Your SlideShare is downloading. ×
0
3rd Grade Singapore Math Training II
3rd Grade Singapore Math Training II
3rd Grade Singapore Math Training II
3rd Grade Singapore Math Training II
3rd Grade Singapore Math Training II
3rd Grade Singapore Math Training II
3rd Grade Singapore Math Training II
3rd Grade Singapore Math Training II
3rd Grade Singapore Math Training II
3rd Grade Singapore Math Training II
3rd Grade Singapore Math Training II
3rd Grade Singapore Math Training II
3rd Grade Singapore Math Training II
3rd Grade Singapore Math Training II
3rd Grade Singapore Math Training II
3rd Grade Singapore Math Training II
3rd Grade Singapore Math Training II
3rd Grade Singapore Math Training II
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

3rd Grade Singapore Math Training II

849

Published on

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
849
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. 3rd  Grade  Agenda  &  Goals  •  Update  the  Training  &  Implementa7on  Plan  •  Iden7fy  strategies  for  math  learning  difficul7es    •  Explore  3rd  grade  content  and  pedagogy  in  Math   in  Focus  
  • 2. Math  Learning  Difficul7es  1.  ESTIMATE  how  many  of  your  students   demonstrate  each  math  learning  difficulty  2.  DISCUSS  which  learning  difficul7es  do  you   see  most  oIen?  
  • 3. Strategies  for   Math  Learning  Difficul7es  ✭ the  strategies  that  you  associate  with   Singapore  Math    
  • 4. Pedagogy:  C-­‐P-­‐A  Jerome  Bruner’s  research  proved  that  instruc7onal  strategies  build  understanding  for  students  when  they  move  from…      •  Concrete  (manipula7ves)  to    •  Pictorial  (visual  models  or  drawings)  to  •  Abstract  representa7ons  (numbers,  symbols)  
  • 5. Pedagogy:  Rela7onal  Understanding   Richard  Skemp’s  research  proved  that  for  long  term  learning  to   occur  rela(onal  understanding  is  more  successful  than   instrumental  learning.   Rela(onal  Understanding   Instrumental  Understanding  Conceptual   Procedural  WHY  before  HOW   How  One  to  One  Correspondence   Oral  Coun7ng  Quan77es  and  Values   Wri7ng  numbers,  Spelling  numbers  Each  piece  RELATES  to  all  others   Isolated  steps  or  steps  without  meaning          Reading  with  understanding   Phone7c  or  word  calling  
  • 6. Pedagogy:  Perceptual  Variability  Zoltan  Diene’s  research  proved  that  children  gain  the  most  conceptual  understanding  when  they  are  exposed  to  a  concept  through  a  variety  of  materials  or  experiences.   Perceptual  Variability   ? z! ;! p! /! " q!
  • 7. Reflec7ng  On  Pedagogy  Select  one  strategy  for  addressing  math  learning  difficul7es.    Discuss  how  it  connects  to  Singapore  Math  Pedagogy…   v Concrete-­‐Pictorial-­‐Abstract  (Bruner)   v Rela7onal  Understanding  (Skemp)   v Mul7ple  Representa7ons  (Dienes)  
  • 8. Place  Value  Strips  1.    Find  a  partner  to  compose  one  of  these  numbers:      61        42          23          14        35        56      2.    With  your  partner  say  these  about  your  number:   a.    ____  tens  and  ____  ones  make  _____   b._____  +  _____  =  _______      
  • 9. Place  Value  Strips  3.    Find  another  pair  to  add  these  numbers  mentally:      61  +  35  =      42  +  23  =      56  +  14  =    4.    Find  another  pair  to  add  these  numbers  mentally:        14  +  35  =      23  +  56  =      42  +  61  =    
  • 10. Place  Value  Strips  5.    Exchange  cards  with  anyone  in  your  foursome.    6.    Use  the  hundreds  around  the  room  (and  a   partner)  to  make  these  numbers…   142   361   523   614   435   256    
  • 11. Place  Value  Strips  7.  Come  to  the  front  of  the  room  and  put  the  3-­‐digit       numbers  in  order  from  least  to  greatest.        8.    Find  another  pair  to  add  these  numbers  mentally:      256  +  361  =      523  +  142  =      435  +  614  =    
  • 12. Mental  Math  7.  Use  the  same  strategy  you  used  with  place  value   strips  to  add  these  numbers  mentally.    47  +  52  =      29  +  74  =      251  +  638  =        
  • 13. Mental  Math   Decomposing  to  Friendly  Numbers       64  +  35  =         56  +  53  =              
  • 14. Mental  Math  8.  Now  use  branching  (number  bonds)  to  add  these   numbers.  47  +  52  =        29  +  74  =        251  +  638  =        
  • 15. Base  Ten  Blocks:  +  -­‐  x    ~    Solve  these  problems  using  base  ten  blocks…          267        423    +645        -­‐  265                    33   69  ~ 3  =   x      4   (3  equal  groups)            
  • 16. Introducing  Place  Value  Discs  •  Relate  to  Place  Value  Strips  (what  they  know)    •  Relate  to  Base  Ten  Blocks  (what  they  know)    •  Represent  numbers  using  two  representa7ons   at  the  same  7me  (strips  with  chips)  (base  ten  with  chips)    •  Represent  numbers  on  a  place  value  chart  first   (before  doing  computa7on)    
  • 17. Place  Value  Chips:  +  -­‐  x    ~    Solve  these  problems  using  place  value  chips…          267        423    +645        -­‐  265                    33   69  ~ 3  =   x      4   (3  equal  groups)            

×