Your SlideShare is downloading. ×
Ejemplos de ejercicios bernoulli
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Saving this for later?

Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Text the download link to your phone

Standard text messaging rates apply

Ejemplos de ejercicios bernoulli

9,595
views

Published on


0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
9,595
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
85
Comments
0
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. UNIVRSIDAD TECNOLOGICA DETORREONNOMBRE:MONSERRAT GUADALUPEVILLA GONZALEZ. Ejemplos ejerciciosLIC. EDGAR GERARDO MATA ORTIZ
  • 2. Ejemplos de ejercicios Bernoulli 1. Un jugador de básquetbol esta a punto de tirar hacia la parte superior del tablero. La probabilidad de que anote el tiro es de 0.55 a) Sea X=1 si anota el tiro, si no lo hace X=0 determine la media y la varianza de X. Eventos probabilidades X=1 si anota 1 0.55 (p)= 1(0.55)= 0.55 X=0 si no anota 0 0.45 (1-p)=0(0.45)=__0__ Media= 0.55 (1-0.55)²(0.55)=0.1111375 (0-0.55)²(0.45)=0.1361255 Varianza=0.2475 b) Si anota el tiro su equipo obtiene 2 puntos. Si lo falla su equipo no recibe puntos. Sea Y el numero de puntos anotados ¿tiene una distribución de Bernoulli? Si es así encuentre la probabilidad de éxito, si no explique porque. Eventos probabilidades Y=2 si anota 2 0.55 (p)= 2(0.55)= 1.1 Y=0 si no anota 0 0.45 (2-p)=0(0.45)= 0 No es una distribución Bernoulli porque los eventos que se presentan no son 1 y 0. c) Determine la medida y varianza de Y Eventos probabilidades Y=1 si anota 2 0.55 (p)= 2(0.55)= 1.1 Y=0 si no anota 0 0.45 (2-p)=0(0.45)=__0__ Media= 1.1 (2-1.1)²(0.55)=0.4455 (0-1.1)²(0.45)=0.5445 Varianza=0.99 d) Por ser un tiro de larga distancia, si anota obtiene 3 puntos, si lo falla 0 puntos. Sea Z el numero de puntos anotados ¿tiene una distancia de Bernoulli? Si es asi encuentre la probabilidad de éxito, si no explique porque. Eventos Z=3 si anota 3 Z=0 si no anota 0 No es una distribución Bernoulli porque los eventos no son 1 y 0. e) Determine la media y la varianza de Z. Eventos probabilidades Y=1 si anota 3 0.55 (p)= 3(0.55)= 1.65 (3-1.1)²(0.55)=1.002375
  • 3. Y=0 si no anota 0 0.45 (3-p)=0(0.45)=__0__(0-1.1)²(0.45)=1.225125 Media= 1.65 Varianza=2.22752. En un restaurante de comida básica 25% de las órdenes para beber es una bebida pequeña, en 35% una mediana y 40% una grande. Sea X =1 si se escoge aleatoriamente una orden de una bebida pequeña, X=0 en cualquier otro caso. Sea Y=1 si la orden es una bebida mediana y Y=0 en cualquier otro caso. Sea Z=1 si la orden es una bebida pequeña o mediana, Z=0 para cualquier otro caso. a) Sea px la probabilidad de éxito de X. determine pxEventos probabilidadesX=1 si es una bebida chica 1 0.25 (p)= 1(0.25)= 0.25X=0 si no lo es 0 0.75 (1-p)=0(0.75)=__0__ Media= 0.25 0.25(1-0.25)=0.1875 b) Sea py la probabilidad de éxito de Y. determine py Eventos probabilidadesY=1 si es una bebida mediana 1 0.35 (p)= 1(0.25)= 0.25Y=0 si no lo es 0 0.65 (1-p)=0(0.75)=__0__ Media= 0.35 0.35(1-0.35)=0.2275 c) Sea pz la probabilidad de éxito de Z. determine pz Eventos probabilidadesZ=1 si es una bebida chica o mediana 1 0.60 (p)= 1(0.60)= 0.60Z=0 si no lo es 0 0.40 (1-p)=0(0.40)=__0__ Media= 0.60 0.60(1-0.60)=0.22 d) ¿es posible que X y Y sean iguales a 1? No es posible solo 1 de ellas puede ser posible. e) ¿es pz=px+py? Si es igual. f) ¿Es Z=X+Y? explique3. Cuando se aplica cierto barniz a una superficie de cerámica el 5% es la probabilidad de que se descolore, el 20% de que se agriete, 23% de que se descolore o no se agrieté, o ambas. Sea X=1 si se produce una descoloración X=0 en cualquier otro caso. Y=1 si hay alguna grieta, Y=0 en cualquier otro caso. Z=1 si hay descoloración o grieta o ambas, Z=0 en cualquier otro caso.
  • 4. a) Sea px la probabilidad de éxito de X. determine px Eventos probabilidadesX=1 si se decolora 1 0.05 (p)= 1(0.05)= 0.05X=0 si no sucede es 0 0.951-p)=0(0.95)=__0__ Media= 0.05 0.05(1-0.05)=0.0475b) Sea py la probabilidad de éxito de Y. determine py. Eventos probabilidadesY=1 si se decolora 1 0.20 (p)= 1(0.20)= 0.20Y=0 si no sucede es 0 0.80 (1-p)=0(0.95)=__0__ Media= 0.20 0.20(1-0.20)=0.16c) Sea pz la probabilidad de éxito de Z. determine pz. Eventos probabilidadesZ=1 si se decolora 1 0.23 (p)= 1(0.20)= 0.23Z=0 si no sucede es 0 0.77 (1-p)=0(0.95)=__0__ Media= 0.23 0.23(1-0.23)=0.1771d) ¿es posible que X y Y sean iguales a 1? No es posible solo 1 de ellas puede ser posible.e) ¿es pz=px+py? No, no es igual.f) ¿Es Z=X+Y? explique4. Se lanza al aire una moneda de 1 y de 5 centavos sea X= 1 si sale “cara” en la moneda de 1 centavo, X=0 en cualquier otro caso. Sea Y=1 si sale “cara” en la moneda de 5 centavos, Y=0 en cualquier otro caso. Sea Z=1 si sale “cara” en ambas monedas, Z=0 en cualquier otro caso. a) Sea px la probabilidad de éxito de X. determine px Eventos probabilidadesX=1 si sale cara 1 0.50 (p)= 1(0.50)= 0.50X=0 si no 0 0.50 1-p)=0(0.50)=__0__ Media= 0.50 0.50(1-0.50)=0.25 b) Sea py la probabilidad de éxito de Y. determine py Eventos probabilidadesY=1 si sale cara 1 0.50 (p)= 1(0.50)= 0.50Y=0 si no 0 0.50 1-p)=0(0.50)=__0__ Media= 0.50
  • 5. 0.50(1-0.50)=0.25 c) Sea pz la probabilidad de éxito de Z. determine pz Eventos probabilidadesZ=1 si sale cara 1 0.50 (p)= 1(0.50)= 0.50Z=0 si no 0 0.50 1-p)=0(0.50)=__0__ Media= 0.50 0.50(1-0.50)=0.25 d) ¿son X y Yindependientes? Si son independientes. e) ¿es pz=pxpy²? f) ¿es Z=XY? Explique5. Se lanzan 2 dados. Sea X=1 si sale el mismo numero en ambos y X=0 en cualquier otro caso. Sea Y=1 si la sume es 6 y Y=0 en cualquier otro caso. Sea Z=1 si sale el mismo numero en los dados y ambos sumen 6 (es decir, que salgan 3 en los dos dados) y Z=0en cualquier otro caso. a) Sea px la probabilidad de éxito de X. determine px Eventos probabilidadesX=1 si sale el mismo numero 1 0.16 (p)= 1(0.16)= 0.16X=0 si no 0 0.84 (1-p)=0(0.84)=__0__ Media= 0.16 0.16(1-0.16)=0.1344 b) Sea py la probabilidad de éxito de Y. determine py Eventos probabilidadesX=1 si sale el mismo numero 1 0.064 (p)= 1(0.064)= 0.064X=0 si no 0 0.936 (1-p)=0(0.036)=__0__ Media= 0.064 0.064(1-0.064)=0.059904 c) Sea pz la probabilidad de éxito de Z. determine pz Eventos probabilidadesX=1 si sale el mismo numero 1 0.03125 (p)= 1(0.03125)= 0.03125X=0 si no 0 0.96875(1-p)=0(0.036)=__0__ Media= 0.03125 0.03125(1-0.03125)=0.0302734 d) ¿son X y Y independientes? Si son independientes e) ¿es pz=pxpy²? Si
  • 6. f) ¿es Z=XY? ExpliqueEjemplos de distribución binomial 1. Se toma una muestra de 5 elementos de una población grande en la cual el 10% de los elementos esta defectuoso. a) Determine la probabilidad de que ninguno de los elementos de la muestra este defectuoso. p(x=0)= 5 0.1⁰(1-0.1)µ⁻⁰=0.59049 0 b) Determine la probabilidad de que solo uno de ellos tenga defectos. p(x=1)= 5 0.1¹(1-0.1)µ⁻¹=0.32805 1 c) Determine la probabilidad de que uno o más de los elementos de la muestra estén defectuosos. p(x=3)= 5 0.1³(1-0.1)µ⁻³=0.0081 3 p(x=4)= 5 0.1´(1-0.1)µ⁻´=0.00045 4 p(x=5)= 5 0.1µ(1-0.1)µ⁻µ=0.00001 5 d) Determine la probabilidad de que menos de dos elementos de la muestra tengan defectos. p(x=1)= 5 0.1²(1-0.1)µ⁻²=0.0729 1 2. Se lanza al aire una moneda 10 veces. a) ¿Cuál es la probabilidad de obtener exactamente tres veces “cara”? p(x=0)= 10 0.5³(1-0.5)¹⁰⁻³=0.1171875 3 b) Determine la media del número de caras obtenidas. p(x=2)= 10 0.5²(1-0.5)¹⁰⁻²=0.043945312 2
  • 7. 3. En un cargamento grande de llantas de automóvil, 5% tiene cierta imperfección. Se elige aleatoriamente cuatro llanta para instalarlas en el automóvil. a) ¿Cuál es la probabilidad de que ninguna de las llantas tenga imperfección? p(x=0)= 4 0.05⁰(1-0.05)´⁻⁰=0.81450625 0 b) ¿Cuál es la probabilidad de que sólo una de las llantas tenga imperfección? p(x=1)= 4 0.05¹(1-0.05)´⁻¹=0.171475 1 c) ¿Cuál es la probabilidad de que una o mas de las llantas tenga imperfección? p(x=2)= 4 0.05²(1-0.05)´⁻²=0.0135375 2 p(x=3)= 4 0.05³(1-0.05)´⁻³=0.000475 3 p(x=4)= 4 0.05´(1-0.05)´⁻´=0.00000625 44. En un patrón aleatorio de ocho bits utilizados para probar un microcircuito, cada bit tiene la misma probabilidad de ser 0 ó 1. Suponga que los valores de los bits son independientes. a) ¿Cuál es la probabilidad de que todos los bits sean 1? p(x=8)= 8 0.50⁸(1-0.50)⁸⁻⁸=0.00390625 8 b) ¿Cuál es la probabilidad de que exactamente 3 de los bits sean 1? p(x=3)= 8 0.50³(1-0.50)⁸⁻³=0.21875 3 c) ¿Cuál es la probabilidad de que al menos 6 de los bits sean 1? p(x=6)= 8 0.50¶(1-0.50)⁸⁻¶=0.109375 6 d) ¿Cuál es la probabilidad de que al menos dos de los bits sean 1? p(x=2)= 8 0.50²(1-0.50)⁸⁻²=0.109375 2
  • 8. EJERCICIOS DE DISTRIBUCIÓN DE POISSON1. poisson (4). Determine a) P(X=1)=0.0733 b) P(X=0)=0.0183 c) P(X<2)=0.0916 d) P(X>1)=0.90842. La concentración de partículas en una suspensión es de 2 mL. Se agita ´por completo la concentración y posteriormente se extraen 3 mL. Sea X el número de partículas que son retiradas. Determine a) P(X=5)=0.10081 b) P(X<2)=0.05553. Suponga que el 0.03% de los contenedores plásticos producidos es cierto proceso tiene pequeños agujeros que los dejan inservibles X representa el numero de contenedores en una muestra aleatoria de 10000 que tienen esta defecto determine: a) p(X=3)=0.2240 b) p(X<2)=0.4232 c) p(1<X<4)=0.59744. Una variable aleatoria X tiene una distribución binomial y una variable aleatoria Y tiene una distribución de Poisson, tanto X como Y tienen medidas iguales a 3 ¿Es posible determinar que variable aleatoria tiene la varianza mas grande? Elija una de las siguientes respuestas i. Si, X tiene una varianza más grande. ii. Si, Y tiene una varianza más grande. iii. No, se necesita conocer el número de ensayos, n, para X. iv. No, se necesita conocer la probabilidad de éxito, p, para X v. No, se necesita conocer el valor de λ para Y.