• Save
 energy sources, quality , characteristics and classification( latika yadav)
Upcoming SlideShare
Loading in...5
×
 

energy sources, quality , characteristics and classification( latika yadav)

on

  • 3,105 views

 

Statistics

Views

Total Views
3,105
Slideshare-icon Views on SlideShare
3,105
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

     energy sources, quality , characteristics and classification( latika yadav) energy sources, quality , characteristics and classification( latika yadav) Presentation Transcript

    • ENERGY SOURCES, QUALITY AND CHARACTERISTICS OF ENERGY SOURCES & CLASSIFICATION OF ENERGY SOURCESMs. Latika Yadav (Research Scholar), Dept. of Foods and Nutrition, College of H.Sc,Maharana Pratap University of Agriculture and Technology, MPUAT, Udaipur, rajasthan-313001, email.id: a.lata27@gmail.com
    • Definition of ENERGY The ability of a system to do work. ENERGY A physical quantity which produces a change or effect.Unit of measurement:the joule (J).
    • YE NERG C ES OFSOUR LTH EWORD
    • YENER G S OF SOUR CE OR LD!THE W
    • Although oil, natural gas, and coal willremain the primary energy sources for the foreseeable future, a variety of resources will be needed to meet the world’s growing demand. YENERG S OF SO URCE All energy sources have benefits, OR LD!THE W
    • QUALITY OF ENERGY SOURCESEnergy quality is the contrast between different  Hydroelectricityforms of energy, the different trophic levels in ecological systems and the propensity of energy to convert from one form to another. It appeals to our common perception of the heat value, versatility, and environmental performance of different energy forms and the way a small increment in energy flow can sometimes produce a large transformation effect on both energy physical state and energy. For example the transition from a solid state to liquid may only involve a very small addition of energy.  Wind Power Biomass Fossil Fuels Geothermal
    • ENERGY QUALITY is of 3 types: 1) Energy quality in physical-chemical science ( direct energy transformations):i) Constant energy form, but variable energy flowii) Variable energy form, but constant energy flow2) Energy quality in ecological physical chemistry ( direct and indirect energy transformations):i) Constant energy form and constant energy flowii) Variable energy form and variable energy flow3) Energy quality in biophysical economics ( indirect energy transformations)
    • 1) Energy quality in physical- ENERGY TRNSFORMATION chemical science ( direct energy transformations):i) Constant energy form, but variable energy flow: T.Ohta suggested that the concept of energy quality may be more intuitive if one considers examples where the form of energy remains constant but the amount of energy flowing, or transferred is varied. For instance if we consider only the inertial form of energy, then the energy quality of a moving body is higher when it moves with a greater velocity. If we consider only the heat form of energy, then a higher temperature has higher quality. And if we consider only the light form of energy then light with higher frequency has greater quality (Ohta 1994, p. 90). 
    • ii) Variable energy form, but constant energy flow : The situationbecomes more complex when the form of energy does not remain constant. Here,energy quality is defined by the relative ease with which the energy transforms,from form to form. If energy A is relatively easier to convert to energy B but energy Bis relatively harder to convert to energy A, then the quality of energy A is definedas being higher than that of B. (T.Ohta 1994, p. 90). DIRECT ENERGY TRANSFORMATION
    • 2) Energy quality in ecological physical chemistry ( direct andindirect energy transformations):                          Ecological physical chemistry is concerned with the energyconversions where the energy forms and flows are not held constant, and how theform changes over successive indirect transformation steps in an ecological foodchain for example.i) Constant energy form and constant energy flowii) Variable energy form and variable energy flow Solar energy is categorized  into direct or indirect  energy  transformation 
    • INDIRECT ENERGYTRANSFORMATION3) Energy quality in biophysical economics (indirect energy transformations):The notion of energy quality was also recognized in the economic sciences. In thecontext of biophysical economics energy quality was measured by the amount ofeconomic output generated per unit of energy input (C.J. Cleveland et al. 2000).
    • Ranking energy quality HIGHEST QUALITY  Ohta Ranking Odum Ranking Electromagnetic Information Mechanical Human Services Photon Protein Food Chemical Electric Power Heat Food, Greens, Grains Howard. T. Odum River-water potential DIFFERENT HIERARCHICAL Consolidated Fuels RANKS OF ENERGY FORM River Chemical energy QUALITY  Mechanical Tide Gross Photosynthesis Average wind Sunlight LOWEST QUALITY
    • CHARACTERISTICS OF ENERGY Energy can be stored. Energy can be transported. Energy can be transformed.Energy can be transferred. Energy can be preserved. Energy can be degraded.
    •  ENERGY SOURCE classification 2011 1) PETROLEUM & THEIR PRODUCTS Fossil Fuels2) BIO FUELS3) NATURAL GAS4) COAL5) BIOMASS6) HYDROGEN Biomass7) NUCLEAR ENERGY8) SOLAR ENERGY9) HYDROELECTRIC10) WIND POWER Wind Power11) GEOTHERMAL12) OTHERS Hydroelectricity Geothermal
    • PETROLEUM is formed from animals and plants that lived millions of years ago when heat and pressure turned decayed  matter into crude oil. • Transportation fuel for the world• Basis of many products, from  prescription drugs to plastics• Economical to produce, easy  to transport• High C02 emissions l w ab• Found in limited areas ne e• Supply may be exhausted  nr e before natural gas/coal resources no• Possible environmental impact  from drilling and transporting
    • PROPANE is produced as a byproduct from natural gas  processing and crude oil refining. It burns hotter and more  evenly than other fuels.• Yields 60–70% less smog-producing  hydrocarbons than gasoline/diesel  fuel or propane exhaust• Nontoxic and insoluble in water• Doesn’t spill, pool, or leave a residue• Uses some fossil fuels in conversion l w ab• Highly flammable ene• Less energy in a gallon of propane  nr e than in a gallon of gasoline or  no diesel fuel
    • NATURAL GAS consists primarily of methane but includes  significant quantities of ethane, butane, propane, carbon dioxide,  nitrogen, helium, and hydrogen sulfide. • Widely available• Burns more cleanly than coal or oil• Often used in combination with  other fuels to decrease pollution in  electricity generation• Added artificial odor that people  can easily smell the gas in case of a leak ble e wa n• Transportation costs are high n re• Burns cleanly, but still  no has emissions• Pipelines impact ecosystems
    • COAL is formed from trees and plants in vast primeval forests,  when heat and pressure turned decayed matter into coal. Coal  is a part of the fossil fuels family.• Abundant supply• Currently inexpensive to extract• Reliable and capable of  generating large amounts  of power b l• Emits major greenhouse gases  ewa and acid rain ren• High environmental impact from  n on e mining and burning• Mining can be dangerous for miners
    • NUCLEAR ENERGY is generated in reactors, when nuclear  fuel fission heats water, and the steam turns turbines to run  the generators that convert energy into electricity.• No greenhouse gases or C02 emissions• Efficiently transforms energy into electricity• Uranium reserves are abundant• Refueled yearly • Higher capital costs• Problem of long-term  l w ab storage of radioactive waste ene• Heated waste water from  o nr e nuclear plants harms aquatic life n• Potential nuclear proliferation issue
    • SOLAR ENERGY is generated when photovoltaic (PV)  cells convert heat from the sun directly into electricity.• Nonpolluting• Most abundant energy source available• Systems last 15–30 years• High initial investment• Dependent on sunny weather• Supplemental energy may be  l e needed in low sunlight areas w ab• Requires large physical space ne re for PV cell panels
    • HYDROELECTRIC POWER is generated when flowing water turns turbines to run generators that convert energy into electricity.• No emissions• Reliable• Capable of generating  large amounts of power• Output can be regulated  to meet demand• Environmental impacts by  le w ab changing the environment  e n• Hydroelectric dams  re are expensive to build• Dams may be affected  by drought• Potential for floods
    • WIND POWER is generated when wind turns turbines to run  the  generators that convert energy into electricity, which is  then stored in batteries.• No emissions• Affordable• Little disruption of ecosystems• Relatively high output• Output is proportional  to wind speed• Not feasible for all  a bl e e w geographical locations ren• High initial investment• Extensive land use
    • BIOMASS is produced from vegetable oils, animal fats, recycled  restaurant greases, and other byproducts of plant, agricultural,  and forestry processing or industrial and human waste products. • Abundant supply• Fewer emissions than  fossil fuel sources• Can be used in diesel engines• Auto engines can easily be  converted to run on biomass fuel• Source must be near usage  to cut transportation costs b le• Emits some pollution  ewa• Increases nitrogen oxides,  ren an air pollutant emissions• Uses some fossil fuels in conversion
    • ETHANOL is a subset of biomass that is manufactured from  alcohols, ethers, esters, and other chemicals extracted from  plant and tree residue. It can be made from corn, sugar,  wheat, and barley.• Easily manufactured• Fewer emissions than fossil fuel • Carbon-neutral (C02 emissions  offset by photosynthesis in plants)• Extensive use of cropland• Less energy in a gallon of  ethanol than in a gallon of gasoline or diesel fuel• Costs more than gasoline to produce• Currently requires government subsidy  to be affordable to consumers
    • HYDROGEN is found in combination with oxygen in water, but it  is also present in organic matter such as living plants, petroleum,  or coal. Hydrogen fuel is a byproduct of chemically-mixing hydrogen  and oxygen to produce electricity, water, and heat. It’s stored in  a “cell” or battery.• Abundant supply• Water vapor emissions only• Excellent industrial safety record• More expensive to produce  than fossil fuel Systems• Currently uses a large  amount of fossil fuels in the  b le hydrogen extraction process ewa• Storage and fuel cell technology  ren still being developed
    • GEOTHERMAL ENERGY is generated by heat in the earth’s  core. It is found underground by drilling steam wells (like oil   drilling). There is a global debate as to whether geothermal  energy is renewable or nonrenewable.• Minimal environmental impact• Efficient• Power plants have low emissions• Low cost after the  initial investment• Geothermal fields found in  e bl few areas around the world e wa• Expensive start-up costs ren• Wells could eventually  be depleted
    • REFERNECES1. www.wikipedia.com2. http://www.thefullwiki.org/Energy_quality3. http://www.tutorvista.com/content/science/science-ii/sources- energy/characteristics-energy.php  4. http://www.stat.fi/tup/khkinv/khkaasut_polttoaineluokitus_maaritelmat_2011_ en.pdf 5. http://www.msgravlinastec.weebly.com