New Teacher Institute 2013
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

New Teacher Institute 2013

on

  • 317 views

 

Statistics

Views

Total Views
317
Views on SlideShare
317
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

New Teacher Institute 2013 Presentation Transcript

  • 1. Katie Costello K-5 Intervention kcostell@somsd.k12.nj.us 973-476-8440 Kimberly Beane K-5 Supervisor of Math & Science kbeane@somsd.k12.nj.us 973-769-2413 K-5 Math & Science New Teacher Institute Welcome! We re excited to do math & science with you! Think of a number that has meaning to you. Build it with manipulatives.
  • 2. Agenda  &  Goals   •  Favorite  Numbers  and  Describing  Numbers   •  Instruc9onal  blocks  and  minutes   •  Singapore  Math  &  Math  in  Focus   •  Lesson  Structure   •  Curriculum  Documents  and  Pacing   •  Assessment  and  Progress  Reports   •  Mee9ng  individual  student  needs  
  • 3. Use  chips  to  show  7  
  • 4. Math  Instruc,onal  Blocks  and  Minutes   K-­‐1   2-­‐5  
  • 5. Pedagogy:  C-­‐P-­‐A       •  Concrete  (manipula9ves)  to     •  Pictorial  (visual  models  or  drawings)  to   •  Abstract  representa9ons  (numbers,  symbols)   Jerome  Bruner’s  research  proved  that  instruc9onal  strategies   build  understanding  for  students  when  they  move  from…  
  • 6. Pedagogy:  Rela9onal  Understanding   Richard  Skemp’s  research  proved  that  for  long  term  learning  to   occur  rela,onal  understanding  is  more  successful  than   instrumental  learning.   Rela,onal  Understanding   Instrumental  Understanding   Conceptual   WHY  before  HOW   One  to  One  Correspondence   Quan99es  and  Values   Anchoring  to  10  or  Tens   PART-­‐WHOLE  models       Reading  with  understanding   Procedural   How   Oral  Coun9ng   Wri9ng  numbers,  Spelling  numbers   Isolated  steps  or  steps  without  meaning         Phone9c  or  word  calling  
  • 7. Pedagogy:  Perceptual  Variability   Zoltan  Diene’s  research  proved  that  children  gain  the  most   conceptual  understanding  when  they  are  exposed  to  a  concept   through  a  variety  of  materials  or  experiences.   Perceptual  Variability   p! /! q! z! ? " ;!
  • 8. Number Lines make Number Sense [wwwwwwwwwwwwwwwwwwwwww]! y u r!
  • 9. Reflec9ng  On  Pedagogy   v Concrete-­‐Pictorial-­‐Abstract  (Bruner)   v Rela9onal  Understanding  (Skemp)   v Mul9ple  Representa9ons  (Dienes)   Turn  &  Talk:  Summarize  each  with  a  partner  
  • 10. Kindergarten   Anchor  to  5.    Bonds  to  5.  
  • 11. K  &  1st   Anchor  to  10.  Bonds  to  10.  
  • 12. Visualiza,on:  Anchor  to  10  
  • 13. Anchoring  to  10  
  • 14. Decomposing  Numbers  
  • 15. Composing  Numbers   V! C!
  • 16. Visualiza,on:  Parts  and  Whole   1st  Grade  Number  Bonds  
  • 17. Number  Bonds  in  Upper  Grades  
  • 18. Visualiza,on:  Parts  and  Whole   3rd  Grade  Number  Bonds  
  • 19. ternational(Singapore)PrivateLimited.Copyingispermitted;seepageii. ( * " +,$-!./!-,&!0.//.12!1304&#( 5 ! 6! 7 ! )! 8 ! 9! : ! ; /." <==>!$-!-,&!1304&#!4=1%/? " @ * ' A " +,$-!./! ( " 5 ! B! 7 ! *! 8 ! A! : ! '6 Grade  1  Singapore  Math!   Please  solve.  
  • 20. Place  Value  Strips   1.    Find  a  partner  to  compose  one  of  these  numbers:      61        42          23          35        14        56       2.    With  your  partner  say  these  about  your  number:   a.    ____  tens  and  ____  ones  make  _____   b._____  +  _____  =  _______      
  • 21. Place  Value  Strips   3.    Find  another  pair  to  add  these  numbers  mentally:      61  +  35  =      42  +  23  =      56  +  14  =       4.  Use  the  hundreds  around  the  room  (and  a  partner)                to  make  these  numbers…   142   361   523   435   614   256      
  • 22. Place  Value  Strips   5.  Come  to  the  front  of  the  room  and  put  the                3-­‐digit    numbers  in  order  from  least  to  greatest.       6.      Find  another  pair  to  add  these  numbers  mentally:      435  +  361  =      523  +  142  =      256  +  614  =      
  • 23. Place  Value  Strips   Build  two    3-­‐  digit  numbers  
  • 24. Lesson  Structure  &     the  Teacher’s  Guide  
  • 25. !"#$%"$#&'()'*'!"#$%&'%()*+,'+&,,-.' /#01&,'234' !"#$%&$'$()*#$ !"#'+,&$,$()*#$ $ -."($/0$ • 123)24$0"23)567$82775*$5"$"2823.*9$:5*92*9$ • %+;$0"5<82(7$5"$=6279)5*7$ • !"#$%$>)7:677$0"23)567$82."*)*?$)*792.@$5A$"23)24$0"5<82(7$ $ !"#$%&$,$()*#$ !"#'+,&$%,$()*#$ $ pB2.:C2"$D5@28)*?$ • >)"2:9$)*79"6:9)5*$ • -C582$:8.77$ • /72$(.*)068.9)327$4C2*$0):96"2@$)*$9C2$92E9$ $ !"#$%&$'F$()*#$ !"#'+,&$'F$()*#$ $ w$!6)@2@$G".:9):2$ • H96@2*97$45"I$)*$0.)"7J$4)9C$(.*)068.9)327$4C2*$*22@2@$ • B.7I7$:5(2$A"5($9C2$796@2*9$92E9$$ • H5869)5*7$676.88K$32"<.8$5"$5*$@"K$2".72$<5."@7$ • L88547$A5"$2""5"7J$728A$:5""2:9)5*J$.*@$@)7:677)5*$ • B2.:C2"$(5*)95"7$796@2*9$6*@2"79.*@)*?M"2.@)*277$$ $ !"#$%&$,$()*#$ !"#'+,&$%F$()*#$ $ ! N*@202*@2*9$-5"I$ • H96@2*9$@2(5*79".92@$6*@2"79.*@)*?$@6")*?$0".:9):2$ • H96@2*9$"2.@K$95$45"I$)*@202*@2*98K$ • B.7I7$:5(08292@$)*$9C2$796@2*9$45"I<55I$ • L7727727$)*@)3)@6.8$796@2*9$6*@2"79.*@)*?$.*@$"2.@)*277$A5"$9C2$*2E9$ 82775*$ $ '+;$()*#$ $ O8576"2$ • H6((.")P27$9C2$<)?$)@2.$5A$9C2$82775*$ • -C582$:8.77$@)7:677)5*$ $ !
  • 26. •  Teacher  Modeling   •  Guided  Prac9ce   •  Independent  Prac9ce  
  • 27. Kindergarten     Inves9gate           Discover   (Teacher   Model)       Explore   (Guided     Prac9ce)         Apply   (Indep)  
  • 28. C-­‐P-­‐A  &  Tradi9onal  Algorithms  
  • 29. Linking  Cubes  &  Base  Ten  Blocks   Solve  these  problems  using  base  ten  blocks…          124    +315                579    -­‐  432                33   x      4            323    -­‐  265                267    +145          
  • 30. Place  Value  Discs  Gr.  3-­‐4   Solve  these  problems  using  base  ten  blocks…          124    +315                579    -­‐  432                33   x      4            323    -­‐  265                267    +145          
  • 31. Homework   K-­‐1   •  Number  Sense  Games  or  Hands-­‐on  Tasks   •  Fact  Games   •  ST  Math     Gr.  2-­‐5   •  FACT  PRACTICE  Online  Games  and  Tasks  (LiveBinder,  Math  in  Focus)   •  Extension  word  problems  of  what  has  been  taught   •  ST  Math    
  • 32. Bar  Models  Gr.  2-­‐5  !"#$%& Part-­‐Whole  
  • 33. Part-­‐Whole  Bar  Models  
  • 34. Introducing  Bar  Models  
  • 35. Addi9on  Part-­‐Whole  Bar  Model   1.    Allison  jogs  6,860  meters  and  Calvin  jogs  5,470   meters.    How  far  do  they  jog  altogether?     2.  Mr.  Michaels  has  $1,685.  Ms.  Kajy  has  $2928  more   than  Mr.  Michaels.    How  much  money  does  Ms.  Kajy   have?  
  • 36. Subtrac9on  Part-­‐Whole  Bar  Model   1.  Brad  has  1,300  stamps.  He  has  938  Canadian  stamps   and  the  rest  are  Malaysian.    How  many  Malaysian   stamps  does  Brad  have?   2.  There  are  3,160  books  in  a  shop.    1,226  are  in   English.  817  books  are  in  Spanish  and  the  rest  are  in   French.    How  many  French  books  are  there?    
  • 37. Mul9plica9on  Part-­‐Whole  Bar  Model   1.  A  refrigerator  costs  5  9mes  as  much  as  a  television.     The  televisions  costs  $429.    How  much  do  they  cost  all   together?   2.  Lilian  sold  114  9ckets  to  the  fair.    Rohani  sold  2  9mes   as  many  9ckets  as  Lilian.  Daquan  sold  3  9mes  as  many   9ckets  as  Lilian.    How  many  9ckets  did  they  sell  all   together?    
  • 38. Division  Part-­‐Whole  Bar  Model   1.    Desmond  and  Melissa  collect  cards.    They  have  92   cards  in  all.    Melissa  has  three  9mes  as  many  cards  as   Desmond.    How  many  cards  does  Desmond  have?     2.    The  florist  buys  4  boxes  of  carna9ons.  There  are  21   carna9ons  in  each  box.    The  florist  puts  the  carna9ons   into  bouquets  of  6  carna9ons  each.  How  many   bouquets  of  carna9on  are  there?    
  • 39. Frac9on  Part-­‐Whole  Bar  Model   1.    Rachel  bakes  a  pie  for  her  friends.    Priscilla  eats  2/6   of  the  pie  and  gives  the  rest  to  Tom.    How  much  pie  did   Tom  get?     2.  Three  friends  share  a  grapefruit.  Elena  at  1/3  of  the   grapefruit.    Lee  at  1/9  of  the  grapefruit.  Sara  at  4/9  of   the  grapefruit.    What  frac9on  of  the  grapefruit  did  they   eat  altogether?              
  • 40. Scoring  and  Progress  Reports  
  • 41. Differen,a,on  vs.  Individualiza,on   60  Minute     Math  Lesson   30  Minute    Individualized  Math  Instruc9on     Follows  curriculum     Covers  all  standards     New  content     Similar,  ,ered  tasks     Same  concept  for  all         Meets  child  where  he/she  is     Focuses  on  founda,onal  skills     Familiar  content     Individualized  tasks     Concepts  individualized    
  • 42. Kim’s  Math  PD  Resources   Find  ALL  of  Kim’s  PowerPoints  by  searching  Kbeane   on  SlideShare.net.   hjp://www.slideshare.net/KimberlyBeane/presenta9ons     Find  ALL  of  Kim’s  STEM  LiveBinders  by  searching   Kbeane  on  LiveBinders.com   hjp://www.livebinders.com/shelf/search_display_author? terms=KBeane     Follow  Kim’s  educa9onal  research,  policy,  and  STEM   tweets  @KimberlyLBeane     For    STEM  updates,  PD  discussions,  and  general   collegiality  friend  Kimberly  Beane  on  Facebook