilidad de que en una muestra de tamañon=25, la longitud media del tornillo sea inferior a 20.5 mm:P (μ<20.5)Estandarizamos T=(X-μ)/(s/√n) que sigue una distribución t de n-1 grados de libertadT=(20.5-20)/(1/√25) = 2.5P (μ<20.5) --> P (T<2.5) ~ t(24)P (T<2.5) = 0.9902P (μ<20.5)=0.9902
  • 9. La probabilidad que la longitud media de la muestra de 25 tornillos sea inferior a 20.5 mm esdel 99.02% Calcular el percentil w0=95 y w0=25 en cada uno de lossiguientes casos:1. En una distribución t-Student con 3 grados de libertad.2. En una distribución t-Student con 30 grados de libertad.Solución.1. Recordemos que w0=95 es aquel número real que verifica: S [W · w0=95] = 0=95Para encontrar este valor en la tabla de la distribución t-Student bastará:- ) Localizar en la primera columna los grados de libertad, en este caso: 3.- ) Localizar en la primer fila la probabilidad acumulada, en nuestro caso: 0=95=- ) Movernos horizontal y verticalmente desde las posiciones anteriores hasta cruzarnos en elpunto w0=95.Por tanto el percentil w0=95, en una t-Student con 3 grados de libertad será el valor: w0=95 = 2=3534Es decir, si desde el valor 2.3534 nos movemos horizontalmente hasta la primera columna,llegaremos al valor 3 (grados de libertad), y si lo hacemos verticalmente hacia la primera fila lallegaremos al valor 0.95 (probabilidad acumulada).Como en la tabla únicamente tenemos tabulada la t-Student para colas probabilísticas que vandesde 0=75 hasta 0=999, para calcular el percentil w0=25, tendremos que realizar la siguienteconsideración: S [W · w0=25] = 1 ¡ s[W ¸ w0=25]Como la distribución t-Student es simétrica, se verifica: w0=25 = ¡w0=75Y resulta: s[W · w0=25] = 1 ¡ s[W · w0=75]Por tanto, buscando en la tabla con los datos:Grados de libertad: 3Cola de probabilidad: 0.75
  • 10. Tenemos: w0=25 = ¡w0=75 = ¡0=76492. En el caso de 30 grados de libertad actuaremos de modo similar al caso anterior, perobuscando en la fila 30 de la tabla. Resultando:w0=95 = 1=6973Y w0=25 = ¡w0=75 = ¡0=6828 Calcular los percentiles I8>7;0=99 y I8>7;0=01Solución.Para buscar en la tabla de la F-Snedecor el percentil I8>7; 0=99 hemos de tener en cuenta que:df_1 = 8 (1d Fila de la tabla)df_2 = 7 (1 d Columna de la tabla)0=99 = Probabilidad acumulada (Última columna de la tabla)El valor donde se cruzan todos estos datos será el percentil buscado. Por tanto: I9>7; 099 = 6=840

×