SlideShare uma empresa Scribd logo
1 de 41
Baixar para ler offline
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 1
1- TIPOS DE ESFORÇOS
Uma força pode ser aplicada num corpo de diferentes maneiras, originando
portanto, diversos tipos de solicitações, tais como: tração, compressão,
cisalhamento, flexão e torção.
Quando cada tipo se apresenta isoladamente, diz-se que a solicitação é
SIMPLES. No caso de dois ou mais tipos agirem conjuntamente a solicitação é
COMPOSTA.
TRAÇÃO – solicitação que tende a alongar a peça no sentido da reta de ação
da força aplicada.
COMPRESSÃO – solicitação que tende a encurtar a peça no sentido da reta
da força aplicada.
CISALHAMENTO – solicitação que tende a deslocar paralelamente, em
sentido oposto, duas seções de uma peça (força cortante).
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 2
FLEXÃO – solicitação que tende a modificar o eixo geométrico de uma peça.
Ex.: uma barra inicialmente reta que passa a ser uma curva.
TORÇÃO – solicitação que tende a girar as secções de uma peça, uma em
relação às outras.
SIMBOLOGIA DAS TENSÕES
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 3
2- DEFORMAÇÃO
A ação de qualquer força sobre um corpo altera a sua forma, isto é, provoca
uma deformação.
Com o aumento da intensidade da força, há um aumento da deformação.
Existem dois tipos de deformação: Deformação Elástica e Deformação
Plástica.
Deformação Elástica - deformação transitória, ou seja, o corpo retomará suas
dimensões iniciais quando a força for removida.
Deformação plástica – deformação permanente, ou seja, o corpo não
retornará para suas dimensões iniciais depois de cessado o esforço aplicado.
O ponto que separa os dois tipos de deformações é o limite de escoamento.
DEFORMAÇÃO UNITÁRIA ou DEFORMAÇÃO ESPECÍFICA => (AXIAL)
Deformação específica (ε ) é a relação entre o alongamento total ( l∆ ou δ ) e
o comprimento inicial ( 0l ).
0l
a
δ
ε =
ou
0l
l∆
=ε ou
0
0
l
llf −
=ε ( )mm
mm [1.1]
ε - é adimensional, ou seja, não tem unidade e pode ser expresso em
porcentagem multiplicando por 100.
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 4
3- TENSÃO
É uma grandeza vetorial que foi introduzida na resistência dos materiais em
1822, por Augustin Louis Cauchy. É definida como sendo a resistência interna
de um corpo qualquer, à aplicação de uma força externa por unidade de área,
ou seja, é a força por unidade de área.
A
F
=σ 





2
cm
kgf ou ( )2
mm
N = ( )MPa [1.2]
onde:
σ => Tensão Normal uniforme que pode ser tração simples ou compressão
simples
F => Força aplicada ao corpo (kgf ou N)
A => Área da seção transversal do corpo (cm2
ou mm2
)
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 5
4- DIAGRAMA TENSÃO DEFORMAÇÃO
O ensaio de tração consiste em aplicar num corpo de prova uma força axial
com o objetivo de deformá-lo até que se produza sua ruptura.
Aumentando-se a tensão, a deformação também vai aumentando e os
resultados da experiência podem ser mostrados por um gráfico (σ x ε ),
marcando em abscissas (eixo “X”) as deformações e em ordenadas (eixo “Y”)
as tensões.
GRÁFICO TENSÃO DEFORMAÇÃO (σ xε )
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 6
No gráfico os pontos marcados significam respectivamente:
Ponto P – Tensão Limite de Proporcionalidade ( pσ )
Abaixo deste ponto, a tensão é proporcional à deformação específica ( ε ) ,
portanto a Lei de Hooke, que estabelece que a tensão é proporcional à
deformação, vale somente até este ponto.
Ponto E – Tensão Limite de Escoamento ( eσ )
Caracteriza o ponto de escoamento, ou seja, a perda da propriedade elástica
do material.
Nos aços de médio e baixo teor de carbono, ocorre um visível alongamento do
corpo-de-prova praticamente sem aumento da tensão.
Ponto R – Tensão Limite de Resistência ( rσ )
É a maior tensão que o corpo-de-prova pode suportar antes de se romper.
Obs.: conceitualmente pode-se admitir que pσ =  eσ
5- RELAÇÕES ENTRE TENSÃO E DEFORMAÇÃO
MÓDULO DE ELASTICIDADE
A Lei de Hooke (Robert Hooke 1678) estabelece que até a tensão limite de
proporcionalidade ( pσ ), ou seja até o ponto P do Diagrama Tensão-
Deformação, a tensão em um material é proporcional à deformação nele
produzida. Devido a esta condição de proporcionalidade pode se escrever que:
ε
σ=E ∴ εσ .E= ( )MPa [1.3]
onde:
σ => Tensão de tração
ε => Deformação específica
E => Módulo de elasticidade ou módulo de Young ( )MPa  (ver tabela 1)
Obs.: Módulo de Elasticidade é a medida de rigidez do material: quanto maior
o valor de “E” menor a deformação elástica e mais rígido é o material.
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 7
Substituindo as expressões [1.1] e [1.2] na expressão [1.3] e ordenando, tem-
se a equação [1.4] para a deformação total:
0l
δ
ε =
[1.1]
A
F
=σ [1.2]
εσ .E= [1.3]
AE
LF
.
.
=δ ( )mm [1.4]
MÓDULO DE ELASTICIDADE TRANSVERSAL
Através de ensaios com corpos-de-prova submetidos a cisalhamento puro por
torção, pode-se escrever que:
γτ .G= ( )MPa [1.5]
onde:
τ => Tensão de cisalhamento por torção ( )MPa
γ => Deformação angular ou distorção que é a alteração sofrida em um
ângulo reto de um elemento ( )rad
G => Módulo de elasticidade ao cisalhamento ou módulo de elasticidade
Transversal ( )MPa (ver tabela 1)
COEFICIENTE DE POISON
As experiências demonstram que um material, quando submetido à tração,
sofre além da deformação axial (alongamento), uma deformação transversal
(afinamento).
Poisson demonstrou que estas duas deformações eram proporcionais uma em
relação à outra, dentro dos limites da Lei de Hooke (até o ponto P do Diagrama
Tensão- Deformação).
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 8
Esta constante é dada por:
AxialDeformação
TansversalDeformação
L
L
=− µ
a
t
ε
ε
µ =− (adimensional) [1.6]
onde:
µ => Coeficiente de Poisson (ver tabela 1)
As três constantes se relacionam através da expressão:
( )µ+= 1.2 GE ( )MPa [1.7]
TABELA 1 – PROPRIEDADES DE ALGUNS MATERIAIS
Material
Módulo de Elasticidade
(MPa)
“E”
Mód. Elasticidade
Transversal (MPa)
“G”
Coeficiente
de Poisson
“µ”
Aços 210000 80000 0,30
Alumínio 72400 26700 0,33
Bronze 113200 42200 0,35
Cobre 121300 45600 0,33
Ferro
Fundido
Cinzento
102000 42200 0,21
Latão 108000 40800 0,32
Madeira
(Pinho)
11200 4200 0,33
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 9
6- DIMENSIONAMENTO
(TENSÕES ADMISSÍVEIS E COEFICIENTE DE SEGURANÇA)
No dimensionamento dos elementos de máquinas, as peças a serem
calculadas deverão suportar as cargas com segurança. Para isto, admitem-se
apenas deformações elásticas, portanto, a tensão de trabalho fixada deve ser
inferior à tensão de escoamento do material.
A esta tensão que oferece a peça uma condição de trabalho sem perigo,
chamamos de TENSÃO ADMISSÍVEL.
Seu valor é determinado dividindo-se a tensão de resistência do material ( rσ
ou rτ ) por um coeficiente “S” chamado de COEFICIENTE DE SEGURANÇA.
σ S
rσ
= ou τ S
rτ
= ( )MPa [1.8]
O coeficiente de segurança é uma relação entre as tensões de resistência e
admissível do material.
Em princípio, o coeficiente de segurança é determinado levando-se em
consideração diversos fatores parciais, tais como, fator em função da
homogeneidade do material, fator em função do tipo de carga a ser aplicado,
fator em função de causas desconhecidas, etc.
Assim, a rigor o coeficiente de segurança é expresso da seguinte forma:
S= S1xS2xS3.........
Sendo:
S - Coeficiente de segurança total
S1, S2, S3, ..... – Fatores de segurança parciais
Porém, para os nossos cálculos de resistência adotaremos os valores de
coeficientes de segurança já consagrados pela prática, baseados na qualidade
do material e no tipo de carga aplicada à peça.
Os valores desses coeficientes já englobam todos os demais fatores acima
referidos.
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 10
Tipos de Solicitações: Basicamente existem 4 tipos de cargas:
- Carga Estática
Ocorre quando uma peça está sujeita a carga constante, invariável ao decorrer
do tempo e aplicada lenta e gradualmente.
EX: Vigas
- Carga Intermitente
Ocorre quando uma peça está sujeita a uma carga variável de zero a um valor
máximo, sempre com a mesma direção e sentido.
EX: dentes das engrenagens.
- Carga Alternada
Ocorre quando uma peça está sujeita a uma carga variável na mesma direção,
mas com sentido contrario.
EX: Eixos Rotativos.
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 11
-Carga de Choque
Ocorre quando uma peça está sujeita a variação brusca ou a de choque.
EX: Componentes de Prensas.
Os valores de COEFICIENTE DE SEGURANÇA que serão utilizados estão
representados na Tabela 2 abaixo:
TABELA 2
COEFICIENTE DE SEGURANÇA (S) *
TIPOS DE CARGAS
MATERIAL
ESTÁTICA INTERMITENTE ALTERNADA CHOQUE
Ferro Fundido 6 10 15 20
Aço mole (até SAE-1030) 5 6 8 12
Aço duro 4 6 8 12
Madeira 8 10 15 20
*EM RELAÇÃO À TENSÃO DE RESISTÊNCIA DO MATERIAL
As propriedades mecânicas dos materiais que serão utilizadas na resolução
dos exercícios propostos estão listadas na tabela 3.
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 12
TABELA 3 – PROPRIEDADES MECÂNICAS DE ALGUNS MATERIAIS
TENSÃO DE
RESISTÊNCIA
( )MPa
TENSÃO DE
ESCOAMENTO
NA TRAÇÃO
( )MPa
ALONG.
( )%
MATERIAL
trσ crσ crτ teσ ε
OBS.:
SAE-1010 350 350 260 130 33
SAE-1015 385 385 290 175 30
SAE-1020 420 420 320 193 26
SAE-1025 465 465 350 210 22
SAE-1030 500 500 375 230 20
SAE-1040 580 580 435 262 18
SAE-1050 650 650 490 360 15
SAE-1070 700 700 525 420 9
Aços carbono,
recozidos ou
normalizados.
SAE-2330 740 740 550 630 20
SAE-2340 700 700 525 485 25
Aços Ni, recozidos
ou normalizados.
SAE-3120 630 630 475 530 22
SAE-3130 680 680 510 590 20
SAE-3140 750 750 560 650 17
Aços Ni-Cr,
recozidos ou
normalizados.
SAE-4130 690 690 520 575 20
SAE-4140 760 760 570 650 17
Aços Cr-Mo,
recozidos ou
normalizados.
SAE-4320 840 840 630 650 19
SAE-4340 860 860 650 740 15
Aços Ni-Cr-Mo,
recozidos ou
normalizados
SAE-5120 610 610 460 490 23
SAE-5140 740 740 550 620 18
Aços Cr, recozidos
ou normalizados
SAE-8620 620 620 465 560 18
SAE-8640 750 750 560 630 14
Aços Ni-Cr-Mo,
recozidos ou
normalizados
AISI-301 770 770 580 280 55
AISI-302 630 630 470 248 55
AISI-310 690 690 515 315 45
Aços inoxidáveis
austeníticos
AISI-410 490 490 370 264 30
Aços inoxidáveis
martensítico
Fo.Fo.
120
à
240
600
à
850
-- -- -- Ferro fundido
Cobre 225 225 168 70 45
Latão 342 342 255 120 57
Bronze 280 280 210 -- 50
Alumínio 180 180 135 70 22
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 13
7- TRAÇÃO E COMPRESSÃO
FÓRMULA DE TRAÇÃO E COMPRESSÃO:
A
F
t =σ
A
F
c =σ ( )MPa
onde:
σ => Tensão Normal uniforme que pode ser tração simples ou compressão
simples
F => Força aplicada ao corpo (N )
A => Área da seção transversal do corpo (mm2
)
CRITÉRIO DE PROJETO:
≤σ σ
Sendo: σ
S
trσ
= ou σ
S
crσ
= ( )MPa
FÓRMULA DO ALONGAMENTO TOTAL:
AE
LF
.
.
=δ ( )mm
F
A
F
A
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 14
8- CISALHAMENTO PURO
Esforço cortante simples desprezando a flexão.
Ocorre quando uma peça é submetida a uma força F, atuando
transversalmente ao seu eixo, produzindo um cisalhamento (corte).
A
F
C =τ ( )MPa
onde:
τ => Tensão de cisalhamento
F => Força aplicada ao corpo (N )
A => Área da seção transversal do corpo (mm2
)
CRITÉRIO DE PROJETO:
≤cτ cτ
Sendo: cτ
S
rcτ
= ( )MPa
As tensões de resistência ao cisalhamento ( crτ ), para os materiais em geral,
obedecem aproximadamente a seguinte relação com referência à tensão de
resistência à tração ( trσ ):
=crτ 6,0 a 8,0 trσ
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 15
9- COMPRESSÃO SUPERFICIAL (ESMAGAMENTO)
Se a carga “F” atua da maneira que se vê na figura abaixo, as partes “B” são
tracionadas contra o rebite, ocasionando uma TENSÃO DE COMPRESSÃO
NAS SUPERFÍCIES de contato “M”.
F
F
B
B
M
M
D
t
t
Num caso como este, normalmente se usa a área projetada do rebite para o
cálculo da compressão na superfície “M”, ao se aplicar a fórmula
( AFc =σ ).
Substitui-se então a superfície real que é um semicilindro por um retângulo de
dimensões “t” e “D”.
t
D
Assim, a Tensão de Compressão sobre a superfície será obtida por:
A
Fc =σ ∴ ( )Dt
F
c .
=σ ( )MPa
Sendo “t” e “D” as dimensões da área projetada.
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 16
Observando a Figura, pode-se notar que as fibras da superfície do furo e as
fibras da superfície do rebite estão comprimidas umas de encontro às outras,
mas que a tensão de compressão devido à força “F” não atinge todo o rebite e
nem se estende por toda a chapa. A esse tipo de esforço dá-se o nome de
COMPRESSÃO SUPERFICIAL.
Quando houver mais de um elemento (rebite ou parafuso) utiliza-se:
( )Dtn
F
c ..
=σ ( )MPa
Sendo “n” o número de elementos (parafuso ou rebite) em análise.
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 17
10- FLEXÃO
Ocorre quando uma barra é submetida a uma força F, atuando
perpendicularmente ao seu eixo, produzindo uma flexão na barra.
Flexão pura – desprezam-se as forças cortantes.
f
f
f
W
M
=σ
( )MPa
F
b
h
a
LINHA
NEUTRA
L
onde:
fσ => Tensão de flexão
fM => Momento fletor (N.mm) VER TABELA 6
fW => Módulo de resistência à flexão (mm3
) VER TABELA 5
O Módulo de resistência à Flexão é a característica geométrica da seção de uma
viga que se opõe à flexão, e é expresso como:
a
I
W f
f =
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 18
onde:
If => Momento de Inércia à flexão da seção transversal (mm4
) VER TABELA 5
a => Distância da linha neutra à fibra externa (mm)
Exemplo de módulo de resistência à flexão ( fW ):
NOTA: As fórmulas de Momento de Inércia ( fI ) e Módulo de Resistência à
Flexão ( fW ) da maioria das seções de uso prático na engenharia estão
apresentadas na TABELA 5.
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 19
Tensão de Flexão: Na figura abaixo pode-se observar que uma viga ao se
flexionar, as suas fibras situadas acima da LINHA NEUTRA se alongam,
enquanto que as fibras inferiores, sofrem um achatamento, denotando uma
compressão. Por outro lado, as fibras da camada neutra se mantêm
inalteradas.
F
LINHA
NEUTRA
+
-
Dessa forma, deduz-se que o corpo sujeito a um esforço de flexão sofre,
simultaneamente, uma tensão de tração e outra de compressão.
Consequentemente, para valores de tensões de resistência à flexão dos
materiais, tomam-se os mesmos valores de tração ou de compressão,
constantes na TABELA 3.
Caso os valores das resistências à tração forem diferentes aos da compressão,
para flexão toma-se o menor valor.
crtrfr ou σσσ =
DEFLEXÃO: Para todas as peças submetidas à flexão é necessário verificar a
deflexão. A deflexão máxima atuante “f” é calculada utilizando-se as expressões
da Tabela 6, e depende do tipo de apoio e carregamento.
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 20
Tensão de cisalhamento na flexão: Além das tensões normais (tração e
compressão) que surgem numa seção transversal de uma viga fletida,
aparecem também, tensões de cisalhamento ( cτ ).
As tensões de cisalhamento não se distribuem uniformemente sobre a seção
transversal, quando ela age em conjunto com a Tensão de Flexão. Ela pode
ser calculada através da expressão:
f
s
c
Ib
MQ
.
.
=τ
Onde:
=sM Momento estático da área.
=Q Esforço cortante
=fI Momento de inércia à flexão
=b Largura da seção resistente
DISTRIBUIÇÃO DAS TENSÕES DE CISALHAMENTO NA SEÇÃO RESISTENTE
DE UMA BARRA SUJEITA À FLEXÃO:
SEÇÃO RETANGULAR
A
Q
máxc .
2
3
=τ ⇒máxcτ 50% maior que cτ simples
SEÇÃO CIRCULAR
A
Q
máxc .
3
4
=τ ⇒máxcτ 33% maior que cτ simples
VERIFICAÇÃO:
≤máxcτ cτ
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 21
TABELA 5 – MOMENTO DE INÉRCIA À FLEXÃO, MÓDULO DE
RESISTÊNCIA À FLEXÃO E RAIO DE GIRAÇÃO
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 22
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 23
TABELA 6 – FÓRMULAS RELATIVAS À FLEXÃO DE VIGAS DE SEÇÕES
CONTÍNUAS
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 24
11- EQUILÍBRIO DE CORPOS RÍGIDOS
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 25
CONVENÇÃO DE SINAIS
MOMENTO NO PONTO
FORÇAS NORMAIS
OBS.:
+
+ -
-
+
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 26
APOIOS
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 27
TIPOS DE ESTRUTURAS
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 28
12- DIAGRAMA DE CORPO LIVRE
DISPOSIÇÃO DAS CARGAS
CARGA CONCENTRADA: quando a carga age sobre um ponto da viga.
CARGA UNIFORMEMENTE DISTRIBUÍDA: quando a carga se distribui
igualmente ao longo da viga
CONVENÇÃO DE SINAIS
FORÇA NORMAL (N)
-
COMPRESSÃO
+TRAÇÃO
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 29
FORÇA CORTANTE (Q)
MOMENTO FLETOR (Mf)
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 30
13- TORÇÃO
Ocorre quando uma barra é submetida a uma força P, agindo no plano
perpendicular ao eixo da barra, que tende a girar cada seção transversal em
relação às demais, produzindo uma torção, que por sua vez causará uma
deformação (ϕ ) que chamamos de ângulo de torção.
ϕ
x
Mt
F
L
R
LINHA NEUTRA
t
t
t
W
M
=τ
( )MPa
onde:
tτ => Tensão de torção
tM => Momento torçor (N.mm)
xFMt .=
onde:
F => Força aplicada (N)
x => Distância entre a força aplicada e o
centro de torção da peça (mm)
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 31
tW => Módulo de resistência à torção ou (mm3
) VER TABELA 8
Módulo de resistência polar
O Módulo de resistência polar é a característica geométrica da seção de uma viga
que se opõe à torção, e é expresso como:
R
I
W t
t =
onde:
It => Momento de Inércia polar da seção transversal (mm4
) VER TABELA 8
R => Distância da linha neutra à fibra externa (mm)
Exemplo de módulo de resistência à torção ( tW ):
NOTA: As fórmulas de Momento de Inércia Polar ( tI ) e Módulo de
Resistência Polar ( tW ) da maioria das seções de uso prático na engenharia
estão apresentadas na TABELA 8.
O Momento torçor pode ser obtido também pela seguinte fórmula:
n
N
Mt .9550= ).( mmN
onde:
N = potência que aciona o eixo (W)
n = rpm do eixo
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 32
É importante observar que as tensões de torção no corpo equivalem às
tensões de cisalhamento.
Portanto, para as tensões de resistência à torção dos diferentes materiais,
tomam-se os valores das tensões de resistência ao cisalhamento, TABELA 3,
dos respectivos materiais.
crtr ττ =
ÂNGULO DE TORÇÃO DA SEÇÃO RESISTENTE )(ϕ
ϕ
x
Mt
F
L
O ângulo de torção (ϕ ) poderá ser determinado pela seguinte expressão:
t
t
IG
LM
..
..180
π
ϕ = )(graus
t
t
IG
LM
.
.
=ϕ )(rad
onde:
ϕ => Ângulo de torção
tM => Momento torçor (N.mm)
L => Comprimento da peça (mm)
G => Módulo de Elasticidade Transversal ( )MPa VER TABELA 1
tI => Momento de Inércia polar da seção transversal (mm4
) VER TABELA 8
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 33
DISTORÇÃO )(γ
G
tτ
γ = )(rad
onde:
γ => Distorção
tτ => Tensão de torção ( )MPa 
G => Módulo de Elasticidade transversal ( )MPa
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 34
TABELA 8 – MOMENTO DE INÉRCIA POLAR E MÓDULO DE RESISTÊNCIA
POLAR
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 35
14- FLAMBAGEM
14.1- DEFINIÇÃO
A flambagem consiste na deformação de uma peça, causada por uma
força de compressão axial, como ilustrada na figura abaixo. Como
conseqüência, a peça pode perder a sua estabilidade (sofrer um colapso) sem
que seu material atinja o limite de escoamento.
Este colapso sempre ocorrerá na direção do eixo de menor momento de
inércia de sua seção transversal.
I=b.h3
/12
EIXO DE MENOR
MOMENTO DE INÉRCIA
F
L
14.2- CARGA CRÍTICA ( CRF )
Denomina-se carga crítica, a carga axial que faz com que a peça venha
a perder a sua estabilidade e comece a flambar.
Portanto, se crFF ≤ , não ocorre flambagem, e se crFF ≥ , ocorre
flambagem.
Euler (1707-1783) foi o primeiro a estudar o fenômeno, e determinou a
fórmula da carga crítica nas peças carregadas axialmente.
2
2
..
λ
π AE
Fcr = ( )N eq. 1 (CARGA CRÍTICA)
crF => Carga crítica (N)
E => Módulo de elasticidade do material ( MPa ) - Aço= 210.000 MPa
A => Área da seção transversal ( mm2
)
λ => Índice de esbeltez (adimensional)
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 36
onde
Índice de Esbeltez (λ ) => mede a facilidade ou a dificuldade que um elemento
comprimido tem de flambar e é definido como sendo a relação entre o
comprimento de flambagem ( fl ) e o raio de giração ( R ) da seção transversal
da peça. Uma peça é esbelta quando seu comprimento é grande perante sua
seção transversal. Quanto maior o índice de esbeltez maior a probabilidade do
elemento flambar.
R
fl
=λ
(ÍNDICE DE ESBELTEZ)
Onde:
fl => Comprimento de flambagem (mm)
R => Raio de giração (mm)
e
A
I
R MÍNf
= (RAIO DE GIRAÇÃO) TABELA 6
Onde:
MINfI => Menor momento de inércia da seção (mm4
)
A => Área da seção (mm2
)
Substituindo 2
λ , na equação 1, tem-se:
2
2
2
R
fl
=λ
A
I
A
I
R
ff
=>








=
2
2
f
f
f
f
I
A
A
I
.
22
2
ll
=>=λ
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 37
2
2
2
2
2
2
2
2 ..
.
...
.
....
f
f
f
f
f
f
cr
IE
A
IAE
I
A
AEAE
F
lll
πππ
λ
π
=>=>=>=
2
2
..
f
f
cr
MÍN
IE
F
l
π
= ( )N eq. 2 (CARGA CRÍTICA)
14.3- COMPRIMENTO DE FLAMBAGEM ( fl )
Em função do tipo de fixação das suas extremidades, a peça apresenta
diferentes comprimentos de flambagens:
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 38
14.4- CONDIÇÕES PARA USO DA FÓRMULA DE EULER
A fórmula de Euler é válida para colunas esbeltas, onde :
105≥λ => Aço-carbono
80≥λ => FoFo
59≥λ => Alumínio
100≥λ => Madeira
OBS.: se 40..30 a≤λ não existe flambagem.
14.5- TENSÃO CRÍTICA DE FLAMBAGEM ( flσ )
Tensão Crítica de Flambagem é a tensão que faz com que a peça perca
a sua estabilidade e comece a flambar.
A tensão crítica deverá ser menor ou igual à tensão de
proporcionalidade (abaixo do escoamento) do material. Desta forma, observa-
se que o material deverá estar sempre na região de deformação elástica.
A
Fcr
fl =σ => 2
2
.
λ
π
σ
E
fl = ( )MPa (EQUAÇÃO DE EULER)
CRITÉRIO
alidadeproporcionfl σσ ≤
OBS.: Para que em uma barra não ocorra a flambagem, o valor de tensão
desenvolvido pela força de compressão atuante deve ser menor que o da
Tensão Admissível Crítica de Flambagem ( flσ ), isto é:
flc
A
F
σσ ≤= onde
S
fl
fl
σ
σ =
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 39
DIMENSIONAMENTO
- NORMA ABNT NB-14 - AÇOS
TABELA 1 – Expressões para aços, segundo ABNT NB-14
Índice (λ ) Material flσ (MPa)
105<λ Aço 2
.0046,0240 λσ −=fl
105≥λ (Euler – def. elástica) Aço 2
2
.
λ
π
σ
E
fl =
- DIMENSIONAMENTO ESPECIAL – FLAMBAGEM NO CAMPO DAS
DEFORMAÇÕES ELASTO-PLÁSTICAS
Quando a tensão de flambagem ultrapassa a tensão de
proporcionalidade do material, a fórmula de Euler (colunas delgadas) perde a
sua validade. Para estes casos, utiliza-se o estudo de Tetmajer (colunas
curtas) que indica:
TABELA 2 – Expressões de Tetmajer para colunas curtas
Índice (λ ) Material flσ (MPa)
100<λ Madeira (pinho) λσ .194,03,29 −=fl
80<λ Fofo cinzento 2
.053,0.12776 λλσ +−=fl
89<λ Aço duro λσ .62,0335 −=fl
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 40
ÁREAS DE FIGURAS PLANAS
FIGURA FÓRMULA
h
b
hbA .=
a
a
2
aA =
D
4
. 2
D
A
π
=
d
D
( )
4
. 22
dD
A
−
=
π
RESISTÊNCIA DOS MATERIAIS
Prof. Luiz Gustavo 41
ALFABETO GREGO

Mais conteúdo relacionado

Mais procurados

resumao resistencia dos materiais
resumao resistencia dos materiaisresumao resistencia dos materiais
resumao resistencia dos materiaisEclys Montenegro
 
Alinhamento de-eixos
Alinhamento de-eixosAlinhamento de-eixos
Alinhamento de-eixosDavid Raquita
 
Transformacao de tensoes
Transformacao de tensoesTransformacao de tensoes
Transformacao de tensoesBianca Alencar
 
Nbr 8400 calculo de equipamento para levantamento e movimentacao de cargas
Nbr 8400   calculo de equipamento para levantamento e movimentacao de cargasNbr 8400   calculo de equipamento para levantamento e movimentacao de cargas
Nbr 8400 calculo de equipamento para levantamento e movimentacao de cargasAilton Macedo Medeiros
 
Aula 6 propriedades mecânicas , emgenharia
Aula 6 propriedades mecânicas  , emgenhariaAula 6 propriedades mecânicas  , emgenharia
Aula 6 propriedades mecânicas , emgenhariaFelipe Rosa
 
Nbr 14827-2002-chumbadores-instalados-em-elementos-de-concreto
Nbr 14827-2002-chumbadores-instalados-em-elementos-de-concretoNbr 14827-2002-chumbadores-instalados-em-elementos-de-concreto
Nbr 14827-2002-chumbadores-instalados-em-elementos-de-concretoFabiana Cunha Consultare
 
Apostila resistência materiais
Apostila resistência materiaisApostila resistência materiais
Apostila resistência materiaisMoacir Junges
 
19.parâmetros de rugosidade
19.parâmetros de rugosidade19.parâmetros de rugosidade
19.parâmetros de rugosidadeEdvaldo Viana
 
Parafusos aula02-150403143538-conversion-gate01
Parafusos aula02-150403143538-conversion-gate01Parafusos aula02-150403143538-conversion-gate01
Parafusos aula02-150403143538-conversion-gate01Vagner Soares da Costa
 
Resistencia dos materiais e dimensionamento de estruturas
Resistencia dos materiais e dimensionamento de estruturasResistencia dos materiais e dimensionamento de estruturas
Resistencia dos materiais e dimensionamento de estruturasEduardo Spech
 
Cap 2 problemas estaticamente indeterminados
Cap 2   problemas estaticamente indeterminadosCap 2   problemas estaticamente indeterminados
Cap 2 problemas estaticamente indeterminadosBianca Alencar
 
27.tolerância geométrica de posição
27.tolerância geométrica de posição27.tolerância geométrica de posição
27.tolerância geométrica de posiçãoEdvaldo Viana
 
1 exercícios tecnologia dos materiais
1 exercícios tecnologia dos materiais1 exercícios tecnologia dos materiais
1 exercícios tecnologia dos materiaisLuan Siqueira
 
Falha ou ruptura nos metais
Falha ou ruptura nos metaisFalha ou ruptura nos metais
Falha ou ruptura nos metaisedmarluis
 
Nbr 5419-1-2015-protecao-contra-descargas-atmosfericas-parte-1-principios-ger...
Nbr 5419-1-2015-protecao-contra-descargas-atmosfericas-parte-1-principios-ger...Nbr 5419-1-2015-protecao-contra-descargas-atmosfericas-parte-1-principios-ger...
Nbr 5419-1-2015-protecao-contra-descargas-atmosfericas-parte-1-principios-ger...Paulo H Bueno
 

Mais procurados (20)

resumao resistencia dos materiais
resumao resistencia dos materiaisresumao resistencia dos materiais
resumao resistencia dos materiais
 
Alinhamento de-eixos
Alinhamento de-eixosAlinhamento de-eixos
Alinhamento de-eixos
 
Transformacao de tensoes
Transformacao de tensoesTransformacao de tensoes
Transformacao de tensoes
 
Nbr 8400 calculo de equipamento para levantamento e movimentacao de cargas
Nbr 8400   calculo de equipamento para levantamento e movimentacao de cargasNbr 8400   calculo de equipamento para levantamento e movimentacao de cargas
Nbr 8400 calculo de equipamento para levantamento e movimentacao de cargas
 
Aula 6 propriedades mecânicas , emgenharia
Aula 6 propriedades mecânicas  , emgenhariaAula 6 propriedades mecânicas  , emgenharia
Aula 6 propriedades mecânicas , emgenharia
 
Nbr 14827-2002-chumbadores-instalados-em-elementos-de-concreto
Nbr 14827-2002-chumbadores-instalados-em-elementos-de-concretoNbr 14827-2002-chumbadores-instalados-em-elementos-de-concreto
Nbr 14827-2002-chumbadores-instalados-em-elementos-de-concreto
 
Apostila resistência materiais
Apostila resistência materiaisApostila resistência materiais
Apostila resistência materiais
 
19.parâmetros de rugosidade
19.parâmetros de rugosidade19.parâmetros de rugosidade
19.parâmetros de rugosidade
 
Fator de atrito grupo 2
Fator de atrito   grupo 2Fator de atrito   grupo 2
Fator de atrito grupo 2
 
Parafusos aula02-150403143538-conversion-gate01
Parafusos aula02-150403143538-conversion-gate01Parafusos aula02-150403143538-conversion-gate01
Parafusos aula02-150403143538-conversion-gate01
 
Resistencia dos materiais e dimensionamento de estruturas
Resistencia dos materiais e dimensionamento de estruturasResistencia dos materiais e dimensionamento de estruturas
Resistencia dos materiais e dimensionamento de estruturas
 
Cap 2 problemas estaticamente indeterminados
Cap 2   problemas estaticamente indeterminadosCap 2   problemas estaticamente indeterminados
Cap 2 problemas estaticamente indeterminados
 
27.tolerância geométrica de posição
27.tolerância geométrica de posição27.tolerância geométrica de posição
27.tolerância geométrica de posição
 
Tolerancia dimensional
Tolerancia dimensionalTolerancia dimensional
Tolerancia dimensional
 
1 exercícios tecnologia dos materiais
1 exercícios tecnologia dos materiais1 exercícios tecnologia dos materiais
1 exercícios tecnologia dos materiais
 
Falha ou ruptura nos metais
Falha ou ruptura nos metaisFalha ou ruptura nos metais
Falha ou ruptura nos metais
 
Aula 02 torcao
Aula 02   torcaoAula 02   torcao
Aula 02 torcao
 
Nbr 5462 (2)
Nbr 5462 (2)Nbr 5462 (2)
Nbr 5462 (2)
 
Pilares 01
Pilares 01Pilares 01
Pilares 01
 
Nbr 5419-1-2015-protecao-contra-descargas-atmosfericas-parte-1-principios-ger...
Nbr 5419-1-2015-protecao-contra-descargas-atmosfericas-parte-1-principios-ger...Nbr 5419-1-2015-protecao-contra-descargas-atmosfericas-parte-1-principios-ger...
Nbr 5419-1-2015-protecao-contra-descargas-atmosfericas-parte-1-principios-ger...
 

Destaque

Süssekind curso de análise estrutural 2
Süssekind   curso de análise estrutural 2Süssekind   curso de análise estrutural 2
Süssekind curso de análise estrutural 2Uniceuma
 
Formulas
FormulasFormulas
Formulasformold
 
07catalogo acos gerdau
07catalogo acos gerdau07catalogo acos gerdau
07catalogo acos gerdaudcsslideshare
 
Apostila completa-resistc3aancia-dos-materiais-1
Apostila completa-resistc3aancia-dos-materiais-1Apostila completa-resistc3aancia-dos-materiais-1
Apostila completa-resistc3aancia-dos-materiais-1David Lima Soares
 
Aula 1 ensaios mecânicos e end - introdução
Aula 1   ensaios mecânicos e end - introduçãoAula 1   ensaios mecânicos e end - introdução
Aula 1 ensaios mecânicos e end - introduçãoAlex Leal
 
Süssekind curso de análise estrutural 3
Süssekind   curso de análise estrutural 3Süssekind   curso de análise estrutural 3
Süssekind curso de análise estrutural 3Uniceuma
 
Formulario vigas
Formulario vigasFormulario vigas
Formulario vigasJorge Pombo
 
tabla-de-acero
 tabla-de-acero tabla-de-acero
tabla-de-acerovadi21
 
Nbr 8855 eb 168 propriedades mecanicas de elementos de fixacao parafusos e pr...
Nbr 8855 eb 168 propriedades mecanicas de elementos de fixacao parafusos e pr...Nbr 8855 eb 168 propriedades mecanicas de elementos de fixacao parafusos e pr...
Nbr 8855 eb 168 propriedades mecanicas de elementos de fixacao parafusos e pr...ejfelix
 
7. ed capítulo vii momentos de inercia
7. ed capítulo vii momentos de inercia7. ed capítulo vii momentos de inercia
7. ed capítulo vii momentos de inerciajulio sanchez
 
Ensaio de limite de liquidez e plasticidade
Ensaio de limite de liquidez e plasticidadeEnsaio de limite de liquidez e plasticidade
Ensaio de limite de liquidez e plasticidadeEzequiel Borges
 
Resistencia dos materiais apostila
Resistencia dos materiais   apostilaResistencia dos materiais   apostila
Resistencia dos materiais apostilajocilenemota
 

Destaque (20)

Tabelas
TabelasTabelas
Tabelas
 
Guia aco
Guia acoGuia aco
Guia aco
 
Süssekind curso de análise estrutural 2
Süssekind   curso de análise estrutural 2Süssekind   curso de análise estrutural 2
Süssekind curso de análise estrutural 2
 
Formulas
FormulasFormulas
Formulas
 
Metodo dos Esforços
Metodo dos EsforçosMetodo dos Esforços
Metodo dos Esforços
 
Tabela aço
Tabela açoTabela aço
Tabela aço
 
07catalogo acos gerdau
07catalogo acos gerdau07catalogo acos gerdau
07catalogo acos gerdau
 
Momento de-inercia-prof.-ferreira
Momento de-inercia-prof.-ferreiraMomento de-inercia-prof.-ferreira
Momento de-inercia-prof.-ferreira
 
Apostila completa-resistc3aancia-dos-materiais-1
Apostila completa-resistc3aancia-dos-materiais-1Apostila completa-resistc3aancia-dos-materiais-1
Apostila completa-resistc3aancia-dos-materiais-1
 
Aula 1 ensaios mecânicos e end - introdução
Aula 1   ensaios mecânicos e end - introduçãoAula 1   ensaios mecânicos e end - introdução
Aula 1 ensaios mecânicos e end - introdução
 
Süssekind curso de análise estrutural 3
Süssekind   curso de análise estrutural 3Süssekind   curso de análise estrutural 3
Süssekind curso de análise estrutural 3
 
3 torcao
3 torcao3 torcao
3 torcao
 
Formulario vigas
Formulario vigasFormulario vigas
Formulario vigas
 
Resistencia estabilidade
Resistencia estabilidadeResistencia estabilidade
Resistencia estabilidade
 
tabla-de-acero
 tabla-de-acero tabla-de-acero
tabla-de-acero
 
Resistência dos Materiais II
Resistência dos Materiais IIResistência dos Materiais II
Resistência dos Materiais II
 
Nbr 8855 eb 168 propriedades mecanicas de elementos de fixacao parafusos e pr...
Nbr 8855 eb 168 propriedades mecanicas de elementos de fixacao parafusos e pr...Nbr 8855 eb 168 propriedades mecanicas de elementos de fixacao parafusos e pr...
Nbr 8855 eb 168 propriedades mecanicas de elementos de fixacao parafusos e pr...
 
7. ed capítulo vii momentos de inercia
7. ed capítulo vii momentos de inercia7. ed capítulo vii momentos de inercia
7. ed capítulo vii momentos de inercia
 
Ensaio de limite de liquidez e plasticidade
Ensaio de limite de liquidez e plasticidadeEnsaio de limite de liquidez e plasticidade
Ensaio de limite de liquidez e plasticidade
 
Resistencia dos materiais apostila
Resistencia dos materiais   apostilaResistencia dos materiais   apostila
Resistencia dos materiais apostila
 

Semelhante a Resistência dos materiais: tipos de esforços e deformação

Resistencia dos materiais_1_tipos_de_esf
Resistencia dos materiais_1_tipos_de_esfResistencia dos materiais_1_tipos_de_esf
Resistencia dos materiais_1_tipos_de_esfMiguel Casimiro
 
Aula 03 ensaio de tração - propriedades mecânicas avaliada
Aula 03   ensaio de tração - propriedades mecânicas avaliadaAula 03   ensaio de tração - propriedades mecânicas avaliada
Aula 03 ensaio de tração - propriedades mecânicas avaliadaRenaldo Adriano
 
Aula 06 ensaio de compressão
Aula 06   ensaio de compressãoAula 06   ensaio de compressão
Aula 06 ensaio de compressãoRenaldo Adriano
 
Resistencia dos materiais tensão e deformação
Resistencia dos materiais   tensão e deformaçãoResistencia dos materiais   tensão e deformação
Resistencia dos materiais tensão e deformaçãoDouglas Mota
 
F2 aula 1 equilibrio e elasticidade
F2 aula 1 equilibrio e elasticidadeF2 aula 1 equilibrio e elasticidade
F2 aula 1 equilibrio e elasticidadeA'nderé Freire
 
Apostila resistencia dos_materiais_parte_1
Apostila resistencia dos_materiais_parte_1Apostila resistencia dos_materiais_parte_1
Apostila resistencia dos_materiais_parte_1Hudson Luiz Pissini
 
Relatório Pontes de Macarrão - Resistencia dos Materiais I
Relatório Pontes de Macarrão - Resistencia dos Materiais IRelatório Pontes de Macarrão - Resistencia dos Materiais I
Relatório Pontes de Macarrão - Resistencia dos Materiais IVictoria Maia
 
Propriedades dos materias2
Propriedades dos materias2Propriedades dos materias2
Propriedades dos materias2PublicaTUDO
 
Res mat-cotuca-versao-4-4-21-fev-2013-revisao-numeracao-exer-como-ver-4-2 (1)
Res mat-cotuca-versao-4-4-21-fev-2013-revisao-numeracao-exer-como-ver-4-2 (1)Res mat-cotuca-versao-4-4-21-fev-2013-revisao-numeracao-exer-como-ver-4-2 (1)
Res mat-cotuca-versao-4-4-21-fev-2013-revisao-numeracao-exer-como-ver-4-2 (1)Francisco Costa
 
Res mat-cotuca-versao-4-4-21-fev-2013-revisao-numeracao-exer-como-ver-4-2
Res mat-cotuca-versao-4-4-21-fev-2013-revisao-numeracao-exer-como-ver-4-2Res mat-cotuca-versao-4-4-21-fev-2013-revisao-numeracao-exer-como-ver-4-2
Res mat-cotuca-versao-4-4-21-fev-2013-revisao-numeracao-exer-como-ver-4-2Hamilton Gonçalves de Araújo
 

Semelhante a Resistência dos materiais: tipos de esforços e deformação (20)

Resistencia dos materiais_1_tipos_de_esf
Resistencia dos materiais_1_tipos_de_esfResistencia dos materiais_1_tipos_de_esf
Resistencia dos materiais_1_tipos_de_esf
 
Resistencia materiais e dimensionamento
Resistencia materiais e dimensionamentoResistencia materiais e dimensionamento
Resistencia materiais e dimensionamento
 
Resistencia
ResistenciaResistencia
Resistencia
 
Criterios resistencia
Criterios resistenciaCriterios resistencia
Criterios resistencia
 
Aula 03 ensaio de tração - propriedades mecânicas avaliada
Aula 03   ensaio de tração - propriedades mecânicas avaliadaAula 03   ensaio de tração - propriedades mecânicas avaliada
Aula 03 ensaio de tração - propriedades mecânicas avaliada
 
Tracaocompressaoleidehooke
TracaocompressaoleidehookeTracaocompressaoleidehooke
Tracaocompressaoleidehooke
 
Tracaocompressaoleidehooke
TracaocompressaoleidehookeTracaocompressaoleidehooke
Tracaocompressaoleidehooke
 
Aula 06 ensaio de compressão
Aula 06   ensaio de compressãoAula 06   ensaio de compressão
Aula 06 ensaio de compressão
 
Apostila de teoria
Apostila de teoriaApostila de teoria
Apostila de teoria
 
flexao.pdf
flexao.pdfflexao.pdf
flexao.pdf
 
Resistencia dos materiais tensão e deformação
Resistencia dos materiais   tensão e deformaçãoResistencia dos materiais   tensão e deformação
Resistencia dos materiais tensão e deformação
 
Cap 3
Cap 3Cap 3
Cap 3
 
F2 aula 1 equilibrio e elasticidade
F2 aula 1 equilibrio e elasticidadeF2 aula 1 equilibrio e elasticidade
F2 aula 1 equilibrio e elasticidade
 
Ensa02
Ensa02Ensa02
Ensa02
 
Apostila resistencia dos_materiais_parte_1
Apostila resistencia dos_materiais_parte_1Apostila resistencia dos_materiais_parte_1
Apostila resistencia dos_materiais_parte_1
 
Relatório Pontes de Macarrão - Resistencia dos Materiais I
Relatório Pontes de Macarrão - Resistencia dos Materiais IRelatório Pontes de Macarrão - Resistencia dos Materiais I
Relatório Pontes de Macarrão - Resistencia dos Materiais I
 
Propriedades dos materias2
Propriedades dos materias2Propriedades dos materias2
Propriedades dos materias2
 
Res mat-cotuca-versao-4-4-21-fev-2013-revisao-numeracao-exer-como-ver-4-2 (1)
Res mat-cotuca-versao-4-4-21-fev-2013-revisao-numeracao-exer-como-ver-4-2 (1)Res mat-cotuca-versao-4-4-21-fev-2013-revisao-numeracao-exer-como-ver-4-2 (1)
Res mat-cotuca-versao-4-4-21-fev-2013-revisao-numeracao-exer-como-ver-4-2 (1)
 
Res mat-cotuca-versao-4-4-21-fev-2013-revisao-numeracao-exer-como-ver-4-2
Res mat-cotuca-versao-4-4-21-fev-2013-revisao-numeracao-exer-como-ver-4-2Res mat-cotuca-versao-4-4-21-fev-2013-revisao-numeracao-exer-como-ver-4-2
Res mat-cotuca-versao-4-4-21-fev-2013-revisao-numeracao-exer-como-ver-4-2
 
1º lista de exercícios
1º lista de exercícios 1º lista de exercícios
1º lista de exercícios
 

Último

Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdf
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdfLivro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdf
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdfSamuel Ramos
 
Estatística aplicada à experimentação animal
Estatística aplicada à experimentação animalEstatística aplicada à experimentação animal
Estatística aplicada à experimentação animalleandroladesenvolvim
 
LEAN SIX SIGMA - Garantia da qualidade e segurança
LEAN SIX SIGMA - Garantia da qualidade e segurançaLEAN SIX SIGMA - Garantia da qualidade e segurança
LEAN SIX SIGMA - Garantia da qualidade e segurançaGuilhermeLucio9
 
MODELO LAUDO AVALIAÇÃO MÁQUINAS EQUIPAM
MODELO LAUDO AVALIAÇÃO MÁQUINAS  EQUIPAMMODELO LAUDO AVALIAÇÃO MÁQUINAS  EQUIPAM
MODELO LAUDO AVALIAÇÃO MÁQUINAS EQUIPAMCassio Rodrigo
 
Aula de classificação de rolamentos norma DIN
Aula de classificação de rolamentos norma DINAula de classificação de rolamentos norma DIN
Aula de classificação de rolamentos norma DINFabioFranca22
 
PLANO DE EMERGÊNCIA E COMBATE A INCENDIO.pdf
PLANO DE EMERGÊNCIA E COMBATE A INCENDIO.pdfPLANO DE EMERGÊNCIA E COMBATE A INCENDIO.pdf
PLANO DE EMERGÊNCIA E COMBATE A INCENDIO.pdfAroldoMenezes1
 
Eletricista instalador - Senai Almirante Tamandaré
Eletricista instalador - Senai Almirante TamandaréEletricista instalador - Senai Almirante Tamandaré
Eletricista instalador - Senai Almirante TamandaréGuilhermeLucio9
 
Tecnólogo em Mecatrônica - Universidade Anhanguera
Tecnólogo em Mecatrônica - Universidade AnhangueraTecnólogo em Mecatrônica - Universidade Anhanguera
Tecnólogo em Mecatrônica - Universidade AnhangueraGuilhermeLucio9
 
A Importância dos EPI's no trabalho e no dia a dia laboral
A Importância dos EPI's no trabalho e no dia a dia laboralA Importância dos EPI's no trabalho e no dia a dia laboral
A Importância dos EPI's no trabalho e no dia a dia laboralFranciscaArrudadaSil
 
FISIOLOGIA DA REPRODUÇÃO. matéria de fisiologia animal
FISIOLOGIA DA REPRODUÇÃO. matéria de fisiologia animalFISIOLOGIA DA REPRODUÇÃO. matéria de fisiologia animal
FISIOLOGIA DA REPRODUÇÃO. matéria de fisiologia animalPauloHenrique154965
 
Treinamento de NR06 Equipamento de Proteção Individual
Treinamento de NR06 Equipamento de Proteção IndividualTreinamento de NR06 Equipamento de Proteção Individual
Treinamento de NR06 Equipamento de Proteção Individualpablocastilho3
 

Último (11)

Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdf
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdfLivro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdf
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdf
 
Estatística aplicada à experimentação animal
Estatística aplicada à experimentação animalEstatística aplicada à experimentação animal
Estatística aplicada à experimentação animal
 
LEAN SIX SIGMA - Garantia da qualidade e segurança
LEAN SIX SIGMA - Garantia da qualidade e segurançaLEAN SIX SIGMA - Garantia da qualidade e segurança
LEAN SIX SIGMA - Garantia da qualidade e segurança
 
MODELO LAUDO AVALIAÇÃO MÁQUINAS EQUIPAM
MODELO LAUDO AVALIAÇÃO MÁQUINAS  EQUIPAMMODELO LAUDO AVALIAÇÃO MÁQUINAS  EQUIPAM
MODELO LAUDO AVALIAÇÃO MÁQUINAS EQUIPAM
 
Aula de classificação de rolamentos norma DIN
Aula de classificação de rolamentos norma DINAula de classificação de rolamentos norma DIN
Aula de classificação de rolamentos norma DIN
 
PLANO DE EMERGÊNCIA E COMBATE A INCENDIO.pdf
PLANO DE EMERGÊNCIA E COMBATE A INCENDIO.pdfPLANO DE EMERGÊNCIA E COMBATE A INCENDIO.pdf
PLANO DE EMERGÊNCIA E COMBATE A INCENDIO.pdf
 
Eletricista instalador - Senai Almirante Tamandaré
Eletricista instalador - Senai Almirante TamandaréEletricista instalador - Senai Almirante Tamandaré
Eletricista instalador - Senai Almirante Tamandaré
 
Tecnólogo em Mecatrônica - Universidade Anhanguera
Tecnólogo em Mecatrônica - Universidade AnhangueraTecnólogo em Mecatrônica - Universidade Anhanguera
Tecnólogo em Mecatrônica - Universidade Anhanguera
 
A Importância dos EPI's no trabalho e no dia a dia laboral
A Importância dos EPI's no trabalho e no dia a dia laboralA Importância dos EPI's no trabalho e no dia a dia laboral
A Importância dos EPI's no trabalho e no dia a dia laboral
 
FISIOLOGIA DA REPRODUÇÃO. matéria de fisiologia animal
FISIOLOGIA DA REPRODUÇÃO. matéria de fisiologia animalFISIOLOGIA DA REPRODUÇÃO. matéria de fisiologia animal
FISIOLOGIA DA REPRODUÇÃO. matéria de fisiologia animal
 
Treinamento de NR06 Equipamento de Proteção Individual
Treinamento de NR06 Equipamento de Proteção IndividualTreinamento de NR06 Equipamento de Proteção Individual
Treinamento de NR06 Equipamento de Proteção Individual
 

Resistência dos materiais: tipos de esforços e deformação

  • 1. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 1 1- TIPOS DE ESFORÇOS Uma força pode ser aplicada num corpo de diferentes maneiras, originando portanto, diversos tipos de solicitações, tais como: tração, compressão, cisalhamento, flexão e torção. Quando cada tipo se apresenta isoladamente, diz-se que a solicitação é SIMPLES. No caso de dois ou mais tipos agirem conjuntamente a solicitação é COMPOSTA. TRAÇÃO – solicitação que tende a alongar a peça no sentido da reta de ação da força aplicada. COMPRESSÃO – solicitação que tende a encurtar a peça no sentido da reta da força aplicada. CISALHAMENTO – solicitação que tende a deslocar paralelamente, em sentido oposto, duas seções de uma peça (força cortante).
  • 2. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 2 FLEXÃO – solicitação que tende a modificar o eixo geométrico de uma peça. Ex.: uma barra inicialmente reta que passa a ser uma curva. TORÇÃO – solicitação que tende a girar as secções de uma peça, uma em relação às outras. SIMBOLOGIA DAS TENSÕES
  • 3. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 3 2- DEFORMAÇÃO A ação de qualquer força sobre um corpo altera a sua forma, isto é, provoca uma deformação. Com o aumento da intensidade da força, há um aumento da deformação. Existem dois tipos de deformação: Deformação Elástica e Deformação Plástica. Deformação Elástica - deformação transitória, ou seja, o corpo retomará suas dimensões iniciais quando a força for removida. Deformação plástica – deformação permanente, ou seja, o corpo não retornará para suas dimensões iniciais depois de cessado o esforço aplicado. O ponto que separa os dois tipos de deformações é o limite de escoamento. DEFORMAÇÃO UNITÁRIA ou DEFORMAÇÃO ESPECÍFICA => (AXIAL) Deformação específica (ε ) é a relação entre o alongamento total ( l∆ ou δ ) e o comprimento inicial ( 0l ). 0l a δ ε = ou 0l l∆ =ε ou 0 0 l llf − =ε ( )mm mm [1.1] ε - é adimensional, ou seja, não tem unidade e pode ser expresso em porcentagem multiplicando por 100.
  • 4. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 4 3- TENSÃO É uma grandeza vetorial que foi introduzida na resistência dos materiais em 1822, por Augustin Louis Cauchy. É definida como sendo a resistência interna de um corpo qualquer, à aplicação de uma força externa por unidade de área, ou seja, é a força por unidade de área. A F =σ       2 cm kgf ou ( )2 mm N = ( )MPa [1.2] onde: σ => Tensão Normal uniforme que pode ser tração simples ou compressão simples F => Força aplicada ao corpo (kgf ou N) A => Área da seção transversal do corpo (cm2 ou mm2 )
  • 5. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 5 4- DIAGRAMA TENSÃO DEFORMAÇÃO O ensaio de tração consiste em aplicar num corpo de prova uma força axial com o objetivo de deformá-lo até que se produza sua ruptura. Aumentando-se a tensão, a deformação também vai aumentando e os resultados da experiência podem ser mostrados por um gráfico (σ x ε ), marcando em abscissas (eixo “X”) as deformações e em ordenadas (eixo “Y”) as tensões. GRÁFICO TENSÃO DEFORMAÇÃO (σ xε )
  • 6. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 6 No gráfico os pontos marcados significam respectivamente: Ponto P – Tensão Limite de Proporcionalidade ( pσ ) Abaixo deste ponto, a tensão é proporcional à deformação específica ( ε ) , portanto a Lei de Hooke, que estabelece que a tensão é proporcional à deformação, vale somente até este ponto. Ponto E – Tensão Limite de Escoamento ( eσ ) Caracteriza o ponto de escoamento, ou seja, a perda da propriedade elástica do material. Nos aços de médio e baixo teor de carbono, ocorre um visível alongamento do corpo-de-prova praticamente sem aumento da tensão. Ponto R – Tensão Limite de Resistência ( rσ ) É a maior tensão que o corpo-de-prova pode suportar antes de se romper. Obs.: conceitualmente pode-se admitir que pσ =  eσ 5- RELAÇÕES ENTRE TENSÃO E DEFORMAÇÃO MÓDULO DE ELASTICIDADE A Lei de Hooke (Robert Hooke 1678) estabelece que até a tensão limite de proporcionalidade ( pσ ), ou seja até o ponto P do Diagrama Tensão- Deformação, a tensão em um material é proporcional à deformação nele produzida. Devido a esta condição de proporcionalidade pode se escrever que: ε σ=E ∴ εσ .E= ( )MPa [1.3] onde: σ => Tensão de tração ε => Deformação específica E => Módulo de elasticidade ou módulo de Young ( )MPa  (ver tabela 1) Obs.: Módulo de Elasticidade é a medida de rigidez do material: quanto maior o valor de “E” menor a deformação elástica e mais rígido é o material.
  • 7. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 7 Substituindo as expressões [1.1] e [1.2] na expressão [1.3] e ordenando, tem- se a equação [1.4] para a deformação total: 0l δ ε = [1.1] A F =σ [1.2] εσ .E= [1.3] AE LF . . =δ ( )mm [1.4] MÓDULO DE ELASTICIDADE TRANSVERSAL Através de ensaios com corpos-de-prova submetidos a cisalhamento puro por torção, pode-se escrever que: γτ .G= ( )MPa [1.5] onde: τ => Tensão de cisalhamento por torção ( )MPa γ => Deformação angular ou distorção que é a alteração sofrida em um ângulo reto de um elemento ( )rad G => Módulo de elasticidade ao cisalhamento ou módulo de elasticidade Transversal ( )MPa (ver tabela 1) COEFICIENTE DE POISON As experiências demonstram que um material, quando submetido à tração, sofre além da deformação axial (alongamento), uma deformação transversal (afinamento). Poisson demonstrou que estas duas deformações eram proporcionais uma em relação à outra, dentro dos limites da Lei de Hooke (até o ponto P do Diagrama Tensão- Deformação).
  • 8. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 8 Esta constante é dada por: AxialDeformação TansversalDeformação L L =− µ a t ε ε µ =− (adimensional) [1.6] onde: µ => Coeficiente de Poisson (ver tabela 1) As três constantes se relacionam através da expressão: ( )µ+= 1.2 GE ( )MPa [1.7] TABELA 1 – PROPRIEDADES DE ALGUNS MATERIAIS Material Módulo de Elasticidade (MPa) “E” Mód. Elasticidade Transversal (MPa) “G” Coeficiente de Poisson “µ” Aços 210000 80000 0,30 Alumínio 72400 26700 0,33 Bronze 113200 42200 0,35 Cobre 121300 45600 0,33 Ferro Fundido Cinzento 102000 42200 0,21 Latão 108000 40800 0,32 Madeira (Pinho) 11200 4200 0,33
  • 9. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 9 6- DIMENSIONAMENTO (TENSÕES ADMISSÍVEIS E COEFICIENTE DE SEGURANÇA) No dimensionamento dos elementos de máquinas, as peças a serem calculadas deverão suportar as cargas com segurança. Para isto, admitem-se apenas deformações elásticas, portanto, a tensão de trabalho fixada deve ser inferior à tensão de escoamento do material. A esta tensão que oferece a peça uma condição de trabalho sem perigo, chamamos de TENSÃO ADMISSÍVEL. Seu valor é determinado dividindo-se a tensão de resistência do material ( rσ ou rτ ) por um coeficiente “S” chamado de COEFICIENTE DE SEGURANÇA. σ S rσ = ou τ S rτ = ( )MPa [1.8] O coeficiente de segurança é uma relação entre as tensões de resistência e admissível do material. Em princípio, o coeficiente de segurança é determinado levando-se em consideração diversos fatores parciais, tais como, fator em função da homogeneidade do material, fator em função do tipo de carga a ser aplicado, fator em função de causas desconhecidas, etc. Assim, a rigor o coeficiente de segurança é expresso da seguinte forma: S= S1xS2xS3......... Sendo: S - Coeficiente de segurança total S1, S2, S3, ..... – Fatores de segurança parciais Porém, para os nossos cálculos de resistência adotaremos os valores de coeficientes de segurança já consagrados pela prática, baseados na qualidade do material e no tipo de carga aplicada à peça. Os valores desses coeficientes já englobam todos os demais fatores acima referidos.
  • 10. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 10 Tipos de Solicitações: Basicamente existem 4 tipos de cargas: - Carga Estática Ocorre quando uma peça está sujeita a carga constante, invariável ao decorrer do tempo e aplicada lenta e gradualmente. EX: Vigas - Carga Intermitente Ocorre quando uma peça está sujeita a uma carga variável de zero a um valor máximo, sempre com a mesma direção e sentido. EX: dentes das engrenagens. - Carga Alternada Ocorre quando uma peça está sujeita a uma carga variável na mesma direção, mas com sentido contrario. EX: Eixos Rotativos.
  • 11. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 11 -Carga de Choque Ocorre quando uma peça está sujeita a variação brusca ou a de choque. EX: Componentes de Prensas. Os valores de COEFICIENTE DE SEGURANÇA que serão utilizados estão representados na Tabela 2 abaixo: TABELA 2 COEFICIENTE DE SEGURANÇA (S) * TIPOS DE CARGAS MATERIAL ESTÁTICA INTERMITENTE ALTERNADA CHOQUE Ferro Fundido 6 10 15 20 Aço mole (até SAE-1030) 5 6 8 12 Aço duro 4 6 8 12 Madeira 8 10 15 20 *EM RELAÇÃO À TENSÃO DE RESISTÊNCIA DO MATERIAL As propriedades mecânicas dos materiais que serão utilizadas na resolução dos exercícios propostos estão listadas na tabela 3.
  • 12. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 12 TABELA 3 – PROPRIEDADES MECÂNICAS DE ALGUNS MATERIAIS TENSÃO DE RESISTÊNCIA ( )MPa TENSÃO DE ESCOAMENTO NA TRAÇÃO ( )MPa ALONG. ( )% MATERIAL trσ crσ crτ teσ ε OBS.: SAE-1010 350 350 260 130 33 SAE-1015 385 385 290 175 30 SAE-1020 420 420 320 193 26 SAE-1025 465 465 350 210 22 SAE-1030 500 500 375 230 20 SAE-1040 580 580 435 262 18 SAE-1050 650 650 490 360 15 SAE-1070 700 700 525 420 9 Aços carbono, recozidos ou normalizados. SAE-2330 740 740 550 630 20 SAE-2340 700 700 525 485 25 Aços Ni, recozidos ou normalizados. SAE-3120 630 630 475 530 22 SAE-3130 680 680 510 590 20 SAE-3140 750 750 560 650 17 Aços Ni-Cr, recozidos ou normalizados. SAE-4130 690 690 520 575 20 SAE-4140 760 760 570 650 17 Aços Cr-Mo, recozidos ou normalizados. SAE-4320 840 840 630 650 19 SAE-4340 860 860 650 740 15 Aços Ni-Cr-Mo, recozidos ou normalizados SAE-5120 610 610 460 490 23 SAE-5140 740 740 550 620 18 Aços Cr, recozidos ou normalizados SAE-8620 620 620 465 560 18 SAE-8640 750 750 560 630 14 Aços Ni-Cr-Mo, recozidos ou normalizados AISI-301 770 770 580 280 55 AISI-302 630 630 470 248 55 AISI-310 690 690 515 315 45 Aços inoxidáveis austeníticos AISI-410 490 490 370 264 30 Aços inoxidáveis martensítico Fo.Fo. 120 à 240 600 à 850 -- -- -- Ferro fundido Cobre 225 225 168 70 45 Latão 342 342 255 120 57 Bronze 280 280 210 -- 50 Alumínio 180 180 135 70 22
  • 13. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 13 7- TRAÇÃO E COMPRESSÃO FÓRMULA DE TRAÇÃO E COMPRESSÃO: A F t =σ A F c =σ ( )MPa onde: σ => Tensão Normal uniforme que pode ser tração simples ou compressão simples F => Força aplicada ao corpo (N ) A => Área da seção transversal do corpo (mm2 ) CRITÉRIO DE PROJETO: ≤σ σ Sendo: σ S trσ = ou σ S crσ = ( )MPa FÓRMULA DO ALONGAMENTO TOTAL: AE LF . . =δ ( )mm F A F A
  • 14. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 14 8- CISALHAMENTO PURO Esforço cortante simples desprezando a flexão. Ocorre quando uma peça é submetida a uma força F, atuando transversalmente ao seu eixo, produzindo um cisalhamento (corte). A F C =τ ( )MPa onde: τ => Tensão de cisalhamento F => Força aplicada ao corpo (N ) A => Área da seção transversal do corpo (mm2 ) CRITÉRIO DE PROJETO: ≤cτ cτ Sendo: cτ S rcτ = ( )MPa As tensões de resistência ao cisalhamento ( crτ ), para os materiais em geral, obedecem aproximadamente a seguinte relação com referência à tensão de resistência à tração ( trσ ): =crτ 6,0 a 8,0 trσ
  • 15. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 15 9- COMPRESSÃO SUPERFICIAL (ESMAGAMENTO) Se a carga “F” atua da maneira que se vê na figura abaixo, as partes “B” são tracionadas contra o rebite, ocasionando uma TENSÃO DE COMPRESSÃO NAS SUPERFÍCIES de contato “M”. F F B B M M D t t Num caso como este, normalmente se usa a área projetada do rebite para o cálculo da compressão na superfície “M”, ao se aplicar a fórmula ( AFc =σ ). Substitui-se então a superfície real que é um semicilindro por um retângulo de dimensões “t” e “D”. t D Assim, a Tensão de Compressão sobre a superfície será obtida por: A Fc =σ ∴ ( )Dt F c . =σ ( )MPa Sendo “t” e “D” as dimensões da área projetada.
  • 16. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 16 Observando a Figura, pode-se notar que as fibras da superfície do furo e as fibras da superfície do rebite estão comprimidas umas de encontro às outras, mas que a tensão de compressão devido à força “F” não atinge todo o rebite e nem se estende por toda a chapa. A esse tipo de esforço dá-se o nome de COMPRESSÃO SUPERFICIAL. Quando houver mais de um elemento (rebite ou parafuso) utiliza-se: ( )Dtn F c .. =σ ( )MPa Sendo “n” o número de elementos (parafuso ou rebite) em análise.
  • 17. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 17 10- FLEXÃO Ocorre quando uma barra é submetida a uma força F, atuando perpendicularmente ao seu eixo, produzindo uma flexão na barra. Flexão pura – desprezam-se as forças cortantes. f f f W M =σ ( )MPa F b h a LINHA NEUTRA L onde: fσ => Tensão de flexão fM => Momento fletor (N.mm) VER TABELA 6 fW => Módulo de resistência à flexão (mm3 ) VER TABELA 5 O Módulo de resistência à Flexão é a característica geométrica da seção de uma viga que se opõe à flexão, e é expresso como: a I W f f =
  • 18. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 18 onde: If => Momento de Inércia à flexão da seção transversal (mm4 ) VER TABELA 5 a => Distância da linha neutra à fibra externa (mm) Exemplo de módulo de resistência à flexão ( fW ): NOTA: As fórmulas de Momento de Inércia ( fI ) e Módulo de Resistência à Flexão ( fW ) da maioria das seções de uso prático na engenharia estão apresentadas na TABELA 5.
  • 19. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 19 Tensão de Flexão: Na figura abaixo pode-se observar que uma viga ao se flexionar, as suas fibras situadas acima da LINHA NEUTRA se alongam, enquanto que as fibras inferiores, sofrem um achatamento, denotando uma compressão. Por outro lado, as fibras da camada neutra se mantêm inalteradas. F LINHA NEUTRA + - Dessa forma, deduz-se que o corpo sujeito a um esforço de flexão sofre, simultaneamente, uma tensão de tração e outra de compressão. Consequentemente, para valores de tensões de resistência à flexão dos materiais, tomam-se os mesmos valores de tração ou de compressão, constantes na TABELA 3. Caso os valores das resistências à tração forem diferentes aos da compressão, para flexão toma-se o menor valor. crtrfr ou σσσ = DEFLEXÃO: Para todas as peças submetidas à flexão é necessário verificar a deflexão. A deflexão máxima atuante “f” é calculada utilizando-se as expressões da Tabela 6, e depende do tipo de apoio e carregamento.
  • 20. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 20 Tensão de cisalhamento na flexão: Além das tensões normais (tração e compressão) que surgem numa seção transversal de uma viga fletida, aparecem também, tensões de cisalhamento ( cτ ). As tensões de cisalhamento não se distribuem uniformemente sobre a seção transversal, quando ela age em conjunto com a Tensão de Flexão. Ela pode ser calculada através da expressão: f s c Ib MQ . . =τ Onde: =sM Momento estático da área. =Q Esforço cortante =fI Momento de inércia à flexão =b Largura da seção resistente DISTRIBUIÇÃO DAS TENSÕES DE CISALHAMENTO NA SEÇÃO RESISTENTE DE UMA BARRA SUJEITA À FLEXÃO: SEÇÃO RETANGULAR A Q máxc . 2 3 =τ ⇒máxcτ 50% maior que cτ simples SEÇÃO CIRCULAR A Q máxc . 3 4 =τ ⇒máxcτ 33% maior que cτ simples VERIFICAÇÃO: ≤máxcτ cτ
  • 21. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 21 TABELA 5 – MOMENTO DE INÉRCIA À FLEXÃO, MÓDULO DE RESISTÊNCIA À FLEXÃO E RAIO DE GIRAÇÃO
  • 23. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 23 TABELA 6 – FÓRMULAS RELATIVAS À FLEXÃO DE VIGAS DE SEÇÕES CONTÍNUAS
  • 24. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 24 11- EQUILÍBRIO DE CORPOS RÍGIDOS
  • 25. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 25 CONVENÇÃO DE SINAIS MOMENTO NO PONTO FORÇAS NORMAIS OBS.: + + - - +
  • 26. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 26 APOIOS
  • 27. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 27 TIPOS DE ESTRUTURAS
  • 28. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 28 12- DIAGRAMA DE CORPO LIVRE DISPOSIÇÃO DAS CARGAS CARGA CONCENTRADA: quando a carga age sobre um ponto da viga. CARGA UNIFORMEMENTE DISTRIBUÍDA: quando a carga se distribui igualmente ao longo da viga CONVENÇÃO DE SINAIS FORÇA NORMAL (N) - COMPRESSÃO +TRAÇÃO
  • 29. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 29 FORÇA CORTANTE (Q) MOMENTO FLETOR (Mf)
  • 30. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 30 13- TORÇÃO Ocorre quando uma barra é submetida a uma força P, agindo no plano perpendicular ao eixo da barra, que tende a girar cada seção transversal em relação às demais, produzindo uma torção, que por sua vez causará uma deformação (ϕ ) que chamamos de ângulo de torção. ϕ x Mt F L R LINHA NEUTRA t t t W M =τ ( )MPa onde: tτ => Tensão de torção tM => Momento torçor (N.mm) xFMt .= onde: F => Força aplicada (N) x => Distância entre a força aplicada e o centro de torção da peça (mm)
  • 31. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 31 tW => Módulo de resistência à torção ou (mm3 ) VER TABELA 8 Módulo de resistência polar O Módulo de resistência polar é a característica geométrica da seção de uma viga que se opõe à torção, e é expresso como: R I W t t = onde: It => Momento de Inércia polar da seção transversal (mm4 ) VER TABELA 8 R => Distância da linha neutra à fibra externa (mm) Exemplo de módulo de resistência à torção ( tW ): NOTA: As fórmulas de Momento de Inércia Polar ( tI ) e Módulo de Resistência Polar ( tW ) da maioria das seções de uso prático na engenharia estão apresentadas na TABELA 8. O Momento torçor pode ser obtido também pela seguinte fórmula: n N Mt .9550= ).( mmN onde: N = potência que aciona o eixo (W) n = rpm do eixo
  • 32. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 32 É importante observar que as tensões de torção no corpo equivalem às tensões de cisalhamento. Portanto, para as tensões de resistência à torção dos diferentes materiais, tomam-se os valores das tensões de resistência ao cisalhamento, TABELA 3, dos respectivos materiais. crtr ττ = ÂNGULO DE TORÇÃO DA SEÇÃO RESISTENTE )(ϕ ϕ x Mt F L O ângulo de torção (ϕ ) poderá ser determinado pela seguinte expressão: t t IG LM .. ..180 π ϕ = )(graus t t IG LM . . =ϕ )(rad onde: ϕ => Ângulo de torção tM => Momento torçor (N.mm) L => Comprimento da peça (mm) G => Módulo de Elasticidade Transversal ( )MPa VER TABELA 1 tI => Momento de Inércia polar da seção transversal (mm4 ) VER TABELA 8
  • 33. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 33 DISTORÇÃO )(γ G tτ γ = )(rad onde: γ => Distorção tτ => Tensão de torção ( )MPa  G => Módulo de Elasticidade transversal ( )MPa
  • 34. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 34 TABELA 8 – MOMENTO DE INÉRCIA POLAR E MÓDULO DE RESISTÊNCIA POLAR
  • 35. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 35 14- FLAMBAGEM 14.1- DEFINIÇÃO A flambagem consiste na deformação de uma peça, causada por uma força de compressão axial, como ilustrada na figura abaixo. Como conseqüência, a peça pode perder a sua estabilidade (sofrer um colapso) sem que seu material atinja o limite de escoamento. Este colapso sempre ocorrerá na direção do eixo de menor momento de inércia de sua seção transversal. I=b.h3 /12 EIXO DE MENOR MOMENTO DE INÉRCIA F L 14.2- CARGA CRÍTICA ( CRF ) Denomina-se carga crítica, a carga axial que faz com que a peça venha a perder a sua estabilidade e comece a flambar. Portanto, se crFF ≤ , não ocorre flambagem, e se crFF ≥ , ocorre flambagem. Euler (1707-1783) foi o primeiro a estudar o fenômeno, e determinou a fórmula da carga crítica nas peças carregadas axialmente. 2 2 .. λ π AE Fcr = ( )N eq. 1 (CARGA CRÍTICA) crF => Carga crítica (N) E => Módulo de elasticidade do material ( MPa ) - Aço= 210.000 MPa A => Área da seção transversal ( mm2 ) λ => Índice de esbeltez (adimensional)
  • 36. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 36 onde Índice de Esbeltez (λ ) => mede a facilidade ou a dificuldade que um elemento comprimido tem de flambar e é definido como sendo a relação entre o comprimento de flambagem ( fl ) e o raio de giração ( R ) da seção transversal da peça. Uma peça é esbelta quando seu comprimento é grande perante sua seção transversal. Quanto maior o índice de esbeltez maior a probabilidade do elemento flambar. R fl =λ (ÍNDICE DE ESBELTEZ) Onde: fl => Comprimento de flambagem (mm) R => Raio de giração (mm) e A I R MÍNf = (RAIO DE GIRAÇÃO) TABELA 6 Onde: MINfI => Menor momento de inércia da seção (mm4 ) A => Área da seção (mm2 ) Substituindo 2 λ , na equação 1, tem-se: 2 2 2 R fl =λ A I A I R ff =>         = 2 2 f f f f I A A I . 22 2 ll =>=λ
  • 37. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 37 2 2 2 2 2 2 2 2 .. . ... . .... f f f f f f cr IE A IAE I A AEAE F lll πππ λ π =>=>=>= 2 2 .. f f cr MÍN IE F l π = ( )N eq. 2 (CARGA CRÍTICA) 14.3- COMPRIMENTO DE FLAMBAGEM ( fl ) Em função do tipo de fixação das suas extremidades, a peça apresenta diferentes comprimentos de flambagens:
  • 38. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 38 14.4- CONDIÇÕES PARA USO DA FÓRMULA DE EULER A fórmula de Euler é válida para colunas esbeltas, onde : 105≥λ => Aço-carbono 80≥λ => FoFo 59≥λ => Alumínio 100≥λ => Madeira OBS.: se 40..30 a≤λ não existe flambagem. 14.5- TENSÃO CRÍTICA DE FLAMBAGEM ( flσ ) Tensão Crítica de Flambagem é a tensão que faz com que a peça perca a sua estabilidade e comece a flambar. A tensão crítica deverá ser menor ou igual à tensão de proporcionalidade (abaixo do escoamento) do material. Desta forma, observa- se que o material deverá estar sempre na região de deformação elástica. A Fcr fl =σ => 2 2 . λ π σ E fl = ( )MPa (EQUAÇÃO DE EULER) CRITÉRIO alidadeproporcionfl σσ ≤ OBS.: Para que em uma barra não ocorra a flambagem, o valor de tensão desenvolvido pela força de compressão atuante deve ser menor que o da Tensão Admissível Crítica de Flambagem ( flσ ), isto é: flc A F σσ ≤= onde S fl fl σ σ =
  • 39. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 39 DIMENSIONAMENTO - NORMA ABNT NB-14 - AÇOS TABELA 1 – Expressões para aços, segundo ABNT NB-14 Índice (λ ) Material flσ (MPa) 105<λ Aço 2 .0046,0240 λσ −=fl 105≥λ (Euler – def. elástica) Aço 2 2 . λ π σ E fl = - DIMENSIONAMENTO ESPECIAL – FLAMBAGEM NO CAMPO DAS DEFORMAÇÕES ELASTO-PLÁSTICAS Quando a tensão de flambagem ultrapassa a tensão de proporcionalidade do material, a fórmula de Euler (colunas delgadas) perde a sua validade. Para estes casos, utiliza-se o estudo de Tetmajer (colunas curtas) que indica: TABELA 2 – Expressões de Tetmajer para colunas curtas Índice (λ ) Material flσ (MPa) 100<λ Madeira (pinho) λσ .194,03,29 −=fl 80<λ Fofo cinzento 2 .053,0.12776 λλσ +−=fl 89<λ Aço duro λσ .62,0335 −=fl
  • 40. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 40 ÁREAS DE FIGURAS PLANAS FIGURA FÓRMULA h b hbA .= a a 2 aA = D 4 . 2 D A π = d D ( ) 4 . 22 dD A − = π
  • 41. RESISTÊNCIA DOS MATERIAIS Prof. Luiz Gustavo 41 ALFABETO GREGO