LTC, Jack R. Widmeyer Transportation Research Conference, 11/04/2011, Yong Lao
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
606
On Slideshare
606
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
1
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Performance Evaluation of Bus Lines with Data Envelopment Analysisand Geographic Information Systems
    Yong Lao, Professor
    Division of Social, Behavioral and Global Studies
    California State University Monterey Bay
    November 4, 2010
  • 2. Project Background
    Currently public transit agencies are under increasing pressure to operate more efficiently as the level of government funding reduces, or as a result of changing ownerships or regulations.
    The majority of the existing research focuses on the operations of the public transit system, attempting to evaluate performances from the management perspective.
    The characteristics of local population and commuting pattern largely determine the passenger demand as well as operational scale for the public transit system.
  • 3. The Goal
    To combine Data Envelopment Analysis (DEA) and Geographic Information Systems (GIS) to examine the performance of the public transit system in Monterey-Salinas area.
    Operational efficiency: measures the productivity of a public transit agency, focusing on the input elements controlled by the management.
    Spatial effectiveness: measures how well the general public is being served, focusing on the environmental elements often beyond the control of the management.
  • 4. Questions Raised
    What are the operational costs and benefits associated with a bus line?
    How to identify and create the service corridor, demographic profile and travel pattern associated with a bus line?
    How to measure and compare the operational efficiency and spatial effectiveness of bus lines?
  • 5. The Use of GIS
    Overlay and analyze demographic variables at census tract level.
    Population density (population per sq miles)
    Population 65 years and over
    Journey to work by bus
    Private vehicle occupancy
    Total disabilities
    Median household income
  • 6. Using the Weighted Linear Combination Method to Model the Level of Demand
  • 7. The Level of Service
    Calculate the number of bus stops per census tract.
    Calculate the level of service by dividing the number of bus stops by the level of demand at each census tract.
  • 8. Data Envelopment Analysis
    Data Envelopment Analysis (DEA) is a widely used optimization technique to evaluate efficiencies of decision making units
    First introduced by Charnes and Cooper in 1978
    Examples: banks, schools, libraries, government agencies, etc.
  • 9. Using DEA to Evaluate MST Bus Lines
    Monterey Salinas Transit (MST)
    Currently the MST transit system serves a 280 square-mile area of Monterey County and Southern Santa Cruz County
    With an annual budget of $20.2 million, MST employs more than 2100 people, operating 86 vehicles and 50 routes.
    Each bus line is treated as a DMU in the DEA model.
    There are 24 fixed bus lines
  • 10.
  • 11. DEA Model Variables
    j: decision making units, j = 1,…,n
    i: input, i = 1,…,m
    r: output, r = 1,…,s
    xij: The i th input for DMU j
    yrj: the r th output for DMU j
    λj: the weight parameter for DMU j
    µ: the level of output
    θ: relative efficiency score, θ = 1/µ
  • 12. The DEA Model
  • 13. Input and Output Variables for the DEA Model
  • 14. The Service Corridor Of A Bus Line
  • 15. DEA Model Results and Recommendations
  • 16.
  • 17.
  • 18.
  • 19.
  • 20. Comparison of Operational Efficiency and Spatial Effectiveness
  • 21. Conclusions
    By combining GIS and DEA, we are able to closely monitor the commuting pattern, demographic information, and performance related to each bus line.
    GIS is mainly used for preparing and analyzing data for the DEA model.
    The DEA approach can help us to better understand the impact of socio-economic environment on business operations.
    The results of the study provide useful information for improving MST operations and services.
  • 22. Thank you