Nernstgleichung

324 views

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
324
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
3
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Nernstgleichung

  1. 1. Die Nernst – Gleichung By JulijanHCN Attribution-NonCommercial-ShareAlike 3.0 Germany
  2. 2. Universelle Gaskonstante Temperatur in °K (Kelvin) c(Oxidierte Form) R⋅T ox E= E 0+ ⋅ln c(reduzierte z⋅F rd Form)Standardpotential Natürlicher Logarithmus Anzahl der Elektronen Faraday-Konstante Attribution-NonCommercial-ShareAlike 3.0 Germany
  3. 3. R⋅T oxE= E 0+ ⋅ln z⋅F rd Attribution-NonCommercial-ShareAlike 3.0 Germany
  4. 4. R⋅T oxE= E 0+ ⋅ln z⋅F rd ln=2,3⋅lg Attribution-NonCommercial-ShareAlike 3.0 Germany
  5. 5. R⋅T oxE= E 0+ ⋅2,3⋅lg z⋅F rd Attribution-NonCommercial-ShareAlike 3.0 Germany
  6. 6. JR=8,3144621⋅ mol⋅K R⋅T oxE= E 0+ ⋅2,3⋅lg z⋅F rd Attribution-NonCommercial-ShareAlike 3.0 Germany
  7. 7. J 8,3144621⋅ ⋅T mol⋅K oxE= E 0+ ⋅2,3⋅lg z⋅F rd Attribution-NonCommercial-ShareAlike 3.0 Germany
  8. 8. J =W⋅s J 8,3144621⋅ ⋅T mol⋅K oxE= E 0+ ⋅2,3⋅lg z⋅F rd Attribution-NonCommercial-ShareAlike 3.0 Germany
  9. 9. W⋅s 8,3144621⋅ ⋅T mol⋅K oxE= E 0+ ⋅2,3⋅lg z⋅F rd Attribution-NonCommercial-ShareAlike 3.0 Germany
  10. 10. A⋅V W⋅s 8,3144621⋅ ⋅T mol⋅K oxE= E 0+ ⋅2,3⋅lg z⋅F rd Attribution-NonCommercial-ShareAlike 3.0 Germany
  11. 11. A⋅V⋅s 8,3144621⋅ ⋅T mol⋅K oxE= E 0+ ⋅2,3⋅lg z⋅F rd Attribution-NonCommercial-ShareAlike 3.0 Germany
  12. 12. 298K A⋅V⋅s 8,3144621⋅ ⋅T mol⋅K oxE= E 0+ ⋅2,3⋅lg z⋅F rd Attribution-NonCommercial-ShareAlike 3.0 Germany
  13. 13. A⋅V⋅s 8,3144621⋅ ⋅298K mol⋅K oxE= E 0+ ⋅2,3⋅lg z⋅F rd Attribution-NonCommercial-ShareAlike 3.0 Germany
  14. 14. A⋅V⋅s 8,3144621⋅ ⋅298K mol⋅K oxE= E 0+ ⋅2,3⋅lg z⋅F rd C 96485,3365⋅ mol Attribution-NonCommercial-ShareAlike 3.0 Germany
  15. 15. A⋅V⋅s 8,3144621⋅ ⋅298K mol⋅K oxE= E 0+ ⋅2,3⋅lg C rd z⋅96485,3365⋅ mol Attribution-NonCommercial-ShareAlike 3.0 Germany
  16. 16. A⋅V⋅s 8,3144621⋅ ⋅298K mol⋅K oxE= E 0+ ⋅2,3⋅lg C rd z⋅96485,3365⋅ mol C= A⋅s Attribution-NonCommercial-ShareAlike 3.0 Germany
  17. 17. A⋅V⋅s 8,3144621⋅ ⋅298K mol⋅K oxE= E 0+ ⋅2,3⋅lg A⋅s rd z⋅96485,3365⋅ mol Attribution-NonCommercial-ShareAlike 3.0 Germany
  18. 18. A⋅V⋅s 8,3144621⋅ ⋅298 K mol⋅K oxE= E 0+ ⋅2,3⋅lg A⋅s rd z⋅96485,3365⋅ mol Attribution-NonCommercial-ShareAlike 3.0 Germany
  19. 19. 8,3144621⋅V⋅298 oxE= E 0+ ⋅2,3⋅lg z⋅96485,3365 rd Attribution-NonCommercial-ShareAlike 3.0 Germany
  20. 20. 0,059⋅V oxE= E 0+ ⋅lg z rd Attribution-NonCommercial-ShareAlike 3.0 Germany
  21. 21. 0,059⋅V oxE= E 0+ ⋅lg z rd Elementare Metalle kann man als Konstant (1) sehen Attribution-NonCommercial-ShareAlike 3.0 Germany
  22. 22. Vereinfachte Nernst-Gleichung 0,059⋅VE= E 0+ ⋅lg c (ox) z Attribution-NonCommercial-ShareAlike 3.0 Germany
  23. 23. Beispiel einer Konzentrationszelle Donator-Halbzelle Akzeptor-Halbzelle 2+ mol 2+ mol Cu/ Cu (0,0001 ) Cu/Cu (0,1 ) l l Standardpotential Kupfer Vereinfachte Nernst-Gleichung 0,059⋅V E 0=+ 0,35 V E= E 0+ ⋅lg c (ox) z Attribution-NonCommercial-ShareAlike 3.0 Germany
  24. 24. Beispiel einer Konzentrationszelle Nernst-Gleichung für Akzeptor-Halbzelle 0,059 V E A=0,35V + ⋅lg 0,1 2 E A=0,3205V Nernst-Gleichung für Donator-Halbzelle 0,059V E D=0,35V + ⋅lg 0,0001 2 E D=0,232V Attribution-NonCommercial-ShareAlike 3.0 Germany
  25. 25. Beispiel einer KonzentrationszelleE A=0,3205V E D=0,232V E= E A−E D E=0,3205V −0,232 V E=0,0885V Attribution-NonCommercial-ShareAlike 3.0 Germany

×