SlideShare a Scribd company logo
1 of 39
Download to read offline
Institut
Mines-Telecom
Functional Poisson
convergence
L. Decreusefond
(joint work with M. Schulte, C. Th¨ale)
Stein, Malliavin, Poisson and co.
Motivation : Poisson polytopes
1
2
3
4
5
6
0
1 23456
η ξ(η)
2/25 Institut Mines-Telecom Functional Poisson convergence
Motivation : Poisson polytopes
1
2
3
4
5
6
0
1 23456
η ξ(η)
Question
What happens when the number of points goes to infinity ?
2/25 Institut Mines-Telecom Functional Poisson convergence
Poisson point process
Hypothesis
Points are distributed to a Poisson process of control measure tK
Definition
The number of points is a Poisson rv (t K(Sd−1))
Given the number of points, they are independently drawn
with distribution K
3/25 Institut Mines-Telecom Functional Poisson convergence
Rescaling : γ = 2/(d − 1)
Campbell-Mecke formula
E
x1,··· ,xk ∈ω
(k)
=
f (x) = tk
f (x1, · · · , xk)K(dx1, · · · , dxk)
4/25 Institut Mines-Telecom Functional Poisson convergence
Rescaling : γ = 2/(d − 1)
Campbell-Mecke formula
E
x1,··· ,xk ∈ω
(k)
=
f (x) = tk
f (x1, · · · , xk)K(dx1, · · · , dxk)
Mean number of points (after rescaling)
1
2
E
x=y∈ω
1 tγx−tγy ≤β =
t2
2 Sd−1⊗Sd−1
1 x−y ≤t−γβdxdy
4/25 Institut Mines-Telecom Functional Poisson convergence
Rescaling : γ = 2/(d − 1)
Campbell-Mecke formula
E
x1,··· ,xk ∈ω
(k)
=
f (x) = tk
f (x1, · · · , xk)K(dx1, · · · , dxk)
Mean number of points (after rescaling)
1
2
E
x=y∈ω
1 tγx−tγy ≤β =
t2
2 Sd−1⊗Sd−1
1 x−y ≤t−γβdxdy
Geometry
Vd−1(Sd−1
∩Bd
βt−γ (y)) = κd−1(βt−γ
)d−1
+
(d − 1)κd−1
2
(βt−γ
)d
+O(t−γ(
4/25 Institut Mines-Telecom Functional Poisson convergence
Rescaling : γ = 2/(d − 1)
Campbell-Mecke formula
E
x1,··· ,xk ∈ω
(k)
=
f (x) = tk
f (x1, · · · , xk)K(dx1, · · · , dxk)
Mean number of points (after rescaling)
1
2
E
x=y∈ω
1 tγx−tγy ≤β =
t2
2 Sd−1⊗Sd−1
1 x−y ≤t−γβdxdy
Geometry
Vd−1(Sd−1
∩Bd
βt−γ (y)) = κd−1(βt−γ
)d−1
+
(d − 1)κd−1
2
(βt−γ
)d
+O(t−γ(
4/25 Institut Mines-Telecom Functional Poisson convergence
Schulte-Th¨ale (2012) based on Peccati (2011)
P(t2/(d−1)
Tm(ξ) > x) − e−βx(d−1)
m−1
i=0
(βxd−1)i
i!
≤ Cx t− min(1/2,2/(d−1))
5/25 Institut Mines-Telecom Functional Poisson convergence
Schulte-Th¨ale (2012) based on Peccati (2011)
P(t2/(d−1)
Tm(ξ) > x) − e−βx(d−1)
m−1
i=0
(βxd−1)i
i!
≤ Cx t− min(1/2,2/(d−1))
What about speed of convergence as a process ?
5/25 Institut Mines-Telecom Functional Poisson convergence
Configuration space
Definition
A configuration is a locally finite set of particles on a Polish spaceY
f dω =
x∈ω
f (x)
6/25 Institut Mines-Telecom Functional Poisson convergence
Configuration space
Definition
A configuration is a locally finite set of particles on a Polish spaceY
f dω =
x∈ω
f (x)
Vague topology
ωn
vaguely
−−−−→ ω ⇐⇒ f dωn
n→∞
−−−→ f dω
for all f continuous with compact support from Y to R
6/25 Institut Mines-Telecom Functional Poisson convergence
Configuration space
Definition
A configuration is a locally finite set of particles on a Polish spaceY
f dω =
x∈ω
f (x)
Vague topology
ωn
vaguely
−−−−→ ω ⇐⇒ f dωn
n→∞
−−−→ f dω
for all f continuous with compact support from Y to R
Be careful !
δn
vaguely
−−−−→ ∅
6/25 Institut Mines-Telecom Functional Poisson convergence
Convergence in configuration space
Theorem (DST)
dR(Pn, Q)
n→∞
−−−→ 0 =⇒ Pn
distr.
−−−→ Q
Convergence in NY
7/25 Institut Mines-Telecom Functional Poisson convergence
Example
Our settings
Pt : PPP of intensity tK on C ⊂ X
f : dom f = Ck/Sk −→ Y
Definition
T(
x∈η
δx ) =
(x1,··· ,xk )∈ηk
=
δt2/d f (x1,··· ,xk ) := ξ(η)
f ∗K : image measure of (tK)k by f
M: intensity of the target Poisson PP
Example
8/25 Institut Mines-Telecom Functional Poisson convergence
Main result
Theorem (Two moments are sufficient)
sup
F∈TV–Lip1
E F PPP(M) − E F T∗
(PPP(tK)
≤ distTV(L, M) + 2(var ξ(Y) − Eξ(Y))
9/25 Institut Mines-Telecom Functional Poisson convergence
Stein method
The main tool
Construct a Markov process (X(s), s ≥ 0)
with values in configuration space
ergodic with PPM(M) as invariant distribution
X(s)
distr.
−−−→ PPM(M)
for all initial condition X(0)
for which PPM(M) is a stationary distribution
X(0)
distr.
= PPM(M) =⇒ X(s)
distr.
= PPM(M), ∀s > 0
10/25 Institut Mines-Telecom Functional Poisson convergence
In one picture
PPP(M) PPP(M)
T#(PPP(tK))
P#
s (PPP(M))
P#
s (T#(PPP(tK)))
11/25 Institut Mines-Telecom Functional Poisson convergence
Realization of a Glauber process
Y
Time0
X(s)
sS1 S2
S1, S2, · · · : Poisson process of intensity M(Y) ds
Lifetimes : Exponential rv of param. 1
Remark : Nb of particles ∼ M/M/∞
12/25 Institut Mines-Telecom Functional Poisson convergence
Properties
Theorem
Distr. X(s)=PPP((1 − e−s)M) + e−s-thinning of the I.C.
X(s)
s→∞
−−−→ PPP(M)
If X(0)
distr.
= PPP(M) then X(s)
distr.
= PPP(M)
Generator
LF(ω) :=
Y
F(ω + δy ) − F(ω) M(dy)
+
y∈ω
F(ω − δy ) − F(ω)
13/25 Institut Mines-Telecom Functional Poisson convergence
Stein representation formula
Definition
PtF(η) = E[F(X(t)) | X(0) = η]
14/25 Institut Mines-Telecom Functional Poisson convergence
Stein representation formula
Definition
PtF(η) = E[F(X(t)) | X(0) = η]
Fundamental Lemma
F(ω)πM(dω) − F(ξ) =
∞
0
LPsF(ξ)ds
14/25 Institut Mines-Telecom Functional Poisson convergence
Stein representation formula
Definition
PtF(η) = E[F(X(t)) | X(0) = η]
Fundamental Lemma
F(ω)πM(dω) − F(ξ(η)) =
∞
0
LPsF(ξ(η))ds
14/25 Institut Mines-Telecom Functional Poisson convergence
Stein representation formula
Definition
PtF(η) = E[F(X(t)) | X(0) = η]
Fundamental Lemma
F(ω)πM(dω) − EF(ξ(η)) = E
∞
0
LPsF(ξ(η))ds
14/25 Institut Mines-Telecom Functional Poisson convergence
What we have to compute
Distance representation
dR(PPP(M), T#
(PPP(tK)))
= sup
F∈TV–Lip1
E
∞
0 Y
[PsF(ξ(η) + δy ) − PsF(ξ(η))] M(dy) ds
+ E
∞
0 y∈ξ(η)
[PsF(ξ(η) − δy ) − PtsF(ξ(η))] ds


15/25 Institut Mines-Telecom Functional Poisson convergence
Transformation of the stochastic integral
Bis repetita
dR(PPP(M), ξ(η))
= sup
F∈TV–Lip1
E
∞
0 Y
[PtF(ξ(η) + δy ) − PtF(ξ(η))] M(dy) dt
+ E
∞
0 y∈ξ(η)
[PtF(ξ(η) − δy ) − PtF(ξ(η))] dt


16/25 Institut Mines-Telecom Functional Poisson convergence
Mecke formula
Mecke formula ⇐⇒ IPP
E
y∈ζ
f (y, ζ) =
Y
Ef (y, ζ + δy ) M dy)
is equivalent to
E
Y
Dy U(ζ)f (y, ζ) M(dy) = E U(ζ)
Y
f (y, ζ)(dζ(y) − M(dy))
17/25 Institut Mines-Telecom Functional Poisson convergence
Consequence of the Mecke formula
Proof.
E
y∈ξ(η)
PtF(ξ(η) − δy ) − PtF(ξ(η))
=
1
k! domf
E PtF(ξ(η + δx1 + . . . + δxk
) − δf (x1,...,xk ))
− PtF(ξ(η + δx1 + . . . + δxk
)) Kk
(d(x1, . . . , xk))
= −
1
k! domf
E PtF(ξ(η) + δf (x1,··· ,xk )) − PtF(ξ(η))
Kk
(d(x1, . . . , xk)) + Remainder
18/25 Institut Mines-Telecom Functional Poisson convergence
A bit of geometry
η + δx + δy ξ(η + δx + δy )
f (x,y)
19/25 Institut Mines-Telecom Functional Poisson convergence
Last step
dR(PPP(M), ξ(η))
= sup
F∈TV–Lip1
∞
0 Y
Eζ [PtF(ζ + δy ) − PtF(ζ)] (M − f ∗
Kk
)(dy) dt
+Remainder
20/25 Institut Mines-Telecom Functional Poisson convergence
A key property (on the target space)
Definition
Dx F(ζ) = F(ζ + δx ) − F(ζ)
21/25 Institut Mines-Telecom Functional Poisson convergence
A key property (on the target space)
Definition
Dx F(ζ) = F(ζ + δx ) − F(ζ)
Intertwining property
For the Glauber point process
Dx PtF(ζ) = e−t
PtDx F(ζ)
21/25 Institut Mines-Telecom Functional Poisson convergence
Consequence
∞
0 Y
Eζ [PtF(ζ + δy ) − PtF(ζ)] (M − f ∗
Kk
)(dy) dt
=
∞
0 Y
Eζ[Dy PtF(ζ)] (M − f ∗
Kk
)(dy) dt
=
∞
0
e−t
Y
Eζ[PtDy F(ζ)] (M − f ∗
Kk
)(dy) dt
≤
Y
|M − f ∗
Kk
|(dy)
22/25 Institut Mines-Telecom Functional Poisson convergence
Generic Theorem
Theorem
dR(PPP(M)|[0,a] , ξ(η)|[0,a])
≤ dTV(f ∗
Kk
, M) + 3 · 2k+1
(f ∗
Kk
)(Y) r(domf )
where
r(domf ) := sup
1≤ ≤k−1,
(x1,...,x )∈X
Kk−
({(y1, . . . , yk− ) ∈ Xk−
:
(x1, . . . , x , y1, . . . , yk− ) ∈ domf })
23/25 Institut Mines-Telecom Functional Poisson convergence
Example (cont’d)
Theorem
dR(PPP(M)|[0,a] , ξ(η)|[0,a]) ≤ Cat−1
24/25 Institut Mines-Telecom Functional Poisson convergence
Compound Poisson approximation
The process
L
(b)
t (µ) =
1
2
(x,y)∈µ2
t,=
x − y b
1 x−y ≤δt
Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate)
Assume
t2δb
t
t→∞
−−−→ λ
25/25 Institut Mines-Telecom Functional Poisson convergence
Compound Poisson approximation
The process
L
(b)
t (µ) =
1
2
(x,y)∈µ2
t,=
x − y b
1 x−y ≤δt
Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate)
Assume
t2δb
t
t→∞
−−−→ λ
N ∼ Poisson(κd λ/2)
25/25 Institut Mines-Telecom Functional Poisson convergence
Compound Poisson approximation
The process
L
(b)
t (µ) =
1
2
(x,y)∈µ2
t,=
x − y b
1 x−y ≤δt
Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate)
Assume
t2δb
t
t→∞
−−−→ λ
N ∼ Poisson(κd λ/2)
(Xi , i ≥ 1) iid, uniform in Bd (λ1/d )
25/25 Institut Mines-Telecom Functional Poisson convergence
Compound Poisson approximation
The process
L
(b)
t (µ) =
1
2
(x,y)∈µ2
t,=
x − y b
1 x−y ≤δt
Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate)
Assume
t2δb
t
t→∞
−−−→ λ
N ∼ Poisson(κd λ/2)
(Xi , i ≥ 1) iid, uniform in Bd (λ1/d )
Then
dTV(t2b/d
L
(b)
t ,
N
j=1
Xj
b
) ≤ c(|t2
δb
t − λ| + t− min(2/d,1)
)
25/25 Institut Mines-Telecom Functional Poisson convergence

More Related Content

What's hot

Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Guillaume Costeseque
 
How many vertices does a random walk miss in a network with moderately increa...
How many vertices does a random walk miss in a network with moderately increa...How many vertices does a random walk miss in a network with moderately increa...
How many vertices does a random walk miss in a network with moderately increa...Nobutaka Shimizu
 
Introducing Zap Q-Learning
Introducing Zap Q-Learning   Introducing Zap Q-Learning
Introducing Zap Q-Learning Sean Meyn
 
Problem Understanding through Landscape Theory
Problem Understanding through Landscape TheoryProblem Understanding through Landscape Theory
Problem Understanding through Landscape Theoryjfrchicanog
 
Reinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Reinforcement Learning: Hidden Theory and New Super-Fast AlgorithmsReinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Reinforcement Learning: Hidden Theory and New Super-Fast AlgorithmsSean Meyn
 
Optimal interval clustering: Application to Bregman clustering and statistica...
Optimal interval clustering: Application to Bregman clustering and statistica...Optimal interval clustering: Application to Bregman clustering and statistica...
Optimal interval clustering: Application to Bregman clustering and statistica...Frank Nielsen
 
Coordinate sampler: A non-reversible Gibbs-like sampler
Coordinate sampler: A non-reversible Gibbs-like samplerCoordinate sampler: A non-reversible Gibbs-like sampler
Coordinate sampler: A non-reversible Gibbs-like samplerChristian Robert
 

What's hot (19)

QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Smart Multitask Bregman Clustering
Smart Multitask Bregman ClusteringSmart Multitask Bregman Clustering
Smart Multitask Bregman Clustering
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...
 
Ece4510 notes10
Ece4510 notes10Ece4510 notes10
Ece4510 notes10
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
How many vertices does a random walk miss in a network with moderately increa...
How many vertices does a random walk miss in a network with moderately increa...How many vertices does a random walk miss in a network with moderately increa...
How many vertices does a random walk miss in a network with moderately increa...
 
Intro to ABC
Intro to ABCIntro to ABC
Intro to ABC
 
Introducing Zap Q-Learning
Introducing Zap Q-Learning   Introducing Zap Q-Learning
Introducing Zap Q-Learning
 
Problem Understanding through Landscape Theory
Problem Understanding through Landscape TheoryProblem Understanding through Landscape Theory
Problem Understanding through Landscape Theory
 
Reinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Reinforcement Learning: Hidden Theory and New Super-Fast AlgorithmsReinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Reinforcement Learning: Hidden Theory and New Super-Fast Algorithms
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Ece4510 notes09
Ece4510 notes09Ece4510 notes09
Ece4510 notes09
 
Optimal interval clustering: Application to Bregman clustering and statistica...
Optimal interval clustering: Application to Bregman clustering and statistica...Optimal interval clustering: Application to Bregman clustering and statistica...
Optimal interval clustering: Application to Bregman clustering and statistica...
 
QMC Opening Workshop, Support Points - a new way to compact distributions, wi...
QMC Opening Workshop, Support Points - a new way to compact distributions, wi...QMC Opening Workshop, Support Points - a new way to compact distributions, wi...
QMC Opening Workshop, Support Points - a new way to compact distributions, wi...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Coordinate sampler: A non-reversible Gibbs-like sampler
Coordinate sampler: A non-reversible Gibbs-like samplerCoordinate sampler: A non-reversible Gibbs-like sampler
Coordinate sampler: A non-reversible Gibbs-like sampler
 
sada_pres
sada_pressada_pres
sada_pres
 

Similar to Stein's method for functional Poisson approximation

Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systemsHouw Liong The
 
Diffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingDiffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingJeremyHeng10
 
Diffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingDiffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingJeremyHeng10
 
Lecture8 Signal and Systems
Lecture8 Signal and SystemsLecture8 Signal and Systems
Lecture8 Signal and Systemsbabak danyal
 
Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesFrank Nielsen
 
03/17/2015 SLC talk
03/17/2015 SLC talk 03/17/2015 SLC talk
03/17/2015 SLC talk Zheng Mengdi
 
A contribution towards the development of a Virtual Wind Tunnel (VWT)
A contribution towards the development of a Virtual Wind Tunnel (VWT)A contribution towards the development of a Virtual Wind Tunnel (VWT)
A contribution towards the development of a Virtual Wind Tunnel (VWT)Vicente Mataix Ferrándiz
 
SLC 2015 talk improved version
SLC 2015 talk improved versionSLC 2015 talk improved version
SLC 2015 talk improved versionZheng Mengdi
 
k-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture modelsk-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture modelsFrank Nielsen
 
Hiroyuki Sato
Hiroyuki SatoHiroyuki Sato
Hiroyuki SatoSuurist
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flowsVjekoslavKovac1
 
Appendix of heterogeneous cellular network user distribution model
Appendix of heterogeneous cellular network user distribution modelAppendix of heterogeneous cellular network user distribution model
Appendix of heterogeneous cellular network user distribution modelCora Li
 
Tele4653 l4
Tele4653 l4Tele4653 l4
Tele4653 l4Vin Voro
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsVjekoslavKovac1
 
Signals and Systems Formula Sheet
Signals and Systems Formula SheetSignals and Systems Formula Sheet
Signals and Systems Formula SheetHaris Hassan
 

Similar to Stein's method for functional Poisson approximation (20)

Ray : modeling dynamic systems
Ray : modeling dynamic systemsRay : modeling dynamic systems
Ray : modeling dynamic systems
 
002 ray modeling dynamic systems
002 ray modeling dynamic systems002 ray modeling dynamic systems
002 ray modeling dynamic systems
 
Diffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingDiffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modeling
 
Diffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modelingDiffusion Schrödinger bridges for score-based generative modeling
Diffusion Schrödinger bridges for score-based generative modeling
 
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
QMC: Operator Splitting Workshop, A New (More Intuitive?) Interpretation of I...
 
Lecture8 Signal and Systems
Lecture8 Signal and SystemsLecture8 Signal and Systems
Lecture8 Signal and Systems
 
Patch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective DivergencesPatch Matching with Polynomial Exponential Families and Projective Divergences
Patch Matching with Polynomial Exponential Families and Projective Divergences
 
03/17/2015 SLC talk
03/17/2015 SLC talk 03/17/2015 SLC talk
03/17/2015 SLC talk
 
A contribution towards the development of a Virtual Wind Tunnel (VWT)
A contribution towards the development of a Virtual Wind Tunnel (VWT)A contribution towards the development of a Virtual Wind Tunnel (VWT)
A contribution towards the development of a Virtual Wind Tunnel (VWT)
 
SDEE: Lectures 3 and 4
SDEE: Lectures 3 and 4SDEE: Lectures 3 and 4
SDEE: Lectures 3 and 4
 
SLC 2015 talk improved version
SLC 2015 talk improved versionSLC 2015 talk improved version
SLC 2015 talk improved version
 
k-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture modelsk-MLE: A fast algorithm for learning statistical mixture models
k-MLE: A fast algorithm for learning statistical mixture models
 
Hiroyuki Sato
Hiroyuki SatoHiroyuki Sato
Hiroyuki Sato
 
Tales on two commuting transformations or flows
Tales on two commuting transformations or flowsTales on two commuting transformations or flows
Tales on two commuting transformations or flows
 
Appendix of heterogeneous cellular network user distribution model
Appendix of heterogeneous cellular network user distribution modelAppendix of heterogeneous cellular network user distribution model
Appendix of heterogeneous cellular network user distribution model
 
Tables
TablesTables
Tables
 
Damiano Pasetto
Damiano PasettoDamiano Pasetto
Damiano Pasetto
 
Tele4653 l4
Tele4653 l4Tele4653 l4
Tele4653 l4
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
Signals and Systems Formula Sheet
Signals and Systems Formula SheetSignals and Systems Formula Sheet
Signals and Systems Formula Sheet
 

Recently uploaded

Thermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptxThermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptxuniversity
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptxpallavirawat456
 
trihybrid cross , test cross chi squares
trihybrid cross , test cross chi squarestrihybrid cross , test cross chi squares
trihybrid cross , test cross chi squaresusmanzain586
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationColumbia Weather Systems
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPirithiRaju
 
Servosystem Theory / Cybernetic Theory by Petrovic
Servosystem Theory / Cybernetic Theory by PetrovicServosystem Theory / Cybernetic Theory by Petrovic
Servosystem Theory / Cybernetic Theory by PetrovicAditi Jain
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingNetHelix
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...D. B. S. College Kanpur
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Radiation physics in Dental Radiology...
Radiation physics in Dental Radiology...Radiation physics in Dental Radiology...
Radiation physics in Dental Radiology...navyadasi1992
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...Universidade Federal de Sergipe - UFS
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPirithiRaju
 
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXDole Philippines School
 
PROJECTILE MOTION-Horizontal and Vertical
PROJECTILE MOTION-Horizontal and VerticalPROJECTILE MOTION-Horizontal and Vertical
PROJECTILE MOTION-Horizontal and VerticalMAESTRELLAMesa2
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationColumbia Weather Systems
 

Recently uploaded (20)

Let’s Say Someone Did Drop the Bomb. Then What?
Let’s Say Someone Did Drop the Bomb. Then What?Let’s Say Someone Did Drop the Bomb. Then What?
Let’s Say Someone Did Drop the Bomb. Then What?
 
Thermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptxThermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptx
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptx
 
trihybrid cross , test cross chi squares
trihybrid cross , test cross chi squarestrihybrid cross , test cross chi squares
trihybrid cross , test cross chi squares
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather Station
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdf
 
Servosystem Theory / Cybernetic Theory by Petrovic
Servosystem Theory / Cybernetic Theory by PetrovicServosystem Theory / Cybernetic Theory by Petrovic
Servosystem Theory / Cybernetic Theory by Petrovic
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
 
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
Fertilization: Sperm and the egg—collectively called the gametes—fuse togethe...
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Radiation physics in Dental Radiology...
Radiation physics in Dental Radiology...Radiation physics in Dental Radiology...
Radiation physics in Dental Radiology...
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
 
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
 
PROJECTILE MOTION-Horizontal and Vertical
PROJECTILE MOTION-Horizontal and VerticalPROJECTILE MOTION-Horizontal and Vertical
PROJECTILE MOTION-Horizontal and Vertical
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather Station
 

Stein's method for functional Poisson approximation

  • 1. Institut Mines-Telecom Functional Poisson convergence L. Decreusefond (joint work with M. Schulte, C. Th¨ale) Stein, Malliavin, Poisson and co.
  • 2. Motivation : Poisson polytopes 1 2 3 4 5 6 0 1 23456 η ξ(η) 2/25 Institut Mines-Telecom Functional Poisson convergence
  • 3. Motivation : Poisson polytopes 1 2 3 4 5 6 0 1 23456 η ξ(η) Question What happens when the number of points goes to infinity ? 2/25 Institut Mines-Telecom Functional Poisson convergence
  • 4. Poisson point process Hypothesis Points are distributed to a Poisson process of control measure tK Definition The number of points is a Poisson rv (t K(Sd−1)) Given the number of points, they are independently drawn with distribution K 3/25 Institut Mines-Telecom Functional Poisson convergence
  • 5. Rescaling : γ = 2/(d − 1) Campbell-Mecke formula E x1,··· ,xk ∈ω (k) = f (x) = tk f (x1, · · · , xk)K(dx1, · · · , dxk) 4/25 Institut Mines-Telecom Functional Poisson convergence
  • 6. Rescaling : γ = 2/(d − 1) Campbell-Mecke formula E x1,··· ,xk ∈ω (k) = f (x) = tk f (x1, · · · , xk)K(dx1, · · · , dxk) Mean number of points (after rescaling) 1 2 E x=y∈ω 1 tγx−tγy ≤β = t2 2 Sd−1⊗Sd−1 1 x−y ≤t−γβdxdy 4/25 Institut Mines-Telecom Functional Poisson convergence
  • 7. Rescaling : γ = 2/(d − 1) Campbell-Mecke formula E x1,··· ,xk ∈ω (k) = f (x) = tk f (x1, · · · , xk)K(dx1, · · · , dxk) Mean number of points (after rescaling) 1 2 E x=y∈ω 1 tγx−tγy ≤β = t2 2 Sd−1⊗Sd−1 1 x−y ≤t−γβdxdy Geometry Vd−1(Sd−1 ∩Bd βt−γ (y)) = κd−1(βt−γ )d−1 + (d − 1)κd−1 2 (βt−γ )d +O(t−γ( 4/25 Institut Mines-Telecom Functional Poisson convergence
  • 8. Rescaling : γ = 2/(d − 1) Campbell-Mecke formula E x1,··· ,xk ∈ω (k) = f (x) = tk f (x1, · · · , xk)K(dx1, · · · , dxk) Mean number of points (after rescaling) 1 2 E x=y∈ω 1 tγx−tγy ≤β = t2 2 Sd−1⊗Sd−1 1 x−y ≤t−γβdxdy Geometry Vd−1(Sd−1 ∩Bd βt−γ (y)) = κd−1(βt−γ )d−1 + (d − 1)κd−1 2 (βt−γ )d +O(t−γ( 4/25 Institut Mines-Telecom Functional Poisson convergence
  • 9. Schulte-Th¨ale (2012) based on Peccati (2011) P(t2/(d−1) Tm(ξ) > x) − e−βx(d−1) m−1 i=0 (βxd−1)i i! ≤ Cx t− min(1/2,2/(d−1)) 5/25 Institut Mines-Telecom Functional Poisson convergence
  • 10. Schulte-Th¨ale (2012) based on Peccati (2011) P(t2/(d−1) Tm(ξ) > x) − e−βx(d−1) m−1 i=0 (βxd−1)i i! ≤ Cx t− min(1/2,2/(d−1)) What about speed of convergence as a process ? 5/25 Institut Mines-Telecom Functional Poisson convergence
  • 11. Configuration space Definition A configuration is a locally finite set of particles on a Polish spaceY f dω = x∈ω f (x) 6/25 Institut Mines-Telecom Functional Poisson convergence
  • 12. Configuration space Definition A configuration is a locally finite set of particles on a Polish spaceY f dω = x∈ω f (x) Vague topology ωn vaguely −−−−→ ω ⇐⇒ f dωn n→∞ −−−→ f dω for all f continuous with compact support from Y to R 6/25 Institut Mines-Telecom Functional Poisson convergence
  • 13. Configuration space Definition A configuration is a locally finite set of particles on a Polish spaceY f dω = x∈ω f (x) Vague topology ωn vaguely −−−−→ ω ⇐⇒ f dωn n→∞ −−−→ f dω for all f continuous with compact support from Y to R Be careful ! δn vaguely −−−−→ ∅ 6/25 Institut Mines-Telecom Functional Poisson convergence
  • 14. Convergence in configuration space Theorem (DST) dR(Pn, Q) n→∞ −−−→ 0 =⇒ Pn distr. −−−→ Q Convergence in NY 7/25 Institut Mines-Telecom Functional Poisson convergence
  • 15. Example Our settings Pt : PPP of intensity tK on C ⊂ X f : dom f = Ck/Sk −→ Y Definition T( x∈η δx ) = (x1,··· ,xk )∈ηk = δt2/d f (x1,··· ,xk ) := ξ(η) f ∗K : image measure of (tK)k by f M: intensity of the target Poisson PP Example 8/25 Institut Mines-Telecom Functional Poisson convergence
  • 16. Main result Theorem (Two moments are sufficient) sup F∈TV–Lip1 E F PPP(M) − E F T∗ (PPP(tK) ≤ distTV(L, M) + 2(var ξ(Y) − Eξ(Y)) 9/25 Institut Mines-Telecom Functional Poisson convergence
  • 17. Stein method The main tool Construct a Markov process (X(s), s ≥ 0) with values in configuration space ergodic with PPM(M) as invariant distribution X(s) distr. −−−→ PPM(M) for all initial condition X(0) for which PPM(M) is a stationary distribution X(0) distr. = PPM(M) =⇒ X(s) distr. = PPM(M), ∀s > 0 10/25 Institut Mines-Telecom Functional Poisson convergence
  • 18. In one picture PPP(M) PPP(M) T#(PPP(tK)) P# s (PPP(M)) P# s (T#(PPP(tK))) 11/25 Institut Mines-Telecom Functional Poisson convergence
  • 19. Realization of a Glauber process Y Time0 X(s) sS1 S2 S1, S2, · · · : Poisson process of intensity M(Y) ds Lifetimes : Exponential rv of param. 1 Remark : Nb of particles ∼ M/M/∞ 12/25 Institut Mines-Telecom Functional Poisson convergence
  • 20. Properties Theorem Distr. X(s)=PPP((1 − e−s)M) + e−s-thinning of the I.C. X(s) s→∞ −−−→ PPP(M) If X(0) distr. = PPP(M) then X(s) distr. = PPP(M) Generator LF(ω) := Y F(ω + δy ) − F(ω) M(dy) + y∈ω F(ω − δy ) − F(ω) 13/25 Institut Mines-Telecom Functional Poisson convergence
  • 21. Stein representation formula Definition PtF(η) = E[F(X(t)) | X(0) = η] 14/25 Institut Mines-Telecom Functional Poisson convergence
  • 22. Stein representation formula Definition PtF(η) = E[F(X(t)) | X(0) = η] Fundamental Lemma F(ω)πM(dω) − F(ξ) = ∞ 0 LPsF(ξ)ds 14/25 Institut Mines-Telecom Functional Poisson convergence
  • 23. Stein representation formula Definition PtF(η) = E[F(X(t)) | X(0) = η] Fundamental Lemma F(ω)πM(dω) − F(ξ(η)) = ∞ 0 LPsF(ξ(η))ds 14/25 Institut Mines-Telecom Functional Poisson convergence
  • 24. Stein representation formula Definition PtF(η) = E[F(X(t)) | X(0) = η] Fundamental Lemma F(ω)πM(dω) − EF(ξ(η)) = E ∞ 0 LPsF(ξ(η))ds 14/25 Institut Mines-Telecom Functional Poisson convergence
  • 25. What we have to compute Distance representation dR(PPP(M), T# (PPP(tK))) = sup F∈TV–Lip1 E ∞ 0 Y [PsF(ξ(η) + δy ) − PsF(ξ(η))] M(dy) ds + E ∞ 0 y∈ξ(η) [PsF(ξ(η) − δy ) − PtsF(ξ(η))] ds   15/25 Institut Mines-Telecom Functional Poisson convergence
  • 26. Transformation of the stochastic integral Bis repetita dR(PPP(M), ξ(η)) = sup F∈TV–Lip1 E ∞ 0 Y [PtF(ξ(η) + δy ) − PtF(ξ(η))] M(dy) dt + E ∞ 0 y∈ξ(η) [PtF(ξ(η) − δy ) − PtF(ξ(η))] dt   16/25 Institut Mines-Telecom Functional Poisson convergence
  • 27. Mecke formula Mecke formula ⇐⇒ IPP E y∈ζ f (y, ζ) = Y Ef (y, ζ + δy ) M dy) is equivalent to E Y Dy U(ζ)f (y, ζ) M(dy) = E U(ζ) Y f (y, ζ)(dζ(y) − M(dy)) 17/25 Institut Mines-Telecom Functional Poisson convergence
  • 28. Consequence of the Mecke formula Proof. E y∈ξ(η) PtF(ξ(η) − δy ) − PtF(ξ(η)) = 1 k! domf E PtF(ξ(η + δx1 + . . . + δxk ) − δf (x1,...,xk )) − PtF(ξ(η + δx1 + . . . + δxk )) Kk (d(x1, . . . , xk)) = − 1 k! domf E PtF(ξ(η) + δf (x1,··· ,xk )) − PtF(ξ(η)) Kk (d(x1, . . . , xk)) + Remainder 18/25 Institut Mines-Telecom Functional Poisson convergence
  • 29. A bit of geometry η + δx + δy ξ(η + δx + δy ) f (x,y) 19/25 Institut Mines-Telecom Functional Poisson convergence
  • 30. Last step dR(PPP(M), ξ(η)) = sup F∈TV–Lip1 ∞ 0 Y Eζ [PtF(ζ + δy ) − PtF(ζ)] (M − f ∗ Kk )(dy) dt +Remainder 20/25 Institut Mines-Telecom Functional Poisson convergence
  • 31. A key property (on the target space) Definition Dx F(ζ) = F(ζ + δx ) − F(ζ) 21/25 Institut Mines-Telecom Functional Poisson convergence
  • 32. A key property (on the target space) Definition Dx F(ζ) = F(ζ + δx ) − F(ζ) Intertwining property For the Glauber point process Dx PtF(ζ) = e−t PtDx F(ζ) 21/25 Institut Mines-Telecom Functional Poisson convergence
  • 33. Consequence ∞ 0 Y Eζ [PtF(ζ + δy ) − PtF(ζ)] (M − f ∗ Kk )(dy) dt = ∞ 0 Y Eζ[Dy PtF(ζ)] (M − f ∗ Kk )(dy) dt = ∞ 0 e−t Y Eζ[PtDy F(ζ)] (M − f ∗ Kk )(dy) dt ≤ Y |M − f ∗ Kk |(dy) 22/25 Institut Mines-Telecom Functional Poisson convergence
  • 34. Generic Theorem Theorem dR(PPP(M)|[0,a] , ξ(η)|[0,a]) ≤ dTV(f ∗ Kk , M) + 3 · 2k+1 (f ∗ Kk )(Y) r(domf ) where r(domf ) := sup 1≤ ≤k−1, (x1,...,x )∈X Kk− ({(y1, . . . , yk− ) ∈ Xk− : (x1, . . . , x , y1, . . . , yk− ) ∈ domf }) 23/25 Institut Mines-Telecom Functional Poisson convergence
  • 35. Example (cont’d) Theorem dR(PPP(M)|[0,a] , ξ(η)|[0,a]) ≤ Cat−1 24/25 Institut Mines-Telecom Functional Poisson convergence
  • 36. Compound Poisson approximation The process L (b) t (µ) = 1 2 (x,y)∈µ2 t,= x − y b 1 x−y ≤δt Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate) Assume t2δb t t→∞ −−−→ λ 25/25 Institut Mines-Telecom Functional Poisson convergence
  • 37. Compound Poisson approximation The process L (b) t (µ) = 1 2 (x,y)∈µ2 t,= x − y b 1 x−y ≤δt Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate) Assume t2δb t t→∞ −−−→ λ N ∼ Poisson(κd λ/2) 25/25 Institut Mines-Telecom Functional Poisson convergence
  • 38. Compound Poisson approximation The process L (b) t (µ) = 1 2 (x,y)∈µ2 t,= x − y b 1 x−y ≤δt Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate) Assume t2δb t t→∞ −−−→ λ N ∼ Poisson(κd λ/2) (Xi , i ≥ 1) iid, uniform in Bd (λ1/d ) 25/25 Institut Mines-Telecom Functional Poisson convergence
  • 39. Compound Poisson approximation The process L (b) t (µ) = 1 2 (x,y)∈µ2 t,= x − y b 1 x−y ≤δt Theorem (Reitzner-Schlte-Thle (2013) w.o. conv. rate) Assume t2δb t t→∞ −−−→ λ N ∼ Poisson(κd λ/2) (Xi , i ≥ 1) iid, uniform in Bd (λ1/d ) Then dTV(t2b/d L (b) t , N j=1 Xj b ) ≤ c(|t2 δb t − λ| + t− min(2/d,1) ) 25/25 Institut Mines-Telecom Functional Poisson convergence