Your SlideShare is downloading. ×
Earth's Natural Resources
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Introducing the official SlideShare app

Stunning, full-screen experience for iPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Earth's Natural Resources

1,328
views

Published on

Published in: Education, Technology, Business

0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,328
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
0
Comments
0
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide
  • Air - 3 to 7 minutes
    Shelter - 3 hours (in extreme conditions)
    Water - 3 to 10 days
    Food - 3 to 5/6 weeks
    ...and only 3 seconds without spirit/hope, 3 months without companionship/love
  • Transportation (planes, cars, boats, bikes)
    Beauty (art, fashion, architecture)
    Education (schools, universities, libraries)
    Recreation (parks, pools, gyms, fields)
    Entertainment (music, movies, games)
    Safety (fire/police/medical services )
    Communication (internet, phone, print, T.V.)
    Sanitation (garbage service, street sweepers, cleaning products, DEQ, nuclear waste containment)
  • Transportation (planes, cars, boats, bikes)
    Beauty (art, fashion, architecture)
    Education (schools, universities, libraries)
    Recreation (parks, pools, gyms, fields)
    Entertainment (music, movies, games)
    Safety (fire/police/medical services )
    Communication (internet, phone, print, T.V.)
    Sanitation (garbage service, street sweepers, cleaning products, DEQ, nuclear waste containment)
  • Biodiversity can simply be defined as the variation of life at a given site or ecosystem. However, it is through this diversity that natural systems adapt, evolve, and thrive. This link is so strong that the term biodiversity is regarded as synonymous with ecosystem health.1 Diverse ecosystems usually have “increased stability, increased productivity, and resistance to invasion and other disturbances.”2 It is these features that make biodiversity desirable within a given biological community/biome. Most importantly, biodiversity holds enormous value for the entire planet!
    “At least 40 per cent of the world’s economy and 80 per cent of the needs of the poor are derived from biological resources. In addition, the richer the diversity of life, the greater the opportunity for medical discoveries, economic development, and adaptive responses to such new challenges as climate change.”
  • Biodiversity can simply be defined as the variation of life at a given site or ecosystem. However, it is through this diversity that natural systems adapt, evolve, and thrive. This link is so strong that the term biodiversity is regarded as synonymous with ecosystem health.1 Diverse ecosystems usually have “increased stability, increased productivity, and resistance to invasion and other disturbances.”2 It is these features that make biodiversity desirable within a given biological community/biome. Most importantly, biodiversity holds enormous value for the entire planet!
    “At least 40 per cent of the world’s economy and 80 per cent of the needs of the poor are derived from biological resources. In addition, the richer the diversity of life, the greater the opportunity for medical discoveries, economic development, and adaptive responses to such new challenges as climate change.”
    http://www.greeniacs.com/GreeniacsArticles/Wildlife/Importance-of-Biodiversity.html
  • Montreal Protocol of 1987 - This pact to phase out the use of CFCs and restore the ozone layer was eventually signed by every country in the United Nations—the first UN treaty to achieve universal ratification.
    The unparalleled cooperation has had a major impact. "If we had just kept letting CFCs increase at a pretty nominal rate, characteristic of the 1970s, the decreased ozone levels of the hole would have eventually covered the entire planet," said atmospheric physicist Paul Newman of NASA's Goddard Space Flight Center. "Global ozone dropped a little bit [after CFCs were banned], but the good news is that if we had done nothing, it would have gotten really, really bad." Now a complete rebound seems imminent. Some scientists project that by 2080 global ozone will return to 1950s levels.
    Photochemical smog is a unique type of air pollution which is caused by reactions between sunlight and pollutants like hydrocarbons and nitrogen dioxide. Although photochemical smog is often invisible, it can be extremely harmful, leading to irritations of the respiratory tract and eyes. In regions of the world with high concentrations of photochemical smog, elevated rates of death and respiratory illnesses have been observed.
    Smog itself is simply airborne pollution which may obscure vision and cause various health conditions. It is caused by small particles of material which become concentrated in the air for a variety of reasons. Commonly, smog is caused by an inversion, in which cool air presses down on a column of warm air, forcing the air to remain stationary. Inversions are notorious in Southern California, where smog can sometimes get so severe that people are warned to stay indoors.
    Some of the particulate matter in the air can oxidize very readily when exposed to the UV spectrum. Nitrogen dioxide and various hydrocarbons produced through combustion will interact with sunlight to break down into hazardous chemicals. It doesn't have to be sunny for photochemical smog to form; UV light can also penetrate clouds. The pollutants released through human activity in this situation are known as “primary pollutants,” and they include sulfur dioxide, carbon monoxide, and other volatile organic compounds. When these compounds interact with the sun, they form “secondary pollutants” like ozone and additional hydrocarbons.
    While ozone is an excellent thing in the upper atmosphere, since it protects the delicate environment of the Earth, it is not desired at ground level. Ozone can be extremely irritating to the respiratory tract, leading to fits of coughing and various medical conditions if exposure is prolonged. The mixture of hazardous pollutants formed by the reaction between UV rays and smog can travel on the wind to rural areas, meaning the photochemical smog does not just impact big cities.
    Some measures have been taken around the world to reduce photochemical smog. Tight emissions regulations on vehicles and factories are one such step; many factories must use scrubbers and treatment systems before releasing air from their manufacturing facilities, for example. The use of harmful chemicals is also restricted in some regions of the world, since these chemicals can create photochemical smog. Government agencies also monitor air quality through testing, citing companies which violate the law and issuing warnings when smog levels are dangerous.
  • Salt Lake City
    timescience.com
  • It may take between 30 and 40 gallons for one bath.
    The average toilet uses about 5 gallons of water per flush.
    It takes 20-50 gallons of water for one shower.
    Washing machines use an average of 25 gallons per load.
    The kitchen sink takes roughly 20 gallons per day for preparing food and washing dishes.
    The bathroom sink, used for washing hands, shaving and brushing teeth, requires about 15 gallons per day.
    These numbers are estimated for the average household in America.
  • Water is also essential in industry. It is heated and the steam is used to run machinery. Water is used to cool hot metal such as in the production of steel. It is an important element in many products like chemicals, drugs, lotions, shampoos, cosmetics, cleaners, and also beverages. Water is used in processing food and in innumerable factories and industrial processes including the manufacturing of paper. Water used in processing foods and beverages must be absolutely clean, while other industries such as a manufacturing plant may use a lower quality of water. "In the early 1900s, American industry used about 10 to 15 billion gallons of water a day. With the huge growth in industry following World War II, the industrial use of water also grew. By 1980, industry was using about 150-200 billion gallons each day." - Water: A Resource in Crisis by Eileen Lucas
  • Chinese child swimming in polluted water.
    Federal statutory regulation of water pollution has been governed primarily by three pieces of legislation: the Refuse Act (1899), the Federal Water Pollution Control Act (1948), and the Clean Water Act (1972). The Rivers and Harbors Appropriations Act of 1899, commonly known as the Refuse Act, was the first major piece of federal legislation regulating water pollution.
  • Gresham’s Wastewater Treatment Plant (WWTP) takes dirty water from bathrooms, kitchens, laundries and businesses, cleans it, and returns it to the natural water cycle via the Columbia River.
    The treatment plant treats an average 13 million gallons of wastewater daily.
    The treatment plant serves 108,000 customers and treats wastewater from the cities of Gresham, Fairview and Wood Village.
    Nearly 300 miles of sewer lines in Gresham carry wastewater to the treatment plant from homes, businesses and institutions.
    The WWTP recycles its leftover sludge, or biosolids, for reuse as a crop nutrient and soil conditioner on agricultural land for harvests not for human consumption.
    To help reduce the volume of water sent to the wastewater treatment plant, consider reducing the amount of water you use.
    WWTP Goes Green, Saves Money and the Environment
    The City has an ambitious goal to make its wastewater treatment plant energy independent by 2014, by producing its electrical power onsite through a combination of cogeneration and solar power.  This video shows what City staff have accomplished so far and what remains to be done.
    Solar Power
    The Wastewater Treatment Plant added solar power at the facility in 2010.
    Turning Byproduct Gas Into Electrical Power
    The WWTP’s Caterpillar lean-burn engine and generator takes methane gas produced from the plant’s digesters and turns it into electrical power and heat used at the facility. This reduces the City’s annual electricity costs by $260,000, an average of $21,600 savings a month.
    League of Oregon Cities 2006 Award of Excellence
    American Public Works Association 2006 Julian Award for Sustainability (Oregon)
    Running on Renewable Energy
    The WWTP produces 50% of its energy by converting methane gas into energy. The WWTP also purchases 18% of its electricity as renewable energy from wind farms in Oregon through PGE’s Clean Wind Program. With the addition of 7% solar power, the treatment plant is 75% sustainable.
  • There have been direct uses of hot water as an energy source since ancient times. Ancient Romans, Chinese, and Native American cultures used hot mineral springs for bathing, cooking, and heating. Today, many hot springs are still used for bathing, and many people believe the hot, mineral-rich waters have natural healing powers.
    After bathing, the most common direct use of geothermal energy is for heating buildings through district heating systems. Hot water near the Earth's surface can be piped directly into buildings and industries for heat. A district heating system provides heat for 95% of the buildings in Reykjavik, Iceland.
    Industrial applications of geothermal energy include food dehydration, gold mining, and milk pasteurizing. Dehydration, or the drying of vegetable and fruit products, is the most common industrial use of geothermal energy.
  • Transcript

    • 1. Materials for Life Earth's Natural Resources
    • 2. What Do We Need to Live? • Air – 21% Oxygen – Free of pollution • Food – A variety • Water – Clean – Uncontaminated • Shelter – Clothes/housing – Protection from heat/cold/rain – Fresh • Hope – A reason to live • Love – Companionship
    • 3. How Do We Get These? • Is there a cost for breathable air? • What all is involved in getting food to your plate? • Where does the water we drink come from? • How are your shoes and clothing made? • What natural resources provide the materials for making and your homes (including power, heat, etc.)
    • 4. Which are Non-essential? • • • • Transportation Beauty Education Entertainment • • • • Recreation Safety Communication Sanitation • What resources make these possible?
    • 5. Pick Seven... • • • • Transportation Beauty Education Entertainment • • • • • Air • Water • Food • Shelter Recreation Safety Communication Sanitation • Land/soil
    • 6. Biotic Resources – Resources that come from organic materials (living or previously living things). • Fossil Fuels • Plant products (Biomass) • Animal products • Biodiversity
    • 7. Fossil Fuels • Coal – mined out of the ground • Natural gas – flammable methane gas – found near petroleum, underground • Oil – liquid found underground between folds of rock
    • 8. • Coal Fossil Fuels – burned for electricity, heat, and in factories • Natural gas – used to heat homes, generate electricity, & for manufacturing • Oil – Gasoline & Diesel fuel • for transportation (cars, trucks, airplanes, ships, trains) – Lubricants • petroleum jelly, grease, engine oil – Plastics – Asphalt • paved roads, parking lots, etc. – Kerosene, propane, butane • burned for light/heat
    • 9. Products Made from Petroleum-based Chemicals Antihistamines Credit Cards Ink Surfboards Antiseptics Dentures Insecticides Surgical Equipment Antibiotics Deodorant Lipstick Syringes Artificial Limbs Diapers Medical Equipment Telephones Aspirin Dinnerware Nylon Rope Tennis Balls Balloons DVDs Pacemakers Tennis Rackets Bandages Dyes Pantyhose Tennis Shoes Cameras Eyeglass Frames Perfumes Tents Candles Fertilizers Photographic Film Toothbrushes Clothing Food Preservatives Piano Keys Toothpaste Computers Footballs Plastics Toys Cough Syrup Glue Shampoo Tranquilizers Cosmetics Golf Balls Shaving Cream Umbrellas Crayons Heart Valve Replacements Soft Contact Lenses Vitamin Capsules
    • 10. Plant Products • Food crops – fruits/veggies, wheat, rice, nuts, sugar cane, spices • Biofuels – ethanol & biodiesel (plantbased fuels) • Timber – paper, building (houses/furniture), manufacturing – burned as fuel for heat • Other products – cotton, wax, cork, rubber, hemp (rope fiber)
    • 11. Animal products • Food: – – – – meat dairy poultry seafood • Biomass – methane • Other: – leather, wool – sponges, pearls
    • 12. Biodiversity • Many different species increases an ecosystem's stability • Extinction reduces biodiversity – habitat loss and degradation (climate change) – excessive nutrient load and other forms of pollution – over-exploitation and unsustainable use – invasive species
    • 13. Abiotic Resources – Resources from inorganic (non-living) materials. • Wind/Air • Land/Soil • Water • Solar Power • Geothermal Energy • Minerals
    • 14. Wind/Air • Surface air contains 21% Oxygen – essential for cellular respiration in all living organisms • Wind produced from uneven heating of Earth's surface – air moves from areas of high (hot) to low (cool) pressure
    • 15. AIR POLLUTION • An increase in the content of harmful substances (pollutants) in the lower atmosphere. – Where do pollutants come from? • Emissions – vehicles – manufacturing plants – Charcoal grills, lawnmowers • Photochemical smog • Ozone loss – CFCs (chlorofluorocarbons) • Smoke – forest fires, wood stoves, etc. • Natural disasters – volcanic eruptions, fires, earthquakes
    • 16. Consequences of Air Pollution • Humans/animals – – – – – respiratory & renal problems high blood pressure problems of nervous system eye irritation cancer • Plants – reduced growth – degeneration of chlorophyll • mottling of leaves (patches/ spots of color) • Acid rain • Greenhouse effect • Ozone layer destruction
    • 17. Land/Soil • Land for building & development • Soil for growing food (crops/livestock) – loamy soil is best • holds water but allows for drainage • rich in nutrients & organic material
    • 18. SOIL POLLUTION • Agricultural use of chemical fertilizers & pesticides – can kill organisms (decomposers) that help replenish healthy soil • Landfills, septic systems, nuclear & industrial waste – buried chemicals/toxins dissolve into soil/water
    • 19. SOIL POLLUTION • Clear-cutting forested areas, construction zones – leads to erosion & leaching of soil nutrients – can eliminate of beneficial microbes • Impervious surfaces (cement/asphalt) – storm water runoff carries pollutants into soil/water – bioswales help filter naturally
    • 20. Water • Drinking water – required for all cellular reactions & transport of chemicals • Irrigation – to grow food crops, water lawns, etc. • Sanitation – laundry, showers, dishes & other household uses • Recreation – swimming, river rafting, water-skiing, sailing, fishing, etc. • Landscaping – fountains, streams/ponds • The average American uses 150-250 gallons of water EVERY DAY!
    • 21. Hydroelectric Power Plants • Flowing water moves turbines. • Turbines spin giant magnets. • Spinning magnets create a flow of electrons (electricity!).
    • 22. Water for Industry • Steam-powered machinery • Manufacture of products – food/beverages, drugs, cosmetics, – chemicals, cleaners, paint, etc. • Cooling of materials – metals, nuclear reactors, etc.
    • 23. • Is there any relationship between the amount of available water and the number and variety of plants and animals that can live in a given area?
    • 24. WATER POLLUTION • Contamination of water – Pipes • lead dissolves into water – Litter/household garbage – Farming • fertilizers and pesticides • algal "blooms" – Industry waste • mercury salts, sulfates, minerals – Runoff • chemicals from impermeable surfaces
    • 25. • Disease-causing organisms – cholera, typhoid, hepatitis, botulism, dysentery, polio, etc. • swim diapers or pet and farm animal waste, broken sewers, • storm runoff/flooding • Temperature change – can affect breeding – eggs/larvae particularly sensitive • Depletion of oxygen – aquatic organisms rely on dissolved O2 for breathing
    • 26. Solar Power • Powers photosynthesis in producers • Solar heating – greenhouses – solar cookers – water heating • Solar power plants
    • 27. Solar Wastewater Treatment • Gresham’s Wastewater Treatment Plant takes dirty water from bathrooms, kitchens, laundries and businesses, cleans it, and returns it to the natural water cycle via the Columbia River. • The treatment plant treats an average 13 million gallons of wastewater daily. • The treatment plant serves 108,000 customers and treats wastewater from the cities of Gresham, Fairview and Wood Village.
    • 28. Geothermal Energy • Direct use – hot water from springs or reservoirs near surface – used for bathing or heating homes • Electricity generation – Power plants require water or steam at high temperatures (300° to 700°F) – Geothermal power plants built where geothermal reservoirs are located within a mile or two of the surface • Heat pumps – use stable ground or water temperatures near Earth's surface to control building temperatures above ground
    • 29. Minerals – Precious metals • Gold, silver, platinum – Precious & semi-precious gems • Diamonds, rubies, emeralds – Building/manufacturing materials • • • • marble, limestone sand, gravel, silicon iron ore, zinc, lead, copper sulfur, talc – Radioactive substances • Uranium, radium, plutonium – Food additives • salt, calcium, magnesium, zinc
    • 30. Renewable vs. Nonrenewable Biotic Fossil Fuels Biomass (Plants) Animal Product Abiotic Minerals Wind/Air Water Land/Soil Geothermal Energy Solar Energy • Only ~ 10% our nation's energy usage comes from renewable resources.
    • 31. Nonrenewable Resources • Resources being used up faster than they can be replaced by natural processes are called nonrenewable. – Fossil Fuels • in 2011, 42% of all electricity in the US was generated from burning coal – Minerals What's Left?
    • 32. Renewable Resources • Renewable resources can be replenished by natural processes at least as quickly as they are used. • • • • Air Land Water Many plant & animal sources, if carefully managed
    • 33. Inexhaustible Resources • Resources that will not run out, no matter how much of it people use.. – Solar Energy – Wind/wave – Geothermal