You	  can	  download	  this	  slide	  here:	                 	  	  hHp://slidesha.re/TwzFrf	  	                LOD	  gener...
About	  Our	  Project	                            2
Project	  Abstract		  We	  do	  just	  two	  things	  on	  the	  project:		  1.  	  Building	  seman*c	  networks	      	 ...
Represen*ng	  events	  informa*on	    using	  seman*c	  network	  (RDF)	  1/2	Example1:	昨日太郎は秋葉原でiPhone5を購入したので、幸せそうだった。	 ...
Outpu[ng	  Linked	  Data	  as	  RDF/XML	  format	     e.g.	  “Taro	  bought	  a	  iPhone	  5	  at	  Akihabara,	  so	  he	 ...
Represen*ng	  events	  informa*on	   using	  seman*c	  network	  (RDF)	  2/2	Example	  2	  (from	  real	  media):	        ...
Project	  Abstract		  We	  do	  just	  two	  things	  on	  the	  project:		  1.  	  Building	  seman*c	  networks	      	 ...
A Case of media comparison	 Topic:     Introduction of Osprey in Japan	About Dataset :	   Period:	       1st April – 16th ...
Consideration throughout visualizingnetwork	 •          the	  difference	  of	  diversity	  of	  topic	      	  	  between	...
Summary	  of	               the	  existence	  of	  2	  kinds	  of	  osprey	On mass media there are NOT information about f...
Example	  of	  Considera*on:	  	  the	  existence	  of	  2	  kinds	  of	  osprey	                Look	  around	  a	  “depl...
Example	  of	  Considera*on:	  	  the	  existence	  of	  2	  kinds	  of	  osprey	                        CV-­‐22	  Osprey	...
Example	  of	  Considera*on:	  	  the	  existence	  of	  2	  kinds	  of	  osprey	                              Accident	  ...
Look around 	  Example	  of	  	                              a “Accident rate of Osprey” node	  Considera*on:	    the	  ex...
Look around 	 Example	  of	  	                              a “Accident rate of Osprey” node	 Considera*on:	   the	  exist...
Summary	•  Introduced	  our	  project:	        –  To	  generate	  LOD	  from	  media	  informa*on	        –  To	  compare	...
Reference	[Ref	  01]	     	  "V-­‐22	  Is	  The	  Safest,	  Most	  Survivable	  Rotorcrab	  The	     Marines	  Have."Lexin...
Appendix
Goal	  /	  Mo*va*on		  1.  To	  generate	  Linked	  Data	  from	  Media	      Informa*on	         –  Mo*va*on:	           ...
Our	  System	  Overview	                              20
Visualizing	  the	  NetworkSize of node/Thickness of edge:	are calculated based on	the frequency information.	Color of nod...
Future	  Work	  	•  At	  this	  stage	  we	  just	  visualize	  the	  network,	  so	  users	  have	  to	     discover	  kn...
整理:  MV-22  /  CV-22 英語にする	オスプレイの型番と事故率の関係   型番	            用途	       事故率	  MV-­‐22	       輸送用	        1.93	   	  (日本配備)	米...
事象の表現方法    	   事象情報を表現するために,[Nguyen 12]の	    	   行動属性を拡張し9つの事象属性を定義した.	      Event	  descripDon	                          ...
End
Upcoming SlideShare
Loading in …5
×

[International Asian LOD Challenge Day 2012]LOD generation of Social and Mass media data: Apply to media comparisons

510 views

Published on

I'll present at Nara 1st Dec, 2012

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
510
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
7
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

[International Asian LOD Challenge Day 2012]LOD generation of Social and Mass media data: Apply to media comparisons

  1. 1. You  can  download  this  slide  here:      hHp://slidesha.re/TwzFrf     LOD  genera*on   of  Social  and  Mass  media  data:   Apply  to  media  comparisons Interna*onal  Asian  LOD  Challenge  Day   1st  Dec,  2012   Presenter:  Kenji  Koshikawa   Co-­‐Researcher(Adviser):  T.  Kawamura,    H.  Nakagawa,  Y.  Tanaka,  A.  Ohsuga   Affilia*on:  Department  of  Social  Intelligence  and  InformaBcs   Graduate  course  of  InformaBon  Systems   The  University  of  Electro-­‐CommunicaBons    
  2. 2. About  Our  Project 2
  3. 3. Project  Abstract  We  do  just  two  things  on  the  project:  1.   Building  seman*c  networks      from  media  informa*on  2.   Comparing  with  different  media      using  the  networks.   3
  4. 4. Represen*ng  events  informa*on   using  seman*c  network  (RDF)  1/2 Example1: 昨日太郎は秋葉原でiPhone5を購入したので、幸せそうだった。  (Yesterday,  Taro  bought  a  iPhone  5  at  Akihabara,  so  he  looked  happy.) Event  1 Event  2 Conver*ng  natural  language  into  seman*c  networks Cause Event  2 Event  1 太郎(Taro) 秋葉原   Ac*vity Status (Akihabara)  Loca*on   購買  Time 昨日   Time 幸福   Object (Buying) (Yesterday) (Happiness)   iPhone  5 4
  5. 5. Outpu[ng  Linked  Data  as  RDF/XML  format   e.g.  “Taro  bought  a  iPhone  5  at  Akihabara,  so  he  looked  happy.” 5
  6. 6. Represen*ng  events  informa*on   using  seman*c  network  (RDF)  2/2 Example  2  (from  real  media):  a  fall  accident April  an  accident  to  occur  the  southern  state  a  poor  maintenance of  Florida  June  the  state  of  Florida,  U.S. 6
  7. 7. Project  Abstract  We  do  just  two  things  on  the  project:  1.   Building  seman*c  networks      from  media  informa*on  2.   Comparing  with  different  media      using  the  networks.   Mass  media Social  media 7
  8. 8. A Case of media comparison Topic: Introduction of Osprey in Japan About Dataset : Period: 1st April – 16th Aug, 2012 Condition: Media textual information have a word “オスプレイ”(Osprey). Dataset of Social media: Twitter: 3,084 tweets A  photo  of  Osprey Dataset of Mass media: Asahi digital news paper: 116 articles MSN Sankei news: 231 articles Nippon News Network(NNN): 110 articles Fuji News Network(FNN): 78 articles
  9. 9. Consideration throughout visualizingnetwork •  the  difference  of  diversity  of  topic      between  each  media     •   easy  to  access  minority  opinion   •   the  existence  of  2  kinds  of  osprey  (introduce)   •   the  Laterality  of  dependence  on      user  loca*on   9
  10. 10. Summary  of   the  existence  of  2  kinds  of  osprey On mass media there are NOT information about following: •  The existence of other variants (of Osprey) •  The relation between the variants and the accident rate •  The fact that the accident rate of a variant, be deployed in Japan is Lower than other rotorcraft ※ ※ The  V-­‐22s  accident  rate  is  the  lowest  of  any  Marine  rotorcrab  [Ref  01] By visualizing, we found the existence of 2 kinds of osprey andthe relation between the variants and accident rate. Thus, we could notice a doubt of media bias on mass media. 
A doubt of media bias “Mass media hardly report about such information intentionally, and they was in a mood in the press fomenting the contrary opinion about introduction of osprey in Japan.” 10
  11. 11. Example  of  Considera*on:    the  existence  of  2  kinds  of  osprey Look  around  a  “deploying”  node deploying CV-­‐22  osprey A Color of node means the occurrence rate on each media. Social Mass MV-­‐22  osprey a common concept This Figure has been showing that there are 2 kinds of variants of osprey according to the network built by social media dataset. 11
  12. 12. Example  of  Considera*on:    the  existence  of  2  kinds  of  osprey CV-­‐22  Osprey deploying Be  nothing  like MV-­‐22  Osprey Lower for  transport,  original  requirement Harmful  rumor There are the difference of use of each variant of osprey, It can be read from this figure. e.g. MV-22: for transporting / CV-22: for ? 12
  13. 13. Example  of  Considera*on:    the  existence  of  2  kinds  of  osprey Accident  rate Copter low Pilot  error Look  around  a  “accident  rate”  node 13
  14. 14. Look around Example  of     a “Accident rate of Osprey” node Considera*on:   the  existence  of     Low 2  kinds  of  osprey Accident  rate  of  Osprey Look around a “1.93” node Look around a “13.47” node Accident  rate Accident  rate Accident  rate  of  CV-­‐22 Accident  rate  of  MV-­‐22 for  the  Special  Opera*ons  Command Accident  rate  of  Osprey Accident  rate  of  Osprey 14
  15. 15. Look around Example  of     a “Accident rate of Osprey” node Considera*on:   the  existence  of     Low 2  kinds  of  osprey The  rela*on  between  the  variants  ate  of  Osprey Accident  r and  Look around a “1.93” node reflected.    (from  a ocial   node  the  accident  rate  was   Look around s “13.47” Accident  rate media  dataset) Accident  rate Accident  rate  of  CV-­‐22 Accident  rate  of  MV-­‐22 for  the  Special  Opera*ons  Command Accident  rate  of  Osprey Accident  rate  of  Osprey 15
  16. 16. Summary •  Introduced  our  project:   –  To  generate  LOD  from  media  informa*on   –  To  compare  with  different  media  using  the  Linked  Data  •  We  are  looking  for  solving  below:   –  en*ty  resolu*on,  instance  matching  problem   –  connect  to  other  Linked  Data  •  In  future  work,  we  will  concentrate  on  improving    LOD  visualiza*on   for  knowledge  discovery.  •  If  you  know  interes*ng  topic  for  media  comparison,  let  me  know.     16
  17. 17. Reference [Ref  01]    "V-­‐22  Is  The  Safest,  Most  Survivable  Rotorcrab  The   Marines  Have."LexingtonInsBtute.org,  February   2011.  Retrieved:  16  February  2011.    [Ref  02]  (Japanese)   越川 兼地,  川村 隆浩,  中川 博之,  田原 康之,  大須賀 昭彦:  CRFを用いた メディア情報の抽出とLinkedData化 -­‐  ソーシャルメディアとマスメディアの 比較事例 -­‐  ,合同エージェントワークショップ&シンポジウム(JAWS  2012),   2012.   Slide  (wriHen  in  Japanese):    hHp://slidesha.re/11pf0qR  
  18. 18. Appendix
  19. 19. Goal  /  Mo*va*on  1.  To  generate  Linked  Data  from  Media   Informa*on   –  Mo*va*on:   •  to  organize  abundance  informa*on     •    to  make  us  recognize  real  events  easily2.  To  compare  with  different  media  using  the   Linked  Data  (we  generated)   –  Mo*va*on:     •  to  discover  knowledge  from  the  difference  of  informa*on  between   media   •  to  understand  real  events  from  mul*ple  points  of  view 19
  20. 20. Our  System  Overview 20
  21. 21. Visualizing  the  NetworkSize of node/Thickness of edge: are calculated based on the frequency information. Color of node: expresses the occurrence rate of Social Mass concept between each media a common using 5 colors. concept Color of edge: expresses kind of relationship between two concepts. subject object time status quoted source activity location target cause ※we used a visualization Application: Gephi 0.8.1 beta 21
  22. 22. Future  Work   •  At  this  stage  we  just  visualize  the  network,  so  users  have  to   discover  knowledge  themselves.   –  We  are  developing  tools  to  support  for  knowledge  discovery  from  the   network.   •  To  es*mate  important  node/sub-­‐network  in  the  network.    •  to  evaluate  our  system  and    to  be  needed  to  experience  other  topic  •  We  are  looking  for  solving  below:   –  en*ty  resolu*on,  Instance  matching.    •  We  will  go  up  for  LOD  Challenge  2012  Japan.   –  But,  I’m  not  sure  which  sec*on  is  the  best  for  our  project. Dataset Idea Applica*on Visualiza*on 22
  23. 23. 整理:  MV-22  /  CV-22 英語にする オスプレイの型番と事故率の関係 型番 用途 事故率 MV-­‐22   輸送用 1.93    (日本配備) 米海兵隊所属   -­‐ 2.45 航空機平均 CV-­‐22 特殊作戦用(空軍) 13.47 日本に配備される(た)機種 「MV-22」の事故率は低い. 23
  24. 24. 事象の表現方法   事象情報を表現するために,[Nguyen 12]の   行動属性を拡張し9つの事象属性を定義した. Event  descripDon   describe property Subject Subject  of  an  event Ac*vity Ac*vity  of  an  event   Object Object  of  an  ac*vity Target  (new) Against  whom  (e.g.  people,  country,  …) Status(new) Status  of  a  subject Loca*on Loca*on  where  an  event  occurred Time Time  informa*on  when  an  event  occured Cause  (new) Cause  what  an  event  occurred Quoted  source  (new) Source  of  a  quote [Nguyen  12]   The-­‐Minh  Nguyen,  Takahiro  Kawamura,  Yasuyuki  Tahara,    and    Akihiko  Ohsuga:  Self-­‐Supervised  Capturing  of  Users’  Ac*vi*es  from   24 Weblogs.  Interna*onal  Journal  of  Intelligent  Informa*on  and  Database  Systems,Vol.6,  No.1,  pp.61-­‐76,  InderScience  Publishers,  2012
  25. 25. End

×