LTC, Annual Forum, The Direction of Technology in Transportation, 05/13/2011, Matthew Barth

323 views
302 views

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
323
On SlideShare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
4
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

LTC, Annual Forum, The Direction of Technology in Transportation, 05/13/2011, Matthew Barth

  1. 1. Communicating with Infrastructure: Using Intelligent Transportation System Technologies<br />Matthew Barth<br />Yeager Families Professor of Engineering<br />Director: Center for Environmental Research and Technology<br />University of California-Riverside<br />Acknowledgements:<br /><ul><li>Kanok Boriboonsomsin, George Scora, Alex Vu, Sindhura Mandava, Qichi Yang
  2. 2. University of California Transportation Center (UCTC), California Department of Transportation, Federal Highway Administration, EPA, VW/Audi, Nissan, BMW, others</li></li></ul><li>UCR CE-CERT<br />Laboratories:<br />Emissions and Fuels Research<br />Emissions measurement/analysis, fuel effects, new instrumentation/methods, after-treatment <br />Transportation Systems Research <br />ITS, vehicle activity, energy/emissions modeling<br />Atmospheric Processes Research<br />secondary pollutant formation, mitigation methods<br />Environmental Modeling<br />models to predict long-term regional effects; micro dispersion<br />Sustainable Energy Research<br />cellulosic ethanol, synthetic diesel fuel, solar energy<br />www.cert.ucr.edu<br />
  3. 3. Intelligent Transportation Systems<br />Targeted Benefits:<br /><ul><li>Improving Safety
  4. 4. reducing accidents
  5. 5. making accidents more survivable
  6. 6. Improving Transportation Efficiency:
  7. 7. increasing throughput
  8. 8. reducing congestion
  9. 9. maximizing economics
  10. 10. Energy/Environment:
  11. 11. in-direct benefits of lower emissions and fuel savings
  12. 12. directed benefits to target lower emissions/fuel</li></li></ul><li>Communications is key for Advanced ITS Applications:<br /><ul><li>V2V (adhoc networks, VANET)
  13. 13. V2I
  14. 14. I2V</li></li></ul><li>Many ITS applications require real-time link-level information: speed, density, flow, energy, emissions, etc.<br />
  15. 15. Vehicle Activity: Real-Time Traffic Data<br /><ul><li>real-time traffic density, speed, and flow is become more readily available
  16. 16. Example: California Traffic Performance Measurement System (PeMS)
  17. 17. Real-Time data can be used measure congestion</li></li></ul><li>100<br />90<br />Highway<br />Arterial<br />Residential<br />80<br />70<br />60<br />Velocity [km/hr]<br />50<br />40<br />30<br />20<br />10<br />0<br />7:00<br />7:03<br />7:06<br />7:09<br />7:12<br />7:14<br />7:17<br />7:20<br />Time [hr:min]<br />PROBE VEHICLES:<br />using GPS dataloggers<br /><ul><li>when and where trips start and end
  18. 18. measurement of position, speed, and acceleration
  19. 19. which roadway route (post map match)</li></li></ul><li>Traffic Surveillance<br /><ul><li>Proliferation of Video Cameras:
  20. 20. off-board
  21. 21. on-board
  22. 22. better algorithms</li></li></ul><li> Arterial Roadway Testbed Chula Vista, California<br />re-identification<br />
  23. 23. Dynamic Network Information: Data Integration<br />Google Earth or Google Maps Interface<br />Traffic simulation result for arterials<br />PeMS data for freeways<br />Traffic signal/detector info<br />INRIX traffic data<br />Probe Vehicle network (arterials and freeways)<br />NAVTEQ underlying network data<br />
  24. 24. ITS Communication<br />
  25. 25. UCR Testbed Vehicle<br />On-board computer interfaces with the vehicle CAN bus, navigation system, and wireless communications system<br />GPS-based location system and wireless communication capability<br />Programmable navigation system with touch-screen capability available to driver and passengers<br />
  26. 26. “Dynamic Eco-Driving”<br />ECO-Driving Advice with Dynamic Feedback<br /><ul><li>Static ECO-Driving:
  27. 27. shift up as soon as possible
  28. 28. maintain a steady speed
  29. 29. anticipate traffic flow
  30. 30. accelerate smoothly
  31. 31. decelerate softly
  32. 32. check the tire pressure frequently
  33. 33. Dynamic ECO-Driving: providing real-time advice/feedback:
  34. 34. speed management, intelligent speed adaptation
  35. 35. Instantaneous fuel economy readings
  36. 36. Cumulative real-time travel cost display</li></li></ul><li>Dynamic ECO-Driving<br />Destination<br />Current<br />Location<br />
  37. 37. Dynamic ECO-Driving<br />Current Speed<br />ECO-Speed<br />11+ mi. over ECO-Speed<br />40<br />35<br />6-10 mi. over ECO-Speed<br />1-5 mi. over ECO-Speed<br />At or under ECO-Speed<br />MPH<br />MPH<br />Destination<br />
  38. 38. Dynamic ECO-Driving<br />ECO-Speed<br />11+ mi. over ECO-Speed<br />21<br />25<br />6-10 mi. over ECO-Speed<br />1-5 mi. over ECO-Speed<br />At or under ECO-Speed<br />MPH<br />MPH<br />Current Speed<br />Destination<br />
  39. 39. Dynamic ECO-Driving<br />Current Speed<br />ECO-Speed<br />11+ mi. over ECO-Speed<br />29<br />35<br />6-10 mi. over ECO-Speed<br />1-5 mi. over ECO-Speed<br />At or under ECO-Speed<br />MPH<br />MPH<br />Destination<br />
  40. 40. Dynamic ECO-Driving<br />Current Speed<br />ECO-Speed<br />11+ mi. over ECO-Speed<br />61<br />45<br />6-10 mi. over ECO-Speed<br />1-5 mi. over ECO-Speed<br />At or under ECO-Speed<br />MPH<br />MPH<br />Destination<br />
  41. 41. Dynamic ECO-Driving<br />Current Speed<br />ECO-Speed<br />11+ mi. over ECO-Speed<br />52<br />45<br />6-10 mi. over ECO-Speed<br />1-5 mi. over ECO-Speed<br />At or under ECO-Speed<br />MPH<br />MPH<br />Destination<br />
  42. 42. Dynamic ECO-Driving<br />Current Speed<br />ECO-Speed<br />11+ mi. over ECO-Speed<br />45<br />40<br />6-10 mi. over ECO-Speed<br />1-5 mi. over ECO-Speed<br />At or under ECO-Speed<br />MPH<br />MPH<br />Destination<br />
  43. 43. Dynamic ECO-Driving<br />Current Speed<br />ECO-Speed<br />11+ mi. over ECO-Speed<br />33<br />35<br />6-10 mi. over ECO-Speed<br />1-5 mi. over ECO-Speed<br />At or under ECO-Speed<br />MPH<br />MPH<br />Destination<br />
  44. 44. Difference<br />ECO<br />Non<br />-<br />ECO<br />Energy/Emissions<br />Difference<br />Non<br />-<br />Energy/Emissions<br />CO2 (g)<br />CO2 (g)<br />-<br />12%<br />4781<br />5439<br />-<br />12%<br />4781<br />5439<br />CO (g)<br />CO (g)<br />-<br />48%<br />50.47<br />97.01<br />-<br />48%<br />50.47<br />97.01<br />HC (g)<br />HC (g)<br />-<br />41%<br />1.90<br />3.20<br />-<br />41%<br />1.90<br />3.20<br />NOx (g)<br />NOx (g)<br />-<br />37%<br />3.97<br />6.28<br />-<br />37%<br />3.97<br />6.28<br />Fuel (g)<br />Fuel (g)<br />-<br />13%<br />1534<br />1766<br />-<br />13%<br />1534<br />1766<br />Dynamic Eco-Driving Field Experiments: Example Results<br />same travel time results:<br /> reference:<br /> M. Barth and K. Boriboonsomsin (2008) “Energy and Emissions Impacts of a Freeway-Based Dynamic Eco-Driving System”, in press, Transportation Research Part D: Environment, Elsevier Press, August, 2008.<br />.<br />
  45. 45. Dynamic ECO-Driving for Arterial Roads: Signalized Corridor Speed Management<br />Much fuel is wasted and CO2 is emitted by vehicles waiting at signalized intersections<br />vehicle speed trajectory can be planned based on knowledge of signal timing<br />concept: broadcast signal timing information to vehicle to plan vehicle trajectories<br />potential target demonstration: California VII corridor where DSRC equipment is already in place with signal information<br />
  46. 46. Signalized Corridor Time-Distance Diagram<br />vehicle trajectories<br />distance<br />signal n<br />signal 4<br />signal 3<br />signal 2<br />signal 1<br />time<br />
  47. 47. Simple Signalized Corridor Planning (freeflow)<br />distance<br />signal n<br />signal 4<br />signal 3<br />signal 2<br />signal 1<br />time<br />simple heuristic: adjust vehicle speed to catch the green time<br />
  48. 48. Velocity Algorithm<br />Target velocity is set to get through the green phase of the next signal (time-distance calculation)<br />Initial velocity may be above or below target velocity<br />objective is to:<br />v0 = velocity of the vehicle at the instant it enters the DSRC range<br />t = total time taken to reach the intersection<br />t1 = the portion of time spent accelerating or decelerating with an acceleration rate a<br />(t-t1) = portion of time spent traveling at uniform velocity before reaching the intersection <br />
  49. 49. Signalized Corridor Planning Simulation Results<br />without advanced information<br />with advanced information<br />
  50. 50. Navigation Techniques:<br /><ul><li>route finding uses famous minimum pathalgorithms (Dijkstra, etc.)
  51. 51. shortest distance
  52. 52. shortest duration (requires traffic info)
  53. 53. lowest energy, lowest emissions (requires traffic info, road grade, energy & emissions models)</li></li></ul><li>New Navigation Tool: ECO-Routing:<br /><ul><li>shortest-distance or shortest-duration path will often</li></ul> be the path that minimizes energy use or emissions<br /><ul><li>roadway congestion and other factors (e.g. grade) create scenarios where minimum-energy and minimum-emissions path may be different than shortest duration or distance</li></li></ul><li>Universal Mobile Emissions Telematics System (UMETS)<br />

×