Your SlideShare is downloading. ×
0
The Unit Circle
<ul><li>Sine t = y/r </li></ul><ul><li>Cosine t = x/r </li></ul><ul><li>Tangent t = y/x </li></ul><ul><li>Cotangent t = x/...
<ul><li>The variable r is the Radius.  </li></ul><ul><li>This will always equal 1  </li></ul><ul><li>on the unit circle. <...
<ul><li>Here at 30° x = √3/2 </li></ul><ul><li>Also at 30° y = ½ </li></ul><ul><li>45° both x & y = √2/2 </li></ul><ul><li...
<ul><li>By using the Pythagorean Theorem the sides of a 45°, 45°, 90° can be found. </li></ul><ul><li>You will use these o...
<ul><li>Use the Pythagorean Theorem to find the sides of a 30°, 60°, 90° Triangle. </li></ul><ul><li>Remember the Hypotenu...
<ul><li>Here you can see Sine t = y/r. </li></ul><ul><li>Cosine t = x/r. </li></ul><ul><li>Notice that r = 1. </li></ul>
<ul><li>Sin 30° = 1/2  </li></ul><ul><li>Cos 30° = √3/2 </li></ul><ul><li>Tan 30°   = 3√3 </li></ul><ul><li>Cot 30° = √3 <...
<ul><li>Sin 45° = √2/2 </li></ul><ul><li>Cos 45° = √2/2 </li></ul><ul><li>Tan 45° = 1 </li></ul><ul><li>Cot 45° = 1 </li><...
<ul><li>Sin 60° = √3/2 </li></ul><ul><li>Cos 60° = 1/2 </li></ul><ul><li>Tan 60° = √3 </li></ul><ul><li>Cot 60° = 3√3 </li...
<ul><li>Notice that at 90° the (x,y) is (0,1). </li></ul><ul><li>Sin 90° = 1 </li></ul><ul><li>Cos 90° = 0 </li></ul><ul><...
<ul><li>All y values stay the same as in Quadrant I. </li></ul><ul><li>All x values are negative here.  </li></ul><ul><li>...
<ul><li>All x values are negative here. </li></ul><ul><li>All y values are negative here.  </li></ul><ul><li>The Six Trig ...
<ul><li>All x values stay the same as in Quadrant I. </li></ul><ul><li>All y values are negative here.  </li></ul><ul><li>...
<ul><li>Sin 135° = √2/2 </li></ul><ul><li>Cos 135° = - √2/2 </li></ul><ul><li>Tan 135° = -1 </li></ul><ul><li>Cot 135° = -...
<ul><li>Sin 150° = -√3/2 </li></ul><ul><li>Cos 150° = 1/2 </li></ul><ul><li>Tan 150° = -√3 </li></ul><ul><li>Cot 150° = -3...
<ul><li>Sin 225° = -√2/2 </li></ul><ul><li>Cos 225° = -√2/2 </li></ul><ul><li>Tan 225° = 1 </li></ul><ul><li>Cot 225° = 1 ...
<ul><li>Sin 300° = -√3/2 </li></ul><ul><li>Cos 300° = 1/2 </li></ul><ul><li>Tan 300° = -√3 </li></ul><ul><li>Cot 300° = -3...
<ul><li>Sin 315° = √2/2  </li></ul><ul><li>Cos 315° = - √2/2  </li></ul><ul><li>Tan 315° = -1 </li></ul><ul><li>Cot 315° =...
<ul><li>All the Trig Functions in the second Quadrant have the same values as Quad I except the x values are now negative....
Upcoming SlideShare
Loading in...5
×

Trig overview

682

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
682
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
6
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Trig overview"

  1. 1. The Unit Circle
  2. 2. <ul><li>Sine t = y/r </li></ul><ul><li>Cosine t = x/r </li></ul><ul><li>Tangent t = y/x </li></ul><ul><li>Cotangent t = x/y </li></ul><ul><li>Secant t = r/x </li></ul><ul><li>Cosecant t = r/y </li></ul>
  3. 3. <ul><li>The variable r is the Radius. </li></ul><ul><li>This will always equal 1 </li></ul><ul><li>on the unit circle. </li></ul>
  4. 4. <ul><li>Here at 30° x = √3/2 </li></ul><ul><li>Also at 30° y = ½ </li></ul><ul><li>45° both x & y = √2/2 </li></ul><ul><li>At 60° x = ½ </li></ul><ul><li>Also at 60° y = √3/2 </li></ul>
  5. 5. <ul><li>By using the Pythagorean Theorem the sides of a 45°, 45°, 90° can be found. </li></ul><ul><li>You will use these on to find all Six Trigonometric Functions. </li></ul><ul><li>The Hypotenuse must equal </li></ul><ul><li>1 therefore the sides opposite </li></ul><ul><li>45° is √2/2. </li></ul>
  6. 6. <ul><li>Use the Pythagorean Theorem to find the sides of a 30°, 60°, 90° Triangle. </li></ul><ul><li>Remember the Hypotenuse must equal 1. </li></ul><ul><li>Therefore, the side opposite 30° = ½. </li></ul><ul><li>The side opposite 60° = √3/2. </li></ul>
  7. 7. <ul><li>Here you can see Sine t = y/r. </li></ul><ul><li>Cosine t = x/r. </li></ul><ul><li>Notice that r = 1. </li></ul>
  8. 8. <ul><li>Sin 30° = 1/2 </li></ul><ul><li>Cos 30° = √3/2 </li></ul><ul><li>Tan 30° = 3√3 </li></ul><ul><li>Cot 30° = √3 </li></ul><ul><li>Sec 30° = 2√3/3 </li></ul><ul><li>Csc 30° = 2 </li></ul>
  9. 9. <ul><li>Sin 45° = √2/2 </li></ul><ul><li>Cos 45° = √2/2 </li></ul><ul><li>Tan 45° = 1 </li></ul><ul><li>Cot 45° = 1 </li></ul><ul><li>Sec 45° = √2 </li></ul><ul><li>Csc 45° = √2 </li></ul>
  10. 10. <ul><li>Sin 60° = √3/2 </li></ul><ul><li>Cos 60° = 1/2 </li></ul><ul><li>Tan 60° = √3 </li></ul><ul><li>Cot 60° = 3√3 </li></ul><ul><li>Sec 60° = 2 </li></ul><ul><li>Csc 60° = 2√3/3 </li></ul>
  11. 11. <ul><li>Notice that at 90° the (x,y) is (0,1). </li></ul><ul><li>Sin 90° = 1 </li></ul><ul><li>Cos 90° = 0 </li></ul><ul><li>Tan 90° = undefined </li></ul><ul><li>Cot 90° = 0 </li></ul><ul><li>Sec 90° = undefined </li></ul><ul><li>Csc 90° = 1 </li></ul>
  12. 12. <ul><li>All y values stay the same as in Quadrant I. </li></ul><ul><li>All x values are negative here. </li></ul><ul><li>The Six Trig Functions are reflected across the y-axis here. </li></ul><ul><li>(-cos t, sin t) </li></ul>
  13. 13. <ul><li>All x values are negative here. </li></ul><ul><li>All y values are negative here. </li></ul><ul><li>The Six Trig Functions are reflected across the origin from Quadrant I. </li></ul><ul><li>(-cos t, -sin t) </li></ul>
  14. 14. <ul><li>All x values stay the same as in Quadrant I. </li></ul><ul><li>All y values are negative here. </li></ul><ul><li>The Six Trig Functions are reflected across the x-axis here. </li></ul><ul><li>(cos t, -sin t) </li></ul>
  15. 15. <ul><li>Sin 135° = √2/2 </li></ul><ul><li>Cos 135° = - √2/2 </li></ul><ul><li>Tan 135° = -1 </li></ul><ul><li>Cot 135° = -1 </li></ul><ul><li>Sec 135° = -√2 </li></ul><ul><li>Csc 135° = √2 </li></ul>
  16. 16. <ul><li>Sin 150° = -√3/2 </li></ul><ul><li>Cos 150° = 1/2 </li></ul><ul><li>Tan 150° = -√3 </li></ul><ul><li>Cot 150° = -3√3 </li></ul><ul><li>Sec 150° = 2 </li></ul><ul><li>Csc 150° = -2√3/3 </li></ul>
  17. 17. <ul><li>Sin 225° = -√2/2 </li></ul><ul><li>Cos 225° = -√2/2 </li></ul><ul><li>Tan 225° = 1 </li></ul><ul><li>Cot 225° = 1 </li></ul><ul><li>Sec 225° = -√2 </li></ul><ul><li>Csc 225° = -√2 </li></ul>
  18. 18. <ul><li>Sin 300° = -√3/2 </li></ul><ul><li>Cos 300° = 1/2 </li></ul><ul><li>Tan 300° = -√3 </li></ul><ul><li>Cot 300° = -3√3 </li></ul><ul><li>Sec 300° = 2 </li></ul><ul><li>Csc 300° = -2√3/3 </li></ul>
  19. 19. <ul><li>Sin 315° = √2/2 </li></ul><ul><li>Cos 315° = - √2/2 </li></ul><ul><li>Tan 315° = -1 </li></ul><ul><li>Cot 315° = -1 </li></ul><ul><li>Sec 315° = -√2 </li></ul><ul><li>Csc 315° = √2 </li></ul>
  20. 20. <ul><li>All the Trig Functions in the second Quadrant have the same values as Quad I except the x values are now negative. </li></ul><ul><li>The same thing happens in Quad III both the x and y values are negative here. </li></ul><ul><li>In Quad IV the x values are positive and the y values here are negative. </li></ul>
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×