Structure determination of organic compounds
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share

Structure determination of organic compounds

  • 2,481 views
Uploaded on

Good book for determination of organic molecules. ...

Good book for determination of organic molecules.
Includes NMR and IF tables.

More in: Education , Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
  • Spectacular book for aspiring organic chemists....
    Are you sure you want to
    Your message goes here
No Downloads

Views

Total Views
2,481
On Slideshare
2,481
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
171
Comments
1
Likes
2

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. E. Pretsch, P. Buhlmann, C. AffolterStructure Determinationof Organic CompoundsTables of Spectral DataThird Completely Revised and Enlarged English EditionCorrected first Printing Springer
  • 2. Professor Emoe PretschETH ZurichLaboratory of Organic ChemistryCH-8092ZurichSwitzerlandDr. Philippe BiihlmannDepartment of ChemistrySchool of ScienceThe University of TokyoHongo 7-3-1, Bunkyo-KuTokyo 113-0033JapanDr. Christian AffolterAengerich 8CH-3303 MuenchringenSwitzerlandISBN 3-540-678 15-8 Springer-Verlag Berlin Heidelberg New YorkCIP-Data applied forPretsch, Ernoe: Structure determination of organic compounds : tables of spectral data /E. Pretsch ; P. Biihlmann ; C. Affolter. - 3., completely rev. and enl. engl. ed..Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ;Singapore ; Tokyo : Springer, 2000 ISBN 3-540-67815-8This work is subject to copyright. All rights are reserved, whether the whole or part of the material isconcerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication orparts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,in its current version, and permission for use must always be obtained from Springer-Verlag. Violationsare liable for prosecution act under German Copyright Law.Springer-Verlag Berlin Heidelberg New Yorka member of BertelsmannSpringer Science+Business Media GmbH0 Springer-Verlag Berlin Heidelberg 2000Printed in GermanyCopyright for the CD-ROM: Upstream Solutions GmbH, CH-6052 Hergiswil, SwitzerlandThe use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,even in the absence of a specific statement, that such names are exempt from the relevant protective lawsand regulations and therefore free for general use.Typesetting: Camera-ready by editorsCover layout: design & production GmbH, HeidelbergPrinted on acid-free paper SPIN: 10896235 52/3020 - 5 4 3 2 1 0 .
  • 3. PrefaceWhile modern techniques of nuclear magnetic resonance and mass spectrometrychanged the ways of data acquisition and greatly extended the capabilities of thesemethods, the basic parameters, such as chemical shifts, coupling constants, andfragmentation pathways remain the same. This explains the ongoing success ofthe earlier editions of this book. However, since the amount of available data hasconsiderably increased over the years, we decided to prepare an entirely newmanuscript. It follows the same basic concepts, i.e., it provides a representative,albeit limited set of reference data for the interpretation of 13C NMR, H NMR,IR, mass, and UV/Vis spectra. On the other hand, the book has undergone anumber of changes. The amount of reference data has been doubled at least(especially for MS and IR) and the order and selection of data for the variousspectroscopic methods is now arranged strictly in the same way. In addition, thethe enclosed compact disc contains programs for estimating NMR chemical shiftsand generating isomers based on structural information. Unfortunately, our teachers and colleagues, Prof. Wilhelm Simon and Prof.Thomas Clerc are no longer among us, and Prof. Joseph Seibl has retired yearsago. Their contributions to developing the concept and the earlier editions of thiswork cannot be overemphasized. We also thank numerous colleagues who helpedus in many different ways to complete the manuscript. We are particularly indebtedto Dr. Dorothee Wegmann for her expertise with which she eliminated many errorsand inconsistencies of the first versions. Special thanks are due to Dr. RichKnochenmuss (ETH Zurich) for the MALDI mass spectra of matrix materials, Dr.Kikuko Hayamizu for her help with the Spectral Database System of the NationalInstitute of Materials and Chemical Research, Tsukuba, Ibaraki (Japan), Prof.Bernhard Jaun and Dr. Martin Badertscher (ETH Zurich) for critically reading partsof the manuscript. Dr. Martin Badertscher is also thanked for the tutorial of thestructure generator, Assemble 2.0, and Upstream Solutions (Hergiswil,Switzerland) for providing free versions of the computer programs on the enclosedcompact disk. In spite of great efforts and many checks to eliminate errors, it is likely thatsome errors or inconsistencies remain. We would like to encourage our readers tocontact us with comments and suggestions or any kind of problems when usingthe book or the enclosed programs under one of the following addresses:Prof. Ern0 Pretsch, Laboratory of Organic Chemistry, CH-8092 Zurich,Switzerland, e-mail: pretsch@org.chem.ethz.ch, or Prof. Philippe Buhlmann,Department of Chemistry, University of Minnesota, 207 Pleasant St., SE,Minneapolis, MN 55455, USA, e-mail: buhlmann@chem.umn.edu.Zurich and Tokyo, August 2000
  • 4. Table of Contents VIITable of Contents1 Introduction ......................................................................... 1 1.1 Scope and Organization ........................................................ 1 1.2 Abbreviations and Symbols .................................................. 32 Summary Tables .................................................................. 5 2.1 General Tables .................................................................... 5 2.1.1 Calculation of the Number of Double Bond Equivalents from the Molecular Formula ..................................... 5 2.1.2 Properties of Selected Nuclei ..................................... 6 2.2 13c NMR Spectroscopy ...................................................... 7 2.3 l NMR Spectroscopy ........................................................ H 10 2.4 IR Spectroscopy ................................................................. 13 2.5 Mass Spectrometry .............................................................. 18 2.5.1 Average Masses of Naturally Occurring Elements with Exact Masses and Representative Relative Abundances of Isotopes ................................................................ 18 2.5.2 Ranges of Natural Isotope Abundances of Selected Elements ............................................................... 24 2.5.3 Isotope Patterns of Naturally Occurring Elements ......... 25 2.5.4 Calculation of Isotope Distributions........................... 26 2.5.5 Isotopic Abundances of Various Combinations of Chlorine. Bromine. Sulfur. and Silicon ....................... 28 2.5.6 Isotope Patterns of Combinations of C1 and Br ............. 30 2.5.7 Indicators of the Presence of Heteratoms ...................... 31 2.5.8 Rules for Determining the Relative Molecular Weight (Mr) ..................................................................... 33 2.5.9 Homologous Mass Series as Indications of Structural Type .................................................................... 34 2.5.10 Mass Correlation Table ............................................ 36 2.5.11 References ............................................................. 46 2.6 UVNis Spectroscopy .......................................................... 473 Combination Tables ............................................................ 49 3.1 Alkanes. Cycloalkanes ......................................................... 49 3.2 Alkenes. Cycloalkenes ......................................................... 50 3.3 Alkynes ............................................................................ 51 3.4 Aromatic Hydrocarbons ........................................................ 52 3.5 Heteroaromatic Compounds .................................................. 53
  • 5. Vlll Table of Contents 3.6 Halogen Compounds ........................................................... 54 3.7 Oxygen Compounds ............................................................ 56 3.7.1 Alcohols and Phenols .............................................. 56 3.7.2 Ethers ................................................................... 57 3.8 Nitrogen Compounds....................... ................................ 59 3.8.1 Amines ................................................................. 59 3.8.2 Nitro Compounds ................................................... 60 3.9 Thiols and Sulfides .............................................................. 62 3.10 Carbonyl Compounds.......................................................... 63 3.10.1 Aldehydes .............................................................. 63 3.10.2 Ketones ................................................................ 64 3.10.3 Carboxylic Acids .................................................... 65 3.10.4 Carboxylic Esters and Lactones ................................. 66 3.10.5 Carboxylic Amides and Lactams ................................ 684 13C NMR Spectroscopy ..................................................... 71 4.1 Alkanes ............................................................................. 71 4.1.1 Chemical Shifts ..................................................... 71 4.1.2 Coupling Constants ................................................ 80 4.1.3 References ............................................................. 81 4.2 Alkenes ............................................................................. 82 4.2.1 Chemical Shifts ..................................................... 82 4.2.2 Coupling Constants ................................................ 86 4.2.3 References ............................................................. 87 4.3 Alkynes ............................................................................ 88 4.3.1 Chemical Shifts ..................................................... 88 4.3.2 Coupling Constants ................................................ 89 4.3.3 References ............................................................. 89 4.4 Alicyclics .......................................................................... 90 4.4.1 Chemical Shifts ..................................................... 90 4.4.2 Coupling Constants ................................................ 95 4.4.3 References ............................................................. 95 4.5 Aromatic Hydrocarbons ........................................................ 96 4.5.1 Chemical Shifts ..................................................... 96 4.5.2 Coupling Constants ................................................ 102 4.5.3 References ............................................................. 103 4.6 Heteroaromatic Compounds .................................................. 104 4.6.1 Chemical Shifts ..................................................... 104 4.6.2 Coupling Constants ................................................ 111 4.7 Halogen Compounds ........................................................... 112 4.7.1 Fluoro Compounds. ................................................ 112 4.7.2 Chloro Compounds ................................................. 114 4.7.3 Bromo Compounds ................................................. 115 4.7.4 Iodo Compounds .................................................... 116 4.7.5 References ............................................................. 116 4.8 Alcohols. Ethers. and Related Compounds ............................... 117 4.8.1 Alcohols ............................................................... 117 4.8.2 Ethers ................................................................... 119
  • 6. Table of Contents IX 4.9 Nitrogen Compounds ........................................................... 121 4.9.1 Amines ................................................................. 121 4.9.2 Nitro and Nitroso Compounds ................................... 123 4.9.3 Nitrosamines ......................................................... 124 4.9.4 Imines and Oximes ................................................. 124 4.9.5 Hydrazones and Carbodiimides ................................... 125 4.9.6 Nitriles and Isonitriles ............................................. 126 4.9.7 Isocyanates. Thiocyanates and Isothiocyanates .............. 127 4.9.8 References............................................................. 127 4.10 Sulfur-Containing Functional Groups ..................................... 128 4.10.1 Thiols .................................................................. 128 4.10.2 Sulfides ................................................................ 128 4.10.3 Disulfides and Sulfonium Salts ................................. 130 4.10.4 Sulfoxides and Sulfones ........................................... 130 4.10.5 Sulfonic and Sulfinic Acids and Derivatives ................. 131 4.10.6 Sulfurous and Sulfuric Acid Derivatives...................... 131 4.10.7 Sulfur-Containing Carbonyl Derivatives ..................... 132 4.1 1 Carbonyl Compounds .......................................................... 133 4.11.1 Aldehydes .............................................................. 133 4.11.2 Ketones ................................................................ 134 4.1 1.3 Carboxylic Acids and Carboxylates ............................ 136 4.1 1.4 Esters and Lactones ................................................. 138 4.1 1.5 Amides and Lactams ................................................ 140 4.11.6 Miscellaneous Carbonyl Derivatives ........................... 142 4.12 Miscellaneous Compounds ................................................... 144 4.12.1 Derivatives of Group IV Elements ............................. 144 4.12.2 Phosphorus Compounds .......................................... 145 4.12.3 Miscellaneous Organometallic Compounds .................. 147 4.13 Natural Products ................................................................. 148 4.13.1 Amino Acids ......................................................... 148 4.13.2 Carbohydrates ........................................................ 152 4.13.3 Nucleotides and Nucleosides ...................................... 154 4.13.4 Steroids ................................................................ 156 4.14 Spectra of Solvents and Reference Compounds ......................... 157 4.14.1 3C NMR Spectra of Common Deuterated Solvents ..... 157 4.14.2 I3C NMR Spectra of Secondary Reference Compounds . 159 4.14.3 13C NMR Spectrum of a Mixture of Common Nondeuterated Solvents ............................................ 1605 H NMR Spectroscopy ....................................................... 161 5.1 Alkanes ............................................................................. 161 5.1.1 Chemical Shifts ..................................................... 161 5.1.2 Coupling Constants ................................................ 166 5.1.3 References............................................................. 167 5.2 Alkenes ............................................................................. 168 5.2.1 Substituted Ethylenes .............................................. 168 5.2.2 Dienes .................................................................. 174 5.3 Alkynes ............................................................................ 175
  • 7. X Table of Contents 5.3.1 Chemical Shifts and Coupling Constants .................... 175 5.4 Alicyclics .......................................................................... 176 5.5 Aromatic Hydrocarbons ........................................................ 180 5.6 Heteroaromatic Compounds .................................................. 186 5.6.1 Non-Condensed Heteroaromatic Rings ........................ 186 5.6.2 Condensed Heteroaromatic Rings ............................... 193 5.7 Halogen Compounds ........................................................... 198 5.7.1 Fluoro Compounds ................................................. 198 5.7.2 Chloro Compounds ................................................. 199 5.7.3 Bromo Compounds ................................................. 200 5.7.4 Iodo Compounds .................................................... 201 5.8 Alcohols, Ethers, and Related Compounds ............................... 202 5.8.1 Alcohols ............................................................... 202 5.8.2 Ethers ................................................................... 204 5.9 Nitrogen Compounds ........................................................... 207 5.9.1 Amines ................................................................. 207 5.9.2 Nitro and Nitroso Compounds .................................. 210 5.9.3 Nitrosamines, Azo, and Azoxy Compounds ................. 210 5.9.4 Imines, Oximes, Hydrazones, and Azines .................... 211 5.9.5 Nitriles and Isonitriles ............................................. 212 5.9.6 Cyanates, Isocyanates, Thiocyanates, and Isothiocyanates 213 5.10 Sulfur-Containing Functional Groups ..................................... 214 5.10.1 Thiols .................................................................. 214 5.10.2 Sulfides ................................................................ 215 5.10.3 Disulfides and Sulfonium Salts ................................. 216 5.10.4 Sulfoxides and Sulfones ........................................... 216 5.10.5 Sulfonic, Sulfinic, Sulfurous, and Sulfuric Acids and Derivatives ............................................................ 217 5.10.6 Thiocarboxylate Derivatives ...................................... 217 5.1 1 Carbonyl Compounds .......................................................... 218 5.1 1.1 Aldehydes .............................................................. 218 5.1 1.2 Ketones ................................................................ 219 5.1 1.3 Carboxylic Acids and Carboxylates ............................ 220 5.1 1.4 Esters and Lactones ................................................. 221 5.1 1.5 Amides and Lactams ................................................ 223 5.1 1.6 Miscellaneous Carbonyl Derivatives ........................... 226 5.12 Miscellaneous Compounds ................................................... 228 5.12.1 Silicon Compounds ................................................ 228 5.12.2 Phosphorus Compounds .......................................... 229 5.12.3 Miscellaneous Compounds ....................................... 232 5.13 Natural Products ................................................................. 233 5.13.1 Amino Acids ......................................................... 233 5.13.2 Carbohydrates ........................................................ 236 5.13.3 Nucleotides and Nucleosides ...................................... 237 5.13.4 References ............................................................. 239 5.14 Spectra of Solvents and Reference Compounds ......................... 240 * 5.14.1 H NMR Spectra of Common Deuterated Solvents ....... 240 5.14.2 1H NMR Spectra of Secondary Reference Compounds ... 242
  • 8. Table of Contents XI . 5.14.3 1H NMR Spectrum of a Mixture of Common Nondeuterated Solvents ............................................ 2436 IR Spectroscopy.................................................................. 245 6.1 Alkanes ............................................................................. 245 6.2 Alkenes ............................................................................. 248 6.2.1 Monoenes ............................................................. 248 6.2.2 Allenes ................................................................. 251 6.3 Alkynes ............................................................................ 252 6.4 Alicyclics .......................................................................... 253 6.5 Aromatic Hydrocarbons ........................................................ 255 6.6 Heteroaromatic Compounds .................................................. 258 6.7 Halogen Compounds ........................................................... 260 6.7.1 Fluoro Compounds ................................................. 260 6.7.2 Chloro Compounds ................................................. 261 6.7.3 Bromo Compounds ................................................. 262 6.7.4 Iodo Compounds .................................................... 262 6.8 Alcohols, Ethers, and Related Compounds ............................... 263 6.8.1 Alcohols and Phenols., ............................................ 263 6.8.2 Ethers, Acetals, Ketals ............................................. 264 6.8.3 Epoxides ............................................................... 266 6.8.4 Peroxides and Hydroperoxides .................................... 267 6.9 Nitrogen Compounds ........................................................... 268 6.9.1 Amines and Related Compounds ................................ 268 6.9.2 Nitro and Nitroso Compounds ................................... 270 6.9.3 Imines and Oximes ................................................. 272 6.9.4 Azo Compounds ..................................................... 274 6.9.5 Nitriles and Isonitriles ............................................. 275 6.9.6 Diazo Compounds .................................................. 276 6.9.7 Cyanates and Isocyanates .......................................... 277 6.9.8 Thiocyanates and Isothiocyanates ............................... 278 6.10 Sulfur-Containing Functional Groups ..................................... 280 6.10.1 Thiols and Sulfides ................................................. 280 6.10.2 Sulfoxides and Sulfones ........................................... 281 6.10.3 Thiocarbonyl Derivatives ......................................... 283 6.10.4 Thiocarbonic Acid Derivatives ................................... 283 6.1 1 Carbonyl Compounds .......................................................... 286 6.1 1.1 Aldehydes .............................................................. 286 6.1 1.2 Ketones ................................................................ 287 6.1 1.3 Carboxylic Acids .................................................... 290 6.1 1.4 Esters and Lactones ................................................. 292 6.1 1.5 Armdes and Lactames .............................................. 295 6.1 1.6 Acid Anhydrides ..................................................... 298 6.1 1.7 Acid Halides .......................................................... 300 6.1 1.8 Carbonic Acid Derivatives ........................................ 301 6.12 Miscellaneous Compounds ................................................... 304 6.12.1 Silicon Compounds ................................................ 304 6.12.2 Phosphorus Compounds .......................................... 305
  • 9. XI1 Table of Contents 6.12.3 Boron Compounds .................................................. 308 6.13 Amino Acids ...................................................................... 309 6.14 Solvents. Suspension Media. and Interferences .......................... 310 6.14.1 Infrared Spectra of Common Solvents ......................... 310 6.14.2 Infrared Spectra of Suspension Media .......................... 311 6.14.3 Interferences in Infrared Spectra .................................. 3127 Mass Spectrometry ............................................................. 313 7.1 Alkanes ............. ............................................................ 313 7.1.1 Unbranched Alkanes ................................................ 313 7.1.2 Branched Alkanes .................................................... 313 7.1.3 References ............................................................. 314 7.2 Alkenes ............................................................................. 315 7.2.1 Unbranched Alkenes ................................................ 15 7.2.2 Branched Alkenes .................................................... 315 7.2.3 Polyenes and Polyynes ............................................ 316 7.2.4 References ............................................................. 316 7.3 Alkynes ....................................................................... 317 7.3.1 Aliphatic Alkynes ................................................... 317 7.3.2 References ............................................................. 317 7.4 Alicyclic Hydrocarbons ............ ..................................... 318 7.4.1 Cyclopropanes ....................................................... 318 7.4.2 Saturated Monocyclic Alicyclics ................................ 319 7.4.3 Polycyclic Alicyclics ............ ............................... 319 7.4.4 Cyclohexenes ......................................................... 319 7.4.5 References ............................................................. 320 7.5 Aromatic Hydrocarbones ....................................................... 321 7.5.1 Aromatic Hydrocarbons ............................................ 321 7.5.2 Alkylsubstituted Aromatic Hydrocarbons ..................... 321 7.5.3 References ...................... .................................. 322 7.6 Heteroaromatic Compounds .................................................. 323 7.6.1 General Characteristics ............................................. 323 7.6.2 Furans .................................................................. 323 7.6.3 Thiophenes ............................................................ 323 7.6.4 Pyrroles ................................................................ 324 7.6.5 Pyridines ............................................................... 324 7.6.6 N-Oxides of Pyridines and Quinolines......................... 325 7.6.7 Pyridazines and Pyrimidines ............................... 325 7.6.8 Pyrazines ...... ....................................... 326 7.6.9 Indoles .................................................................. 326 7.6.10 Quinolines ............................................................ 326 7.6.1 1 Cinnoline .............................................................. 327 7.6.12 References ........... ............................................. 327 7.7 Halogen ............................................................................ 328 7.7.1 Saturated Aliphatic Halides ....................................... 328 7.7.2 Polyhaloalkanes ..................................................... 329 7.7.3 Aromatic Halides .................................................... 329 7.7.4 References ............................................................. 329
  • 10. Table of Contents Xlll7.8 Alcohols ........................................................................... 330 7.8.1 Aliphatic Alcohols .................................................. 330 7.8.2 Alicyclic Alcohols .................................................. 331 7.8.3 Unsaturated Aliphatic Alcohols ................................. 331 7.8.4 Vicinal Glycols., .................................................... 331 7.8.5 Aliphatic Hydroperoxides ......................................... 332 7.8.6 Phenols ................................................................ 332 7.8.7 Benzyl .................................................................. 332 7.8.8 Aliphatic Ethers ..................................................... 333 7.8.9 Unsaturated Ethers .................................................. 334 7.8.10 Alkyl Cycloalkyl Ethers .......................................... 335 7.8.11 Cyclic Ethers ......................................................... 335 7.8.12 Aliphatic Epoxides .................................................. 336 7.8.13 Methox ybenzenes ................................................... 337 7.8.14 Alkyl Aryl Ethers ................................................... 337 7.8.15 Aromatic Ethers ..................................................... 337 7.8.16 Aliphatic Peroxides ................................................. 337 7.8.17 References ............................................................. 3387.9 Nitrogen Compounds........................................................... 339 7.9.1 Saturated Aliphatic Amines ...................................... 339 7.9.2 Cycloalkylamines ................................................... 339 7.9.3 Cyclic Amines ....................................................... 340 7.9.4 Piperazines ............................................................ 341 7.9.5 Aromatic Amines ................................................... 341 7.9.6 Aliphatic Nitro Compounds ...................................... 341 7.9.7 Aromatic Nitro Compounds ...................................... 342 7.9.8 Diazo ................................................................... 342 7.9.9 Azobenzenes .......................................................... 342 7.9.10 Aliphatic Azides ..................................................... 342 7.9.1 1 Aromatic Azides ..................................................... 343 7.9.12 Aliphatic Nitriles .................................................... 343 7.9.13 Aromatic Nitriles .................................................... 344 7.9.14 Aliphatic Isonitriles (R-NC) ..................................... 344 7.9.15 Aromatic Isonitriles (R-NC) ..................................... 344 7.9.16 Aliphatic Cyanates (R-OCN) .................................... 345 7.9.17 Aromatic Cyanates (R-OCN) .................................... 345 7.9.18 Aliphatic Isocyanates (R-NCO) ................................. 345 7.9.19 Aromatic Isocyanates (R-NCO) ................................. 346 7.9.20 Aliphatic Thiocyanates (R-SCN) ............................... 346 7.9.21 Aromatic Thiocyanates (R-SCN) ............................... 347 7.9.22 Aliphatic Isothiocyanates (R-NCS) ............................ 347 7.9.23 Aromatic Isothiocyanates (R-NCS) ............................ 347 7.9.24 References ............................................................. 3487.10 Sulfur-Containing Functional Groups ..................................... 349 7.10.1 Aliphatic Thiols ..................................................... 349 7.10.2 Aromatic Thiols ..................................................... 349 7.10.3 Aliphatic Sulfides ................................................... 350 7.10.4 Alkyl Vinyl Sulfides ............................................... 350 7.10.5 Cyclic Sulfides ....................................................... 351
  • 11. XIV Table of Contents 7.10.6 Aromatic Sulfides ................................................... 351 7.10.7 Disulfides .............................................................. 351 7.10.8 Aliphatic Sulfoxides ................................................ 352 7.10.9 Alkyl Aryl and Diaryl Sulfoxides ............................... 352 7.10.10 Aliphatic Sulfones .......................................... 353 7.10.1 1 Cyclic Sulfones...................................................... 354 7.10.12 Alkyl Aryl Sulfones ................................................ 354 7.10.13 Diaryl Sulfones ...................................................... 355 7.10.14 Aromatic Sulfonic Acids .......................................... 355 7.10.15 Alkylsulfonic Acid Esters ......................................... 355 7.10.16 Arylsulfonic Acid Esters .......................................... 356 7.10.17 Aromatic Sulfonamides ............................................ 356 7.10.18 Thiocarboxylic Acid S-Esters .................................... 357 7.10.19 References ............................................................. 357 7.11 Carbonyl Compounds .......................................................... 358 7.1 1.1 Aliphatic Aldehydes ................................................ 358 7.1 1.2 Unsaturated Aliphatic Aldehydes ................................ 358 7.1 1.3 Aromatic Aldehydes ................................................ 358 7.1 1.4 Aliphatic Ketones ................................................... 359 7.1 1.5 Unsaturated Ketones ................................................ 359 7.1 1.6 Alicyclic Ketones ................................................... 359 7.1 1.7 Aromatic Ketones ................................................... 360 7.11.8 Aliphatic Carboxylic Acids .................... ........ 360 7.1 1.9 Aromatic Carboxylic Acids ....... ........................ 361 7.1 1.10 Carboxylic Acid Anhydrides ...................................... 361 7.11.11 Saturated Aliphatic Esters ......................................... 361 7.11.12 Unsaturated Esters ................................................... 362 7.1 1.13 Esters of Aromatic Acids ........... ........................... 363 7.1 1.14 Lactones ................................... ........................ 364 7.1 1.15 Aliphatic Amides .................................................... 364 7.1 1.16 Amides of Aromatic Carboxylic Acids ........................ 365 7.1 1 . 17 Anilides ................................................................ 365 7.1 1.18 Lactams ................................................................ 365 7.1 1.19 Imides .................................................. 367 7.1 1.20 References ............................................................. 368 7.12 Miscellaneous Compounds ................................................... 369 7.12.1 Trialkylsilyl Ethers .............. ............................... 369 7.12.2 Alkyl Phosphates ................................................... 369 7.12.3 Aliphatic Phosphines .............................................. 369 7.12.4 Aromatic Phosphines and Phosphine Oxides .... 370 7.12.5 References ............................................................. 370 7.13 Mass Spectra of Common Solvents and Matrix Compounds ....... 371 7.13.1 Electron Impact Ionization Mass Spectra of Common Solvents ............................................................... 371 7.13.2 Spectra of Common FAB MS Matrix and Calibration Compounds ........................................................... 374 7.13.3 Spectra of Common MALDI MS Matrix Compounds ... 380 7.1 3.4 References ............................................................. 383
  • 12. Table of Contents xv8 UV/Vis Spectroscopy .............................................. 385 8.1 Correlation Between Wavelength of Absorbed Radiation and Observed Color ..... ............................. 385 8.2 UV/Vis Absorption o mophores .......................... 385 8.3 UV/Vis Absorption of Conjugated Alkenes ................ 387 8.3.1 UV Absorption of Dienes and Polyenes ...................... 387 8.3.2 UV Absorption of a$-Unsaturated Carbonyl Compounds 388 8.4 UVNis Absorption of Aromatic Compounds ........................... 390 8.4.1 UV Absorption of Monosubstituted Benzenes .............. 390 8.4.2 UV Absorption of Substituted Benzenes 39 1 8.4.3 UV Absorption of Aromatic Carbonyl Compounds ....... 392 8.5 UV/Vis Reference Spectra ..................................................... 393 8.5.1 UVNis Spectra of Alkenes and Alkynes ..................... 393 8.5.2 UVNis Spectra of Aromatic Compounds .................... 394 8.5.3 UVNis Spectra of Heteroaromatic Compounds ............ 399 8.5.4 UVNis Spectra of Miscellaneous Compounds ............. 401 8.5.5 UVNis Spectra of Nucleotides .................................. 403 8.6 UVNis Absorption of Common Solvents ............................... 404Subject index ........................................................................... 406
  • 13. 1.1 Scope and Organization 11 Introduction1.1Scope and OrganizationThe present data collection is intended to serve as an aid in the interpretation ofmolecular spectra for the elucidation and confirmation of the structure of organiccompounds. It consists of reference data, spectra, and empirical correlations from13C and l H nuclear magnetic resonance (NMR), infrared (IR), mass, andultraviolet-visible (UV/vis) spectroscopy. It is to be viewed as a supplement totextbooks and specific reference works dealing with these spectroscopic techniques.The use of this book to interpret spectra only requires the knowledge of basicprinciples of the techniques, but its content is structured in a way that it will serveas a reference book also to specialists. Chapters 2 and 3 contain Summary Tables and Combined Tables of the mostrelevant spectral characteristics of structural elements. While Chapter 2 isorganized according to the different spectroscopic techniques, Chapter 3 providesfor each class of structural elements spectroscopic information obtained withvarious techniques. These two chapters should assist users that are less familiarwith spectra interpretation to identify the classes of structural elements present insamples of their interest. The following four chapters cover data from 13C NMR,H NMR, IR, and mass spectroscopy, and are ordered exactly in the same mannerby compound types. These cover the various skeletons (alkyl, alkenyl, alkynyl,alicyclic, aromatic, and heteroaromatic), the most important substituents (halogen,single-bonded oxygen, nitrogen, sulfur, and carbonyl), and some specificcompound classes (miscellaneous compounds and natural products). Finally, aspectra collection of common solvents, auxiliary compounds (such as matrixmaterials and references) and commonly found impurities is provided for eachmethod. Not only the strictly analogous order of the data but also the opticalmarks on the edge of the pages help fast cross-referencing between the variousspectroscopic techniques. Although currently, UV/vis spectroscopy is onlymarginally relevant to structure elucidation, its importance might increase by theadvent of high throughput analyses. Also, the reference data presented in Chapter 8are useful in connection with optical sensors and the widely applied UV/visdetectors in chromatography and electrophoresis. Since a large part of the tabulated data either comes from our ownmeasurements or is based on a large body of literature data, comprehensivereferences to published sources are generally not included. Whenever possible, the
  • 14. 2 1 Introductiondata refers to conventional modes and conditions of measurement. For example,unless the solvent is indicated, the NMR chemical shifts were determined usuallywith deuterochloroform or carbon tetrachloride as solvent. Likewise, the IR spectrawere measured using solvents of low polarity, such as chloroform or carbondisulfide. Mass spectral data were recorded with electron impact ionization at 70eV. While retaining the basic structure of the previous editions, numerous newentries have been added. Altogether, the amount of data has been more thandoubled. The section on mass spectrometry (MS) is entirely new and contains aunique collection of fragmentation rules for the various compound classes. As anew feature, prototype IR spectra for each class of compounds schematically showthe analytically relevant absorption bands. The Combination Tables of the earliereditions have been extended and arranged in two chapters, the first organizedaccording to band positions and the second according to compound classes. The enclosed compact disc contains programs for estimating 13C and lHchemical shifts of organic compounds containing up to 15 non-hydrogen atoms.Both programs are available for Windows and Macintosh systems and require aJava environment for the graphical structure input. Technical details about therequirements and installation procedures are given in the corresponding ReadMefiles. Extensive help files are available as part of the programs. In addition, thestructure generator Assemble 2.0 (also limited to 15 non-hydrogen atoms) isavailable for Windows systems. Based on the molecular formula and availablestructural information, it is capable of generating all possible structural isomers.An extensive hypertext based tutorial describes its main features. It is especiallyrecommended as a quality control tool to check if alternative solutions that alsoagree with the experimental data have gone unnoticed.
  • 15. 1.2 Abbreviations and Symbols 31.2Abbreviations and Symbolsal aliphaticalk alkylalkenalkenylar aromaticas asymmetricax axialcomb combination frequencyd doublet6 IR: deformation vibration NMR: chemical shiftDMSO dimethyl sulfoxideeq equatorialE molar absorptivityFrag fragmentY skeletal vibrationgem geminalhal halogeniP in plane vibrationJ coupling constantM+ molecular radical ionm/Z mass to charge ratioV fkquencyOOP out of plane vibrationsh shoulderst stretching vibrationSY symmetricTMS tetramethylsilanevic vicinal
  • 16. 2.1 General Tables 52 Summary Tables2.1General Tables2.1. ICalculation of the Number of Double Bond Equivalents fromthe Molecular FormulaGeneral Equation: 2 + Z n i( v i - 2) i double bond equivalents = 2 ni: number of atoms of element i in molecular formula vi: formal valence of element iShort Cut:For compounds containing only C, H, 0, N, S , and halogens, the following stepspermit a quick and simple calculation of the number of double bond equivalents: 1. 0 and divalent S are deleted from the molecular formula 2 . Halogens are replaced by hydrogen 3. Trivalent N is replaced by CH 4. The resulting hydrocarbon, C,H,, is compared with the saturated hydrocarbon, CnHzn+2. Each double bond equivalent reduces the number of hydrogen atoms by 2: 2n+2-x double bond equivalents = 2
  • 17. 6 2 Summary Tables2.1.2Properties of Selected NucleiIsotope Natural Spin Frequency Relative Relative Electric abundane quantum [MHZ] at sensitivity sensitivity quadrupole [%I number, I 2.35 Tesla of nucleus at natural moment abundance [e x 10-24 cm211H 99.985 112 100.0 1 12H 0.015 1 15.4 9 . 6 ~ 1 0 - ~1 . 5 ~ 1 0 - ~ . 8 ~ 1 0 - ~ 23H 0.000 112 106.7 1.2 01OB 19.58 3 10.7 2 . 0 ~ 1 0 - ~3 . 9 ~ 1 0 - ~7 . 4 ~ 1 0 ~1lB 80.42 312 32.1 1 . 6 ~ 1 0 ~ 1.3~10-1 3 . 6 ~ 1 0 - ~1c 3 1.108 112 25.1 1 . 6 ~ 1 0 - ~1 . 8 ~ 1 0 - ~I4N 99.635 1 7.3 1.0~10-3 1.0~10-3 1.9~10-2I5N 0.365 112 10.1 1.0~10-3 3.8~10-6170 0.037 512 13.6 2 . 9 ~ 1 0 - ~l . l ~ l O - - 2 . 6 ~ 1 0 ~ ~I9F 100.000 112 94.1 8.3~10-1 8.3~10-131P 100.000 112 40.5 6 . 6 ~ 1 0 - ~6 . 6 ~ 1 0 - ~3s 3 0.76 312 7.6 2 . 3 ~ 1 0 - ~1 . 7 ~ 1 0 - - 6 . 4 ~ 1 0 - ~ ~1 17sn 7.61 112 35.6 4 . 5 ~ 1 0 - ~3 . 4 ~ 1 0 - ~119sn 8.58 112 37.3 5.2x10-* 4 . 4 ~ 1 0 - ~195Pt 33.8 112 21.5 9 . 9 ~ 1 0 - ~3 . 4 ~ 1 0 - ~199Hg 16.84 112 17.8 5 . 7 ~ 1 0 - ~9 . 5 ~ 1 0 - ~207Pb 22.6 112 20.9 9 . 2 ~ 1 0 - ~2 . l ~ l O - ~
  • 18. 2.2 13C NMR Spectroscopy 72.213C NMR SpectroscopySummary of the Regions of Chemical Shifts, 6 for Carbon Atoms ,in Various Chemical Environments (6 in ppm relative to TMS. Carbonatoms are specified as follows: Q for CH3, T for CH2, D for CH, and S for C).
  • 19. 8 2 Summary Tables
  • 20. 2.2 13C NMR Spectroscopy 9I3C Chemical Shifts for Carbonyl Groups ( 6 i n ppm relative to TMS)R R-CHO R-COCH3 R-COOH R-COO--H 197.0 200.5 166.3 171.3-CH3 200.5 206.7 176.9 182.6-CH2CH3 202.7 207.6 180.4 185.1-CH(CH3)2 204.6 21 1.8 184.1-C(CH3)3 205.6 213.5 185.9 188.6-n-CgH17 202.6 207.9 180.7 183.1-CH2Cl 193.3 200.1 173.7 175.9-CHC12 193.6 170.4 171.8-CCl3 176.9 186.3 167.1 167.6-cyclohexyl 204.7 209.4 182.1 185.4-CH=CH2 194.4 197.5 171.7 174.5-CSH 176.8 156.5-phenyl 192.0 196.9 172.6 177.6R R-COOCH3 R-CONH, R-COOCO-R R-COCl-H 161.6 167.6 158.5-CH3 171.3 173.4 167.4 170.4-CH2CH3 173.3 177.2 170.3 174.7-CH(CH3 )2 177.4 172.8 178.0-C(CH3)3 178.8 180.9 173.9 180.3-n-CgH17 174.4 176.3 169.4 173.8-CH2C1 167.8 168.3 162.1 167.7-CHC12 165.1 157.6 165.5-CCl3 162.5 154.1-cyclohexyl 175.3 177.3 176.3-CH=CH2 166.5 168.3 165.6-C<H 153.4-ohend 166.8 169.7 162.8 168.O
  • 21. 10 2 Summary Tables2.31H NMR SpectroscopySummary of the Regions of Chemical Shifts f o r Hydrogen Atomsin Various Chemical Environments ( S i n ppm relative to TMS)
  • 22. 2.3 H NMR Spectroscopy 11
  • 23. 12 2 Summary Tables
  • 24. 2.4 IR Spectroscopy 132.4IR SpectroscopySummary of the Most Important IR Absorption Bands
  • 25. 14 2 Summary TablesSummary of IR Absorption Bands of Carbonyl Groups (in cm-1)
  • 26. 2.4 IR Spectroscopy 15
  • 27. 16 2 Summary Tables
  • 28. 2.4 IR Spectroscopy 17
  • 29. 18 2 Summary Tables2. 5Mass Spectrometry2.5.1Average Masses of Naturally Occurring Elements with ExactMasses and Representative Relative Abundances ofIsotopes [ 1-31Element ElementIsotope Mass Abundance Isotope Mass AbundanceH 1.00795a Ne 20.179ga 1H 1.007825 100b 20Ne 19.992402 loob 2H 2.014101 0.01 15 21Ne 20.993847 0.30 (in water) 22Ne 21.991386 10.22 (in air)He 4.002602a 3He 3.016029 0.000137 Na 22.989769 4He 4.002603 100 23Na 22.989769 100 (in air) M 24.3051Li 6.941a 2fMg 23.985042 100 6Li 6.015122 8.2lC 25Mg 24.985837 12.66 7 ~ i 7.016004 100 26Mg 25.982593 13.94Be 9.012182 AI 26.981538 9Be 9.012182 100 27~1 26.981538 100B 10.812a Si 28.08W 1OB 10.012937 24.gb 28Si 27.976927 100 1lB 11.009306 100 29si 28.976495 5.0778 3Osi 29.973770 3.3473C 12.0108a 12C 12.000000 100 P 30.973762 13c 13.003355 1.08 31P 30.973762 100N 14.0067Y S 32.067a 4N 14.003070 100 32s 31.972071 100 15N 15.000109 0.369 33s 32.971459 0.80 34s 33.967867 4.520 15.9994a 36s 35.967081 0.02 160 15.994915 100 170 16.999132 0.038 c1 35.4528 180 17.999116 0.205 35~1 34.968853 100b 37~1 36.965903 3 1.96F 18.998403 9F 18.998403 100
  • 30. 2.5 Mass Spectrometry 19Element ElementIsotope Mass Abundance Isotope Mass AbundanceAr 39.948a 57Fe 56.935399 2.309 36Ar 35.967546 0.3379 58Fe 57.933280 0.307 38Ar 37.962776 0.0635 40Ar 39.962383 100 c o 58.93320Oa (in air) 59c 58.933200 100K 39.0983 Ni 58.6934 39K 38.963706 100 58Ni 57.935348 100 40K 39.963999 0.0125 6oNi 59.930791 38.5198 41K 40.961826 7.2167 61Ni 60.931060 1.6744 62Ni 61.928349 5.3388Ca 40.078 64Ni 63.927970 1.3596 4 0a ~ 39.962591 100 4% a 41.958618 0.667 cu 63.546 43~a 42.958769 0.139 63cu 62.929601 100 44~a 43.955481 2.152 65cu 64.927794 44.57 4 6a ~ 45.953693 0.004 48~a 47.952534 0.193 Zn 65.39 64~n 63.929147 100sc 44.9559 10 66Zn 65.926037 57.37 45sc 44.955910 100 67~n 66.927131 8.43 68Zn 67.924848 38.56Ti 47.867 70~n 69.925325 1.27 46Ti 45.952629 11.19 47Ti 46.95 1764 10.09 Ga 69.723 48Ti 47.947947 100 69Ga 68.925581 100b 49Ti 48.947871 7.34 71Ga 70.924705 66.367 50Ti 49.944792 7.03 Ge 72.61V 50.9415 70Ge 69.924250 56.44 5% 49.947 163 0.250 72Ge 71.922076 75.91 51v 50.943964 100 73Ge 72.923459 21.31 74Ge 73.921178 100Cr 5 1.9962 76Ge 75.921403 20.98 50cr 49.946050 5.187 52cr 5 1.940512 100 AS 74.921596 53cr 52.940654 11.339 75As 74.921596 100 54~r 53.938885 2.823 Se 78.96Mn 54.938050 74se 73.922477 1.7955Mn 54.938050 100 76s e 75.919214 18.89 77se 76.919915 15.38Fe 55.845 78se 77.917310 47.91 54Fe 53.939615 6.370 80s e 79.916522 100 56Fe 55.934942 100 82Se 81.916700 17.60
  • 31. 20 2 Summary TablesElement ElementIsotope Mass Abundance Isotope Mass AbundanceBr 79.904 Ru 101.07 79Br 78.918338 100 96Ru 95.907599 17.56 81Br 80.916291 97.28 98Ru 97.905288 5.93 99Ru 98.905939 40.44Kr 83.80 lo0Ru 99.904229 39.94 78Kr 77.920387 0.61b lolRu 100.905582 54.07 8oKr 79.916378 4.00 lo2Ru 101.904350 100 82Kr 81.913485 20.32 lo4Ru 103.905430 59.02 83Kr 82.914136 20.16 84Kr 83.911507 100 Rh 102.905504 86Kr 85.910610 30.35 lo3Rh 102.905504 100 (in air) Pd 106.42Rb 85.4678 lo2Pd 101.905608 3.73 85Rb 84.911789 100 04Pd 103.904036 40.76 87Rb 86.909183 38.56 *05Pd 104.905084 81.71 06Pd 105.903484 100Sr 87.62a 08Pd 107.903894 96.82 84sr 83.913425 0.68 l0Pd 109.905151 42.88 8% r 85.909262 11.94 87~r 86.908879 8.48 107.8682 88Sr 87.905614 100 ASAg lo 106.905094 100 lo9Ag 108.904756 92.90Y 88.905848 89Y 88.905848 100 Cd 112.412 lo6Cd 105.906459 4.35Zr 91.224 lo8Cd 107.904184 3.10 90~r 89.904704 100 l0Cd 109.903006 43.47 91~r 90.905645 21.81 ll1Cd 110.904182 44.55 92~r 91.905040 33.33 12Cd 111.902757 83.99 94~r 93.906316 33.78 13Cd 112.904401 42.53 96~r 95.908276 5.44 14Cd 113.903358 100 16Cd 115.904755 26.07Nb 92.906378 93Nb 92.906378 100 In 114.818 11 3 1 ~ 112.904061 4.48Mo 95.94 11% 114.903879 1009 2 ~ 0 91.906810 61.5094Mo 93.905088 38.33 Sn 118.7119 5 ~ 94.905841 ~ 65.98 1123, 111.904822 2.989 6 ~ 0 95.904679 69.13 114~5, 113.902782 2.039 7 ~96.906021 ~ 39.58 115~11 114.903346 1.049 8 ~ 0 97.905408 100 116sn 115.901744 44.63O0M o 99.907478 39.91 117sn 116.902954 23.57 11*Sn 117.901606 74.34 (contd.)
  • 32. 2.5 Mass Spectrometry 21Element ElementIsotope Mass Abundance Isotope Mass Abundance119sn 118.903309 26.37 La 138.905512OSn 119.902197 100 1 3 8 ~ a 137.907107 0.0901218, 121.903440 14.21 1 3 9 ~ a 138.906348 1001248, 123.905275 17.77 Ce 140.116Sb 121.760 136ce 135.907145 0.209121Sb 120.903818 100 138ce 137.905991 0.284123Sb 122.904216 74.79 140ce 139.905434 100 142ce 141.909240 12.565Te 127.60 20Te 119.904021 0.26 Pr 140.907648 22Te 121.903047 7.48 141Pr 140.907648 100 23Te 122.904273 2.61 24Te 123.902819 13.91 Nd 144.24 25Te 124.904425 20.75 142Nd 141.907719 100 26Te 125.903306 55.28 143Nd 142.909810 44.9 128Te 127.904461 93.13 44Nd 143.910083 87.5 30Te 129.906223 100 145Nd 144.912569 30.5 146Nd 145.913112 63.2I 126.904468 148Nd 147.916889 21.0 1271 126.904468 100 150Nd 149.920887 20.6Xe 131.29 Sm 150.36124xe 123.905896 0.33b 144srn 143.911995 11.48126Xe 125.904270 0.33 147srn 146.914893 56.04128Xe 127.903530 7.14 1488, 147.914818 42.02129xe 128.904779 98.33 149srn 148.917180 5 1.66130x2, 129.903508 15.17 150sm 149.917271 27.59131xe 130.905082 78.77 152srn 151.919728 100132xe 13 1.904154 100 1 5 4 ~ m 153.922205 85.05134xe 133.905395 38.82136xe 135.907221 32.99 Eu 151.964 151Eu 150.919846 91.61cs 132.905447 153Eu 152.921226 100133cs 132.905447 100 Gd 157.25Ba 137.328 152Gd 151.919788 0.81 130Ba 129.906311 0.148 154Gd 153.920862 8.78 132Ba 131.905056 0.141 155Gd 154.922619 59.58 134Ba 133.904503 3.371 156Gd 155.922120 82.41 135Ba 134.905683 9.194 157Gd 156.923957 63.00 136Ba 135.904570 10.954 ls8Gd 157.924101 100 137Ba 136.905821 15.666 60Gd 159.927051 88.00 138Ba 137.905241 100 Tb 158.925343 159Tb 158.925343 100
  • 33. 22 2 Summary TablesElement ElementIsotope Mass Abundance Isotope Mass Abundance 162.50 181Ta 180.947996 100D 6Dy ? 155.924279 0.21158Dy 157.924405 0.35 W 183.84160Dy 159.925194 8.30 180w 179.946707 0.40161Dy 160.926930 67.10 182w 181.948206 86.49162Dy 161.926795 90.53 1 8 3 ~ 182.950224 46.70163Dy 162.928728 88.36 184w 183.950933 100164Dy 163.929171 100 186w 185.954362 93.79Ho 164.930319 Re 186.207165130 164.930319 100 185Re 184.952956 59.74 187Re 186.955751 100Er 167.26 162Er 161.928775 0.42 os 190.23 164Er 163.929197 4.79 1840, 183.952491 0.05 166Er 165.930290 100 1860, 185.953838 3.90 167Er 166.932045 68.22 1870, 186.955748 4.81 168Er 167.932368 79.69 1880s 187.955836 32.47 70Er 169.935460 44.42 1890, 188.958145 39.60 1900, 189.958445 64.39Tm 168.934211 1920, 191.961479 100l69Trn 168.934211 100 Ir 192.217Yb 173.04 1911, 190.960591 59.49168Yb 167.933894 0.41 1931, 192.962924 100 7oY b 169.934759 9.55171Yb 170.936322 44.86 Pt 195.078 72Yb 171.936378 68.58 190Pt 189.959931 0.041173Yb 172.938207 50.68 192Pt 191.961035 2.311174Yb 173.938858 100 194Pt 193.962664 97.443176Yb 175.942568 40.09 195Pt 194.964774 100 196Pt 195.964935 74.6 10Lu 174.967 198Pt 197.967876 21.172175Lu 174.940768 100176Lu 175.942682 2.66 Au 196.966552 197Au 196.966552 100Hf 178.49174Hf 173.940040 0.46 200.59176Hf 175.94 1402 14.99 H%Hg l9 195.965815 0.50 177Hf 176.943220 53.02 198Hg 197.966752 33.39 17*Hf 177.943698 77.77 199Hg 198.968262 56.50 79Hf 178.944815 38.83 2ooHg 199.968309 77.36 l8OHf 179.946549 100 201Hg 200.970285 44.14 202Hg 201.970626 100Ta 180.9479 204Hg 203.973476 23.00 80Ta 179.947466 0.012
  • 34. 2.5 Mass Spectrometry 23Element ElementIsotope Mass Abundance Isotope Mass AbundanceT1 204.3833 Bi 208.980383 203Tl 202.972329 41.892 209Bi 208.980383 100 205Tl 204.974412 100 Th 232.038050Pb 207.2a 232Th 232.038050 100204Pb 203.973029 2.7206Pb 205.974449 46.0 U 238.0289207Pb 206.975881 42.2 234U 234.040946 0.0055d208Pb 207.976636 100 235U 235.043923 0.73 238U 238.050783 100a Natural variations in the isotopic composition of terrestrial material does not allow to give a more precise value. Commercially available materials may have substantially different isotopic compositions if they were subjected to undisclosed or inadvertent isotopic fractionation. Materials depleted in 6Li are commercial sources of laboratory shelf reagents and are known to have 6Li abundances in the range of 2.0007-7.672 atom percent, with natural materials at the higher end of this range. Average atomic masses vary between 6.939 and 6.996; if a more accurate value is required, it must be determined for the specific material. Materials depleted in 235U are commercial sources of laboratory shelf reagents.
  • 35. 24 2 Summary Tables2.5.2Ranges of Natural Isotope Abundances of Selected ElementsEl em ent Range E 1em en t Range Element RangeIsotope (atom %) Isotope (atom %) Isotope (atom %)H Si Ce1H 99.9816-99.9975 28Si 92.21-92.25 13ke 0.186-0.1852H 0.0184-0.0025 29s i 4.694.67 138Ce 0.254-0.251 3Osi 3.10-3.08 40Ce 88.449-88.446He 142Ce 11.114-1 1.1143He 4 . 6 10-8-0.0041 ~ S4He 100-99.9959 32s 94.537-95.261 Nd 33s 0.787-0.73 1 42Nd 27.30-26.80Li 34s 4.655-3.993 143Nd 12.32-12.126Li 7.21-7.71 36s 0.02 1-0.015 144Nd 23.97-23.7957 ~ i 92.79-92.29 145Nd 8.35-8.23 c1 46Nd 17.3 5- 17.06B 35c 1 75.64-75.86 148Nd 5.78-5.661OB 18.927-20.337 37c 1 24.36-24.14 150Nd 5.69-5.531lB 8 1.073- 79.663 Ca HfC 4 0a ~ 96.982-96.880 174Hf 0.1621-0.161912C 98.85-99.02 4 2a ~ 0.656-0.640 176Hf 5.271-5.20613c 1.15-0.98 43ca 0.146-0.13 1 177Hf 18.606-18.593 4 4 ~ a 2.130-2.057 78Hf 27.297-27.278N 4 6 a ~ 0.0046-0.003 1 179Hf 13.630-1 3.619 4N 99.890-99.652 4 8a ~ 0.200-0.179 80Hf 35.100-35.07615N 0.41 1-0.348 V Pb0 5ov 0.2502-0.2487 204Pb 1.65-1.04160 99.7384-99.7756 l 99.75 13-99.7498 V 206Pb 27.48-20.84170 0.0399-0.0367 207Pb 23.65- 17.6280 0.2217-0.1877 cu 208Pb 56.21-51.28 63Cu 69.24-68.98Ne 65Cu 3 1.02-30.76 U2oNe 90.514-88.47 234U 0.0059-0.005021Ne 1.71-0.266 Sr 235U 0.7202-0.719822Ne 9.96-9.20 84~r 0.58-0.55 238U 99.2752-99.2739 8% r 9.99-9.75 87sr 7.14-6.94 88Sr 82.75-82.29
  • 36. Next Page 2.5 Mass Spectrometry 252.5.3Isotope Patterns of Naturally Occurring ElementsThe mass of the most abundant isotope is given under the symbol of the element.The lightest isotope is shown at the left end of the x axis.
  • 37. Previous Page 26 2 Summary Tables 2.5.4 Calculation of Isotope Distributions The characteristic abundance patterns resulting from the combination of more than one polyisotopic element can be calculated from the relative abundances of the different isotopes. The following polynomial expression gives the isotope distribution of a polyisotopic molecule: where pix is the relative abundance of the xth isotope of element i, the mass of the xth isotope of the element i is given by mix, and the exponent ni stands for the number of atoms of the element i in the molecule. The expansion of this polynomial expression after inserting the pix and mix values for all the isotopes 1, 2, 3, ... of the elements i, j, ... of a given molecule yields an expression that represents the isotope distribution: wo Ao + w rA + w s AS + w tA t + ... w wt,... are the relative abundances of M+, where the values of W O , w r , s , [M+rl+, [M+sl+, [M+t]+, ..., respectively. The use of A(mix mil) allows to determine the values of r, s, t,. .. simply by expanding the general polynomial. A numerical value for A, which has no intristic meaning, is never needed. For example, for CBr2C12, the above equation gives rise to the following expression: For sufficient resolution, (mix - mil) and (mjx - mjl) differ from one another. This results in very complex isotope patterns even for very small molecules. Thus, owing to the occurrence of 12C, 13C, 79Br, 81Br, 35Cl, and 37Cl, there are 18 signals for CBr2Clz. However, the limited resolution of most real life experiments makes many pairs of (mix - mil) and (mj, - m j l ) indistinguishable within experimental error, significantly reducing the number of separate peaks. For example, at unit resolution, one obtains ( " 8 1 ~-~m79Br) = (~7237~1- m35~1) 2. = Consequently, the expression for BrCl becomes:
  • 38. 2.5 Mass Spectrometry 27 0 2 (P79Br A +P81Br A 1 b35C1 +p37C1 A 2 ) = 0 2 4 P79BrP35C1 A + b79Br P37C1 +P81Br P35C1) A +P37C1 P81Br AThis shows that at unit resolution, BrCl gives rise to only 3 peaks (M+,[M+2]+, [M+4]+) rather than to 4 peaks, as they are expected for very highresolution. Often, the contribution of isotopes of low abundance can be neglected withoutsacrificing much precision. For example, the effect of 2H on isotope patterns isusually insignificant. Also, 13C is often negligible when focussing on peaks ofthe series [M+2n]+, which then results in patterns that are characteristic forhalogens, sulfur, and silicon. In large molecules, however, isotopes of lowabundance cannot be neglected. For example, in the case of buckminster fullerene( C ~ O )not only M+ (relative intensity, 100%) and [M+l]+ (66.72%) but also ,[M+2]+ (21.89%), [M+3]+ (4.71%), and even [M+4]+ (0.75%) are quitesignificant ions. As shown above, typical isotope patterns can be readily calculated manually byapplying the general equation and neglecting isotopes of low abundance. Theoutlined procedure can also be easily implemented and evaluated with genericcomputer software that allows simple calculations. Dedicated and user-friendlyprograms that already contain the necessary isotope abundances and masses areavailable. Incidentally, because the use of the above equation for systems with1000 or more polyisotopic atoms results in excessive calculation times, moreefficient but somewhat more complicated algorithms have been developed forimplementation in dedicated programs [4]. Typical isotope patterns are given onthe following pages.
  • 39. 28 2 Summary Tables2.5.5Isotopic Abundances of Various Combinations of Chlorine,Bromine, Sulfur, and SiliconEle- Mass Relative Ele- Mass Relative Ele- Mass Relativements abun- ments abun- ments abun- dance dance dance 35 100 79 100 S1 32 100 37 3 1.98 81 97.88 33 0.79 34 4.43 70 100 158 5 1.09 s2 64 100 72 63.96 160 100 65 1.58 74 10.23 162 48.93 66 8.87 68 0.24 105 100 237 34.05 s3 96 100 107 95.93 239 100 97 2.37 109 30.67 24 1 97.89 98 13.31 111 3.27 243 3 1.94 99 0.21 100 0.66 140 77.96 316 17.40 s4 128 100 142 100 318 68.09 129 3.16 144 47.82 320 100 130 17.76 146 10.19 322 65.26 131 0.42 148 0.82 324 15.96 132 1.27 175 62.53 395 10.43 s5 160 100 177 100 397 5 1.09 161 3-94 179 63.94 399 100 162 22.22 181 20.45 40 1 97.94 163 0.70 183 3.28 403 47.89 164 2.08 185 0.21 405 9.38 166 0.1 1 210 52.12 474 5.32 s6 192 100 212 100 476 3 1.26 193 4.73 214 79.95 478 76.62 194 26.68 216 34.08 480 100 195 1.05 218 8.21 482 73.38 196 3.09 220 1.05 484 28.73 198 0.20 222 0.06 486 4.68 28 100 56 100 Si3 84 100 29 5.06 57 10.13 85 15.19 30 3.36 58 6.98 86 10.85 59 0.34 87 1.03 60 0.11 88 0.36
  • 40. 2.5 Mass Spectrometry 29Ele- Mass Relative Ele- Mass Relative Ele- Mass Relativements abun- ments abun- ments abun- dance dance danceCllBrl 114 76.70 CllBr2 193 43.83 C11Br3272 26.15 116 100 195 100 274 85.22 118 24.46 197 69.83 276 100 199 13.66 278 48.90 280 7.86CllBr4 351 14.26 C12Brl 149 61.35 C12Br2 228 38.35 353 60.41 151 100 230 100 355 100 153 45.67 232 89.63 357 79.93 155 6.38 234 31.89 359 30.39 236 3.90 36 1 4.25C13Brl 184 51.12 C13Br2 263 3 1.35 C14Brl 219 43.79 186 100 265 92.01 22 1 100 188 65.22 267 100 223 83.86 190 17.73 269 50.01 225 33.42 192 1.74 27 1 11.70 227 6.93 273 1.03 229 0.48C14Br2 298 24.14 C14Br3 377 13.63 C14Br4 456 7.43 300 78.63 379 57.78 458 38.40 302 100 381 100 460 83.70 304 63.54 383 91.19 462 100 306 21.54 385 47.13 464 7 1.37 308 3.73 387 14.03 466 31.11 310 0.26 389 2.22 468 8.10 391 0.13 470 1.16Cl l S l 67 100 CllS2 99 100 c 21 1s 102 100 68 0.79 100 1.58 103 0.79 69 36.41 101 40.85 104 68.39 70 0.25 102 0.57 105 0.50 71 1.44 103 3.08 106 13.08 108 0.47C12S2 134 100 c13s 1 137 99.64 Cl3S2 169 95.42 135 1.58 138 0.79 170 1.51 136 72.82 139 100 171 100 137 1.08 140 0.75 172 1.51 138 16.14 141 34.82 173 37.62 139 0.21 142 0.24 174 0.53 140 1.06 143 4.63 175 5.94 145 0.15 177 0.35
  • 41. 30 2 Summary TablesEle- Mass Relative Ele- Mass Relative Ele- Mass Relativements abun- ments abun- ments abun- dance dance danceCllSil 63 100 C12Sil 98 100 C13Sil 133 100 64 5.06 99 5.06 134 5.06 65 35.34 100 67.32 135 99.30 66 1.62 101 3.24 136 4.86 67 1.07 102 12.38 137 33.90 103 0.52 138 1.55 104 0.34 139 4.302.5.6Isotope Patterns of Combinations of CI and Br Signals - separated by 2 units 160 239 320 399The signals are separated by 2 mass units, and the combination of the lightestisotopes is given on the left side of the x axis. The mass for the most abundantsignal is shown under the symbol of the element. See Chapter 2.5.5 for exactabundances of many of these combinations.
  • 42. 2.5 Mass Spectrometry 312.5.7Indicators of the Presence of HeteroatomsIn low-resolution mass spectra, one often observes characteristic isotope patterns,specific masses of fragment ions, and characteristic mass differences (Am) betweenthe molecular ion (M+) and fragment ions (Frag+), or between fragment ions.High resolution mass spectra can be used to confirm the elemental compositionprovided that the resolution is sufficient to discriminate alternative compositions.Moreover, tandem mass spectrometry (also called MS/MS) may be used to identifyheteroatom-characteristiclosses from parent or fragment ions.Indication of 0: Am 17 from M+, in N-free compounds Am 18 from M+ Am 18 from Frag+, particularly in aliphatic compounds Am 28, 29 from M+ for aromatic compounds Am 28 from Frag+ for aromatic compounds mtz 15, relatively abundant mtz 19 mtz 31, 45, 59, 73 ,... + (14), mtz 32, 46, 60, 74 ,... + (14), mtz 33, 47, 61, 75 ,... + (14), for 2 x 0, in absence of S mtz 69 for aromatic compounds meta-disubstituted by oxygenIndication of N: M+ odd-numbered (indicates odd number of N in M+) Large number of even-numbered fragment ions Am 17 from M+ or Frag+, in O-free compounds Am 27 from M+ or Frag+, for aromatic compounds or nitriles Am 30,46 for nitro compounds mtz 30, 44, 58, 72,. , . + (14), for aliphatic compoundsIndication of S : Isotope peak [M+2]+ 2 5% M+ Am 33, 34, 47, 48, 64, 65 from M+ Am 34, 48, 64 from Frag+ mtz 33,34,35 mtz 45 in O-free compounds m/z 47, 61, 75, 89,... + (14), unless compound with 2 x 0 mtz 48, 64 for S-oxidesIndication of F: Am 19, 20, 50 from M+ Am 20 from Frag+ mtz 20 mtz 57 without mtz 55 in aromaticsIndication of C1: Isotope peak [M+2]+ 2 33% M+ Am 35, 36 from M+ Am 36 from Frag+ d z 35/37, 36/38, 49/51
  • 43. 32 2 Summary TablesIndication of Br: Isotope peak [M+2]+ 2 98% M+ Am 79, 80 from M+ Am 80 from Frag+ m/z 79/81, 80182Indication of I: Isotope peak [M+l]+ of very low abundance at relatively high mass Am 127 from M+ Am 127, 128 from Frag+ mlz 127, 128, 254Indication of P: m/z 47 in compounds free of S or 2 x 0 m/z 99 without isotope peak at m/z 1 0 0 in alkyl phosphates
  • 44. 2.5 Mass Spectrometry 332.5.8Rules for Determining the Relative Molecular Weight (Mr)The molecular ion (M+) is defined as the ion that comprises the most abundantisotopes of the elements in the molecule. Interestingly, the lightest isotopes ofmost elements that frequently occur in organic compounds and their common salts(H, C, N, 0, F, Si, P, S, C1, As, Br, I, Na, Mg, Al, K, Ca, Rb, Cs) are also themost abundant ones. Notable exceptions are B, Li, Se, Sr, and Ba. M+ is always accompanied by isotope peaks. Their relative abundance dependson the number and kind of the elements present and their natural isotopicdistribution. The abundance of [M++l] indicates the maximum number of carbonatoms ( ) C, according to the following relationship: Cmax = 100 [M++l] / (1.1 [M"])[Mf+2] and higher masses indicate the number and kind of elements that have arelatively abundant isotope two mass units heavier (such as S, Si, C1, Br). M+ is always an even number if the molecule contains only elements forwhich the atomic mass and valence are both even-numbered or both odd-numbered(such as H, C, 0, S, Si, P, F, Cl, Br, I). In the presence of other elements, M+becomes an odd number unless the elements are present in an even number (thisholds for N, 13C, 2H). M+ can only form fragment ions of masses that differ from that of themolecular ion by chemically logical values (Am). In this context, chemicallyillogical differences are Am = 3 (in the absence of Am = 1) to Am = 14, Am = 21(in the absence of Am = 1) to Am = 24, Am = 37, 38 and all Am less than themass of an element of characteristic isotope pattern in cases where the sameisotope pattern is not retained in the fragment ion. M+ of a compound must contain all elements (and the maximum number ofeach) that are shown to be present in the fragment ions. If ionization is performed by electron impact, M+ is the ion with the lowestappearance potential. If a pure sample flows into the ion source through a molecular leak, M+exhibits the same effusion rate as can be determined from the fragment ions. Theabundance of M+ is proportional to the sample pressure in the ion source. For polar compounds, [M+H]+ is often observed in mass spectra obtained notonly with fast atom bombardment and atmospheric pressure chemical ionizatonbut also with electron impact ionization. In this latter case, the abundance of[M+H]+ changes in proportion to the square of the sample pressure in the ionsource. In the absence of a signal for M+, the molecular weight must have a value thatshows a logical and reasonable mass difference, Am, to all the observed fragmentions.
  • 45. 34 2 Summary Tables2.5.9Homologous Mass Series as Indications of Structural TypeCertain sequences of intensity maxima in the lower mass range and the masses ofunique signals are often characteristic of a particular compound type. The intensitydistribution of such ion series is in general smooth. Therefore, abrupt changes(maxima and minima) are of structural significance. The ion or ion series that ismost indicative of a particular compound type is set in italics.Mass Elemental Compound typesvalues m/z composition12 + 14m CnH2n-2 alkenes, monocycloalkanes,alkynes, dienes, cycloalkenes, polycyclic alicyclks, cyclic alcohols13 + 14m CnH2n-1 alkanes, alkenes, monocycloalkanes, alkynes, dienes, cycloalkenes, polycyclic alicyclics, alco- hols, alkyl ethers, cyclic alcohols, cycloalkanones, aliphatic acids, esters, lactones, thiols, sulfides, glycols, glycol ethers, alkyl chlorides CnH2n-30 cycloalkanones1 4 + 14m CnH2, alkanes, alkenes, monocycloalkanes,polycyclic alicyclics, alcohols, alkyl ethers, thiols, sulfides, alkyl chlorides CnH2n-20 cycloalkanones15 + 14m CnH2n+l alkanes, alkenes, monocycloalkanes, alkynes, dienes, cycloalkenes, polycyclic alicyclics, alkanones, alkanals, glycols, glycol ethers, alkyl chlorides, acid chlorides alkanones, alkanals, cyclic alcohols, acid chlorides alkanones, alkanuls alkyl amines, aliphatic amides aliphatic amides alcohols, alkyl ethers, aliphatic acids, esters, lactones, glycols, glycol ethers aliphatic acids, esters, lactones aliphatic acids, esters, lactones
  • 46. 2.5 Mass Spectrometry 35Mass Elemental Compound typesvalues d z composition19 + 14m alcohols, alkyl ethers aliphatic acids, esters, lactones glycols, glycol ethers thiols, sulfides20 + 14m alkylbenzenes glycols, glycol ethers thiols, sulfides21 + 14m alkylbenzenes aryl ketones alkyl chlorides acid chlorides22 + 14m alkylanilines polycyclic alicyclics23 + 14m polycyclic alicyclics24 + 14m polycyclic alicyclics25 + 14m alkynes, dienes, cycloalkenes, polycyclic alicyclics39, 52+1, alkylbenzenes,aromatic hydrocarbons, phenols, 64+ 1, aryl ethers, aryl ketones 76+2, 91+1
  • 47. 36 2 Summary Tables2.5.10Mass Correlation TableNote: As long as it makes sense chemically, CH2, CH4, CH30, and 0 2 in theformulae of the second column may be replaced by N, 0, P, and S , respectively(M: molecular mass).Mass Ion Product ion and Substructure or composition of the compound type neutral particle lost 1 [M+l]+, [M-11- particularly in FAB spectra, in which M-cl occurs even for moderately basic and acidic compounds, but intensive M+ without M-cl is unusual7 Li+ [M+7]+ in FAB spectra in the presence of Li+ 134-71- in FAB spectra of organic Li+ salts12131415 [M- nonspecific; abundant: methyl, N-ethylamines16 O", NH2+, [M- methyl (rare) 02++ nitro compounds, sulfones, epoxides, N-oxides primary amines17 OH, "3 acids (especially aromatic acids), hydroxylamines,N- oxides, nitro compounds, sulfoxides, tertiary alcohols ("3) primary amines18 [M-181 (H2O) nonspecific; abundant: alcohols, some acids, aldehydes, ketones, lactones, cyclic ethers 0 indicator
  • 48. 2.5 Mass Spectrometry 37Mass Ion Product ion and Substructure or composition of the compound type neutral particle lost19 H3O+,F+ [M-19]+ (F) fluorides F indicator20 HF+, Ar++, [M-20]+ (HF) fluorides F indicator CH2CN"22 c02++23 Na+ [M+23]+ in FAB spectra in the presence of Na; sometimes strong even if Na is only an impurity [M-23]- in FAB spectra of organic Na salts terminal acetylenyl aromatics nitriles terminal vinyl, some ethyl esters and N-ethylamides, ethyl phosphates aromatic N, nitriles nonspecific; abundant: cyclo- hexenes, ethyl esters, propyl ketones, propyl-substituted aromatics aromatic 0, quinones, lactones, lactams, unsaturated cyclic ketones, allyl aldehydes diazo compounds; air (inten- sity 3.7 times larger than for 02+, m/z 32) nonspecific; abundant: ethyl phenols, furans, aldehydes
  • 49. 38 2 Summary TablesMass Ion Product ion and Substructure or composition of the compound type neutral particle lost30 ethylalkanes, polymethyl compounds cyclic ethers, lactones, primary alcohols nitro and nitroso compounds31 methyl esters, methyl ethers, primary alcohols N-methylamines hydrazides32 cyclic peroxides; air (intensity 3.7 times smaller than for N2+, m/z 28) methyl esters, methyl ethers sulfides (together with isotope signal for 34s)33 CH30H2+, SH, [M-33]+ (SH) nonspecific (together with CH2F isotope signal for 34s) S indicator nonspecific; 0 indicator fluoromethyl34 SH2" nonspecific (together with isotope signal for 348) S indicator (OH + OH) nitro compounds35 SH3+, C1+ [M-35]+ (Cl) chloro compounds (together with isotope signal for 37C1) (OH + H20) nitro compounds 2 x 0 indicator36 HCl", C3 [M-361 (HC1) chloro compounds (H20 + H20) 2 x 0 indicator37 C3H chloro compounds (together 37c1+ with isotope signal for 3%1)
  • 50. 2.5 Mass Spectrometry 39Mass Ion Product ion and Substructure or composition of the compound type neutral particle lost38 C3H2+39 C3H3+ [M-39]+ (C3H3) aromatics K+ [M+39]+ in FAB spectra in the presence of K+; sometimes strong even if K+ is only an impurity [M-39]- in FAB spectra of organic Kf salts40 cyanomethyl41 alicyclics (especially poly- alicyclics), alkenes 2-methyl-N-aromatics, N-methylanilines42 nonspecific; abundant: propyl esters, butyl ketones, butylaromatics, methylcyclohexenes acetates (especially enol acetates), acetamides, cyclo- hexenones, a$-unsaturated ketones43 [M-43]+ (C3H7) nonspecific; abundant: propyl, alicyclics, cycloalkanones, cycloalkylamines, cyclo- alkanols, butylaromatics methyl ketones, acetates, aromatic methyl ethers44 propylalkanes N,N-dimethylamines, N-ethylamines cycloalkanols, cyclic ethers, ethylene ketals, aliphatic aldehydes (McLaffem (contd.) rearrangement)
  • 51. 40 2 Summary TablesMass Ion Product ion and Substructure or composition of the compound type neutral particle lost44 anhydrides, lactones, carboxylic acids45 C2H50+, ethyl esters, ethyl ethers, C2H7N+, CHS lactones, ethyl sulfonates, (together with ethyl sulfones isotope signal for carboxylic acids 34s) N,N-dimethylamines, 0 indicator N-ethylamines S indicator46 C~HSOH", ethyl esters, ethyl ethers, N02+ ethyl sulfonates primary alcohols carboxylic acids nitro compounds47 CH3S+, C C P , methyl sulfides (together with C~HSOH~, isotope signal for 3%) CH(OH)2+, PO+ 2 x 0 indicator S indicator P indicator48 CH3SH+, methyl sulfides CHCl+, SO+ sulfoxides, sulfones, sulfonates (together with isotope signal for 34s)49 [M-49]+ (CH2C1) chloromethyl (with corre- sponding signal for 37Cl)50 [M-50]+ (CF2) trifluoromethylaromatics, perfluoroalicyclics515253
  • 52. 2.5 Mass Spectrometry 41Mass Ion Product ion and Substructure or composition of the compound type neutral particle lost54 cyclohexenes cyanoethyl55 nonspecific; abundant: alicyclics, butyl esters, N-butylamides56 butyl esters, N-butylamides, pentyl ketones, cyclohexenes, tetralins, pentylaromatics methylcyclohexenones, p-tetralones57 nonspecific ethyl ketones58 alkanes a-methylalkanals, methyl ketones, isopropylidene glycols59 propyl esters, propyl ethers methyl esters amines, amides60 propyl esters, propyl ethers acetates methyl esters61 glycols, ethylene ketals ethyl sulfides (together with isotope signal for 343)62 methoxymethyl ethers, ethylene glycols, ethylene ketals ethyl sulfides (together with isotope signal for 3%)
  • 53. 42 2 Summary TablesMass Ion Product ion and Substructure or composition of the compound type neutral particle lost63 [M-63]+ (C2H4C1) chloroethyl (CO + Cl) acid chlorides64 CgH4+, SO,", [M-64]+ (SO2) sulfones, sulfonates S2+ (S2) disulfides (together with isotope signal for 34s)65 [M-65]+ (S2H) disulfides (together with ( S O ~ H ) isotope signal for 34s)66 [M-66]+ (C5Hg) cyclopntenes disulfides (together with isotope signal for 34s)67 [M-67]+ (C4H30) fury1 ketones68 [M-68]+ (C5H8) cyclohexenes, tetralins (C4H40) cyclohexenones, P-tetralones69 M-69]+ (CgHg) alicyclics, alkenes ( C F ~ ) trifluoromethyl70 alkanes, alkenes, alicyclics cycloalkanones pyrrolidinesMass Ion Compound type alkanes, larger alkyl groups alkanones, alkanals, tetrahydrofurans alkanones, alkanals 0 indicator aliphatic amines N indicator perhalogenated benzenes alcohols, ethers, esters 0 indicator acids, esters, lactones trimethylsilyl compounds
  • 54. 2.5 Mass Spectrometry 43Mass Ion Compound type74 ethers methyl esters of carboxylic acids, a-methyl carboxylic acids75 methyl acetals, glycols 2 x 0 indicator sulfides, thiols (together with isotope signal for 34s) S indicator trimethylsilyloxyl compounds76 aromatics77 aromatics chloro compounds78 aromatics pyridines chloro compounds79 aromatics with H-containing substituents pyridines, pyrroles bromo compounds (together with isotope signal for 81Br)80 cyclohexenes, polycyclic alicyclics cyclopentenones bromo compounds pyrroles, pyridines81 cyclohexanes, cyclohexenyls, dienes furans, pyrans bromo compounds (together with isotope signal for 79Br)82 cyclohexanes cyclopentenones, dihydropyrans tetrahydropyridines pyrazoles, imidazoles chloro compounds (together with isotope signals at m/z 84 and 86)83 alkenes, alicyclics, monosubstituted alkanes cycloalkanones84 piperidines, N-methylpyrrolidines
  • 55. 44 2 Summary TablesMass Ion Compound type85 alkanes alkanones, alkanals, tetrahydropyrans,fatty acid derivatives chlorofluoroalkanes (with isotope signal at d z 87)86 alkanones, alkanals aliphatic amines N indicator87 alcohols, ethers, esters 0 indicator esters, acids88 ethyl esters of carboxylic acids, a-methyl-methyl esters, a-C2-carboxylic acids89 diols, glycol ethers 2 x 0 indicator sulfides (together with isotope signal for 34S)90 disubstituted aromatics91 aromatics alkyl chlorides92 allcylbenzenes alkylpyridines93 phenols, phenol derivatives anilines bromo compounds94 phenol esters, phenol ethers pynyl ketones, pyridone derivatives95 fury1 ketones96 alicyclics97 alicyclics, alkenes cycloalkanones alkylthiophenes (together with isotope signal for 34s)98 N-alkylpiperidines
  • 56. 2.5 Mass Spectrometry 45Mass Ion Compound type ~~99 alkanes alkanones ethylene ketals alkyl phosphates104 tetralin derivatives, phenylethyl derivatives disubstituted a-ketobenzenes105 alkylaromatics benzoyl derivatives diazophenyl derivatives106 alkylanilines111 thiophenoyl derivatives (together with isotope signal for 34s)115 aromatics esters diesters119 alkylaromatics tolyl ketones peffluoroethyl derivatives phenyl carbamates120 y-benzopyrones, salicylic acid derivatives pyridines, anilines121 hydroxybenzene derivatives127 naphthalenes unsaturated diesters chlorinated N-aromatics iodo compounds128 naphthalenes chlorinated hydroxybenzene derivatives iodo compounds130 quinolines, indoles naphthoquinones
  • 57. 46 2 Summary TablesMass Ion Compound type131 tetralins thioethylene ketals (together with isotope signal for 34s) perfluoroalkyl derivatives135 CqHgBr+ alkyl bromides141 CllH9+ naphthalenes142 CIOH8N+ quinolines149 C8H503+ phthalates152 12H8+ diphenyl aromatics165 13H9+ diphenylmethane derivatives (fluorenyl cation)167 C8H704+ phthalates205 12H1303+ phthalates223 C12H 15O4 phthalates2.5.1 1References G.P. Moss, Atomic weights of the elements, Pure Appl. Chem. 1999, 71, 1593. G. Audi, A.H. Wapstra, The 1995 update to the atomic mass evaluation, Nucl. Phys. 1995, A595, 409. Atomic Mass Data Center, world wide web site, <http://csnwww.in2p3.fr>. K.J.R. Rosman, P.D.P. Taylor, Isotopic compositions of the elements 1997, Pure Appl. Chem. 1998, 70, 217. H. Kubinyi, Calculation of isotope distributions in mass spectrometry. A trivial solution for a non-trivial problem, Anal. Chim. Acta 1991, 247, 107.
  • 58. 2.6 UV/Vls Spectroscopy 472.6UV/Vis SpectroscopyUV/Vis Absorption Bands of Various Compound Types ( A : alkyl orH; R: alkyl; sh: shoulder)
  • 59. 48 2 Summary Tablesa longest wavelength absorption maximum
  • 60. 3.1 Alkanes, Cycloalkanes 493 Combination Tables3.1Alkanes, CycloalkanesAssignment Range CommentsCH3 5-35 ppm CH3, CH2, CH, and C can be differentiated by 13C NMRCH2 5-45 ppm multipulse experiments (DEPT, APT), off-CH 25-60 ppm resonance decoupling, 2D CH correlationC 30-60 ppm spectra, or based on relaxation times Lower shift values in three-membered ringsCH3 0.8-1.2 ppm 1H NMRCH2 1.1-1.8 ppm Lower shift values in three-membered ringsCH 1.1-1.8 ppmCH st 3000-2840 cm-l Higher frequency in three-membered rings IRCH3 S a s ~ 1 4 6 cm-l 0CH2 6 ~ 1 4 6 cm-l 0CH3 6 SY ~ 1 3 8 cm-l 0 Doublet for geminal methyl groupsCH2 Y 770-720 cm-l In C-(CH*),-C with n 2 4 at ca. 720 cm-lMolecular ion m/z 14n + 2 Weak in n-alkanes Ms Very weak in isoalkanesFragments n-Alkanes: local maxima at 14n + 1, intensity variations: smooth, minimum at [M- 15]+ Isoalkanes: local maxima at 14n + 1, intensity distribution: irregular (relative maxima due to fragmentation at branching points with charge retention at the most substituted C)Rearrange- n-Alkanes: unspecificments m/z 14n Isoalkanes: elimination of alkanes m/z 14n - 2 Monocycloalkanes: elimination of alkanes No absorption above 200 nm uv
  • 61. 50 3 Combination Tables 3.2 Alkenes, Cycloalkenes Assignment Range Comments13cNMR c=c 100-150 ppm Considerable differences between Z and E: C-(C=C) 10-60 ppml"MR H-(C=C) 4.5-6.5 ppm Coupling constants, IJI: geminal 0-3 Hz, cis 5-12 Hz, truns 12-18 Hz CH3-(C=C) ~ 1 . ppm 7 Coupling constants, 3 J ~ ~ =7 2 ~ ~ Hz = ~ CH2-(C=C) ~ 2 . ppm 0 In rings, IJI smaller: 6 Long-range coupling constants n=2 ~ 0 . 5 n=3 ~ 1 . Hz Hz 5 n=4 = 4 . 0 H z 4JHC-C=CH0-2 HzIR H-C(=C) st 3100-3000 cm-l c=cst 1690-1635 cm-l H-C(=C) 6 oop 1000- 675 cm-l CH2-(C=C) 6 1440 cm-lMs Molecular ion m/z 14n Alkenes: moderate m/z 14n - 2 Monocycloalkenes: medium intensity Fragments 14n - 1 Local maxima for alkenes 14n - 3 Local maxima for monocyclic alkenes Usually, double bonds cannot be localized Rearrange- n-Alkenes: unspecific ments Specific for: 1 +* 1 +* Cyclohexenes: retro-Diels-Alder reaction: 0 1 -*+ (= + I]+*uv C=C n+n* e 210 nm Isolated double bonds; for highly substituted (log E 3-4) double bonds often absorption tail (C=C), n+n* 215-280 nm (loa E 3.54.5)
  • 62. 3.3 Alkynes 513.3AlkynesAssignment Range CommentsCEC 65-85 ppm Coupling constant 2 J H ~ E i=50 Hz; often 3~ 13C N M R leading to unexpected signs of signals in DEFT spectrac-(CEC) 0-30 ppmH-( C EC) 1.5-3.0 ppm Coupling constants IJI 4 J ~ ~ =3 Hz E - ~ ~ 1H N M R ~ 5 J ~ C-CH =3 Hz ~ - ~ ~CH3-(C=C) =1.8 ppmCH~-(CEC) =2.2 ppmCH-(CEC) =2.6 ppmH-C(EC) st 3340-3250 cm-l Sharp, intense IRCEC st 2260-2100 cm-l Sometimes very weakMolecular ion Weak, for 1 -alkynes up to C7 often absent MsFragments and Vary in extent between alkanes and aromaticsrearrangementsC r C n+n* e 210 nm absorption tail, often a few weak bands W (log E 3.7-4.0) e 240 nm
  • 63. 52 3 Combination Tables 3.4 Aromatic Hydrocarbons - ~~~~~~~~ ~~ ~ ~ Assignment Range Comments13cNMR a r c 120-150 ppm Same ranges for polycyclic aromatic ar CH 110-130 ppm hYh&ns a1 C-(C ar) 10-60 ppml"MR H-(Car) 6.5-7.5 ppm In polycyclic aromatic hydrocarbons up to =9 PPm Coupling constants: 3J0,h0 -7 Hz, 4J,,ta =2 Hz, 5Jpara <1 HZ CH3-(C ar) -2.3 ppm Often line broadening due to long-range CH2-(C ZU) ~ 2 . ppm 6 coupling with aromatic protons CH-(C ar) ~ 2 . ppm 9IR ar C-H st 3080-3030 cm-l Often multiple bands, weak comb 2000-1650 cm-l Very weak ar C-C st ~ 1 6 0 cm-l 0 Often split, ~ 1 5 0 cm-l 0 sometimes not all three ~ 1 4 5 cm-l 0 bands observable ar C-H 6 oop 900-650 cm-l Strong, frequently multiple bandsMs Molecular ion Strong, often base peak Fragments m/z 39, 50-53, Often doubly charged fragment ions 63-65,75-78 [M-26]+, [M-39]+ benzylic cleavage OCH,.~ - dZ90-92 m$ m/z 127 < - m/z 152, 153 ea k m/z 152, 165 Rearrange- ments 1 +. 1 f* -200-210 nm (log E -4) In benzeneuv -260 nm (log E ~ 2 . 4 ) and alkylbenzenes
  • 64. 3.5 Heteroaromatic Compounds 533.5Heteroaromatic CompoundsAssignment Range Commentsar c-x 120-160 ppm 1 cNMR 3ar C-C 100-150 ppmH i C ar) 6-9 ppm Coupling constants in 6-membered rings 1 NMR H similar to those in aromatic hydrocarbons; in 5-membered heteroaromatic rings smallerHiN ar) 7-1 4 ppm Strongly solvent dependent, generally broadar C-H st 3100-3000 cm-l Often multiple bands, weak IRar N-H star c-c st - 3500-2800 cm-l 1600 cm-l -1500 cm-l Often split, sometimes not all three ~ 1 4 5 cm-l 0 bands observablear C-H 6 oop 1000-650 cm-l Often strong, frequently multiple bandsMolecular ion Strong, often base peak mFragments m/z 39, 50-53, Often doubly charged fragment ions 63-65,75-78 [M-26]+, [M-39]+ benzyl-analogous cleavageRearrange- Loss of HCN (N-heteroaromatics)ments Loss of CO (0-heteroaromatics) Loss of CS (S-heteroaromatics) m/z 45 [CHS]+ S-Heteroaromatics l + +. -RCH=CH2 * Hcf. UVNis Reference Spectra, Chapter 8.5.3. uv
  • 65. 54 3 Combination Tables 3.6 Halogen Compounds Assignment Range Comments~ ~ C N M R a1 C-F 70-100 ppm CF3: ~ 1 1 ppm 5 (C)=C-F 125-175 ppm Coupling with 19F (isotope abundance, C=(C-F) 65-115 ppm 100%; I = 1/2): lJCF 100-300 Hz; ar C-F 135-165 ppm 2 J 10-40 ~ 3 J 5-10 Hz; 4 J 0-5 Hz ~ Hz; ~ ~ ~ ~ ar C-(C-F) 105-135 ppm a1 C-Cl 30-60 ppm (C)=C-cl 100-150 ppm C=(C-cl) 100-155 ppm ar c-Cl 120-1 50 ppm al C-Br 10-45 ppm (C)=C-Br 90-140 ppm C=(C-Br) 9O-140 ppm ax C-Br 110-140 ppm a1 C-I -20 to +30 ppm (C)=c-I 6O-110 ppm C=(C-I) 120-150 ppm ar c-I 85-1 15 ppml"MR -CHz-F 4 . 3 ppm Coupling with 19F (isotope abundance, 100%; I = 1/2): 2 J 40-80 ~ ~ Hz; 3 J 0-50 Hz; 4 J 0-5 Hz ~ ~ ~ ~ ~3.5 ppm ~ 3 . ppm 4 ~ 3 . ppm 1 Alkenes: geminal protons strongly deshielded by all halogens; vicinal protons are shielded by F and deshielded by the other halogens Aromatics: shielding by F in 0-and p- positions, small effects for C1 and Br; deshielding by I in 0-and shielding in m- positionIR C-F st 1400-1000 cm-l Strong C-cl st c 850 cm-l C-Br st c 700 cm-* c-I St e 600 cm-l
  • 66. 3.6 Halogen Compounds 55Assignment Range CommentsMolecular ion For saturated aliphatic halogen compounds MS often weak, for polyhalogenated compounds often absent Characteristic isotope patterns for C1 and BrFragments d z 69 CF3 [M-50]+ or [Frag-50]+ CF2Rearrange- [M-20]+ 1 1 - R-C- -ha1 > HF elimination R- -C-ha1ments rM-361" HC1 eliminationha1 n+z* I280 nm For C-I; for C-Br and C-Cl in general only uv (log E ~ 2 . 5 ) absorption tail, for C-F no absorption
  • 67. 56 3 Combination Tables 3.7 Oxygen Compounds 3.7.1 Alcohols and Phenols Assignment Range Comments~ ~ C N M 1c-O~ aR 50-100 ppm Shift with respect to corresponding C-H: =+50 ppm a1 C-(C-OH) 10-60 ppm Hardly any shift with respect to C-(C-CH3) a1 C-(C-C-OH) 10-60 ppm Shift with respect to C-(C-C-CH3) -5 ppm ar C-OH 135-155 ppm Shift with respect to C-H =+25 ppm ar C-(C-OH) 100-130 ppm Shift with respect to C-(C-H): ortho -13 ppm, meta =+1 ppm, para -8 ppml"MR alC-OH 0.5-5 ppm Position and shape strongly depend on ar C-OH 5-8 ppm experimental conditions -CHz-OH 3 . 5 4 0 ppm -CH-OH 3.8-4.2 ppm ar CH-(C-OH) 6.5-7.0 ppm For C-aromatics, shift with respect to CH-(C-H): ortho -0.6 ppm, metu -0.1 ppm, pura = - O S ppmIR 0-H st 3650-3200 cm-l Position and shape depend on degree of association; often different bands for H- bonded and free OH C-O(H) st 1260-970 cm-I StrongMs Molecular ion Aliphatic: weak, often missing for primary and highly branched alcohols; in this case, peaks at highest mass are often due to [M-l8]+or [M-15]+ Aromatic: strong Fragments Aliphatic: Primary: m/z 31 > m/z 45 = m/z 59 m/z 31, 45, 59,. Secondary, tertiary: local maxima due to a- [M- 18]+ w3 1 -3 [M-46]+ cleavage: R +. R-CH-OH - -R* R-CH=OH + Aromatic: Generally accompanied by rearrangement peaks [ar-O]+ [M-281" (CO) [M-29]+ (CHO)
  • 68. 3.7 Oxygen Compounds 57Assignment Range CommentsRearrange- Aliphatic: elimination of H20 from M+ andments from products of a-cleavage; elimination of H 2 0 followed by alkene elimination Unsaturated: vinylcarbinols: spectra similar to those of ketones allyl alcohols: specific, aldehyde elimination: Aromatic: ortho effect with appropriate substituents: -Y-Z: -CO-OR, -C-hal, -0-R, and similar Aliphatic: no absorption above 200 nm uv Aromatic: in alkaline solution, shift to longer wavelength and intensity increase due to deprotonation3.7.2EthersAssignment Range Commentsa1 C-0 50-100 ppm Oxiranes: outside the normal range 1 3 c NMRa1 C-(C-0) 10-60 ppm Hardly any shift with respect to C-(C-CH3)a1 C-(C-C-O) 10-60 ppm Shift with respect to C-(C-C-CH,) -5 ppmo-c-0 85-1 10 ppm(C)=C-o 115-165 ppm Shift with respect to (C)=C-C =+15 ppmC=(C-o) 70-120 ppm Shift with respect to C=(C-C) -30 ppmar c-0 135-155 ppm Shift with respect to C-H =+25 ppmar c-(c-0) 100-130 ppm Shift with respect to C-(C-H): ortho -15 ppm, meta =+1 ppm, para = -8 ppm
  • 69. 58 3 Combination Tables Assignment Range Comments~"MR ~ 3 - 0 ~ 3.3-4.0 ppm Singlet CH2-0 3.4-4.2 ppm 0-CH2-0 4.5-6.0 ppm CH-0 3.5-4.3 ppm CH-03 4 - 6 ppm H-C(O)=C 5.7-7.5 ppm Shift with respect to H-C(H)=C =+1.2 ppm H-C(=C-O) 3.5-5.0 ppm Shift with respect to H-C(=C-H) -1 ppm ar CH4C-O) 6.6-7.6 ppmIR H-C(-0) st 2880-2815 cm-l For CH3-O and CH2-O; similar range for amines H-CH(-O):! st 2880-2750 cm-l Two bands C-O-C st as 1310-1000 cm-l Strong, sometimes two bandslcls Molecular ion Aliphatic: weak, tendency to protonate Aromatic: strong Fragments Aliphatic: Base peak of aliphatic ethers, generally due to m/z 31, 45, 59, ... fragmentation of the bond next to the ether [M- 18]+ bond: [M-33]+ [M-46]+ Ri-C-O-R2] +. - -R1 + C=O-R2 or due to heterolytic cleavage of the C-0 bond, especially for polyethers: Aryl alkyl ethers: preferential loss of the alkyl chain Diary1 ethers: preferential loss of CO (28) from M+ and/or [M-H]+ as well as: ar 1 D G r 2 - Rearrange- Aliphatic: elimination of alcohol ments Aromatic ethyl and higher alkyl ethers: alkene elimination to the phenol: Y 1+* 1+*W Aliphatic: no absorption above 200 nm Aromatic: shift to higher wavelength and more intense due to the ether group
  • 70. 3 8 Nitrogen Compounds . 593.0Nitrogen Compounds3.8.1AminesAssignment Range Commentsa1 C-N 25-80 ppm Shift with respect to C-H = +20 to +30 ppm 13C N M Ra1 C-(C-N) 10-60 ppm Shift with respect to C-(C-C) =+2 ppma1 C-(C-C-N) 10-60 ppm Shift with respect to C-(C-C-C) =-2 ppm(C)=C-N 120-170 ppm Shift with respect to (C)=C-C =+20 ppmC=(C-N) 75-125 ppm Shift with respect to C=(C-C) -25 ppmar C-N 130-150 ppm Shift with respect to C-H =+20 ppmar C-(C-N) 100-130 ppm Shift with respect to C-(C-H): ortho -15 ppm, meta =+1 ppm, para =-10 ppma1 C-NH 0.5-4.0 ppm 1H N M Rar C-NH 2.5-5.0 ppma1 or ar N+H 6.0-9.0 ppm Often broadCH3-N 2.3-3.1 ppm SingletCH2-N 2.5-3.5 ppmCH-N 3.0-3.7 ppmCH-N+ 3 . 2 4 . 0 ppmar CH-(C-N) 6.0-7.5 ppm For C-aromatics, shift with respect to CH-(C-H): ortho -0.8 ppm, meta -0.2 ppm, para -0.7 ppm For C-aromatics, shift with respect toa CH-(C-N+) r 7.5-8.0 ppm CH-(C-H): ortho =+0.7 ppm meta =+0.4 ppm, para =+0.3 ppmN-H st 3500-3200 cm-l Position depends on extent of association, IR often different bands for H-bonded and free NH; always at least two bands for NH2N+-H st 3000-2000 cm-l Broad, similar to COOH band but more structuredN-H 6 1650-1550 cm-l Weak or absentN+-H 6 1600-1460 cm-l Often weakH-C(-N) st 2850-2750 cm-l For CH3(-N) and CH2(-N); similar range for ethers
  • 71. 60 3 Combination Tables Assignment Range CommentsMs Molecular ion Odd mass number for odd number of nitrogens Aliphatic: weak, tendency to protonate Aromatic: strong, no tendency to protonate [M+H]+ is often important Fragments Aliphatic: Base peak of aliphatic amines generally due to dZ 44, 58,... fragmentation of the bond next to the amine 30, bond: Rearrange- Elimination of alkenes following amine ments cleavage:W Aliphatic: no absorption maximum above 200 nm Aromatic: in acidic solution, shift to lower wavelength and decrease in intensity 3.8.2 Nitro Compounds Assignment Range Comments13CNMR alC-N02 55-1 10 ppm Shift with respect to C-H =+50 ppm a1 C-(c-N02) 10-50 ppm Shift with respect to C-(C-C) -6 ppm a1 c-(ccN02) 10-60 ppm Shift with respect to C-(C-C-C) -2 ppm ar C-NO2 130-150 ppm Shift with respect to C-H =+20 ppm ar C-(C-N02) 120-140 ppm Shift with respect to C-(C-H): ortho =-5 ppm, meta -+1 ppm, para =+6 ppml NMR H a1 CH-NO2 4.2-4.6 ppm ar CH-(C-NOz) 7.5-8.5 ppm For C-aromatics, shift with respect to CH-(C-H): ortho =+1.O ppm, meta =+0.3ppm, para =+0.4 ppmIR NO2 st as 1660-1490 cm-l Strong to very strong NO2 st sy 1390-1260 cm-l Strong to very strong
  • 72. 3.8 Nitrogen Compounds 61Assignment Range CommentsMolecular ion Odd mass number for odd number of nitrogens Ms Aliphatic: weak or absent Aromatic: strongFragments [M-16]+, [M-46]+Rearrange- m/z 30, [M-17]+,ments [M-30]+, [M-471" =275 nm (log E <2) Aliphatic w -350 nm (log E =2) Aromatic
  • 73. 3.9 Thiols and Sulfides Assignment Range Comments~ ~ C N M a1 C-s R 5-60 ppm No significant shift with respect to C-C ar c-s 120-140 ppm~HNMR ~ ~ C - S H 1.O-2.0 ppm Vicinal coupling constant, J=5-9 Hz c C-SH u 2.0-4.0 ppm a1 CH-S 2.0-3.2 ppm ar CH-S 7.0-7.5 ppmIR S-H st 2600-2540 cm-l Frequently weakMs Molecular ion 34S-isotope peak at [M+2]+ =4.5% Aliphatic: intensity higher than for corresponding alcohols and ethers Fragments m/z 47, 61, 75, ... Sulfide cleavage: RlSCH2-R;!] 5R 1 S+€ H 2 Rearrange- m/z 34, 35,48 ments [M-33]+, [M-34]+ Alkene elimination after sulfide cleavageuv c225 nm (log E 3-4) In aliphatic 220-250 nm (log E 2-3) ComPunds
  • 74. 3.1 0 Carbonyl Compounds 633.1 0Carbonyl Compounds3.1 0.1AldehydesAssignment Range CommentsCHO 190-205 ppm Coupling constant lJCH 172 Hz 1 3 c NMRa1 C-(CHO) 30-70 ppm Coupling constant 2 J 20-50 ~Hz ~a1 C-(C-CHO) 5-50 ppm Shift with respect to C-(C-CH3) -10 ppm(C)=C-(CHO) 110-160 ppmC=(C-CHO) 110-160 ppmar C-(CHO) 120-150 ppmH-(C=O) 9.0-10.5 ppm 1H NMRa1 CH-(CHO) 2.0-2.5 ppm 3J" 0-3 HZCH=CH-(CHO) 5.5-7.0 ppm 3J" =8 Hzar CH-(C-CHO) 7.2-8.0 ppm For C-aromatics, shift with respect to CH-(C-H): ortho: =+0.6 ppm, meta: =+0.2 ppm, para: =+0.3 ppmcomb 2900-2700 cm-l Two weak bands IRc=ost 1765-1645 cm-l Aliphatic: -1730 cm-l Conjugated: =I690 cm-IMolecular ion Aliphatic: moderate Ms Aromatic: strongFragments [M-I]+ For aliphatic aldehydes, only significant up to c 7 [M-29]+Rearrange- m/z 44, Aliphatic aldehydesments [M-441" f. f.n+n* 270-310 nm (log E =1) Saturated aldehydes W 2 207 nm (log E "4) a$-Unsaturated aldehydes 2 250 nm (log E >3) Aromatic aldehydes
  • 75. 64 3 Combination Tables 3.1 0.2 Ketones Assignment Range Comments3cNMR c=o 195-220 ppm a1 C-(C=O) 25-70 ppm al C-(C-C=O) 5-50 ppm Shift with respect to C-(C-CH3) =-6 ppm (C)=C-(C=O) 105-160 ppm C=(C-C=O) 105-160 ppm ar C-(C=O) 120-150 ppml NMR H al CH-(C=O) 2.0-3.6 ppm CH-CO-al2.0-2.6 ppm CH-CO-ar 2.5-3.6 ppm CH=CH-(C=O) 5.5-7.0 ppm ar CH-(C-C=O) 7.2-8.0 ppm For C-aromatics, shift with respect to CH-(C-H): ortho =+0.6 ppm, meta =+O. 1 ppm, para =+0.2 ppmIR c=ost 1775-1650 cm-l Aliphatic: ~ 1 7 1 cm-l 5 Cyclic: ring size 26: ~ 1 7 1 cm-l 5 ring size <6: 21750 cm-l Conjugated: ~1690-1665 cm-lMS Molecular ion Aliphatic: moderate Aromatic: strong Fragments Ketone cleavages: Rearrange- dz44 Aliphatic ketones ments [M-44]+uv K+K* <200 nm (log E 3-4) Saturated n+n* 250-300 nm (log E 1-2) ketones 2 215 nm (log E =4) a,@-Unsaturatedketones 2 245 nm (log E >3) Aromatic ketones
  • 76. 3.10 Carbonyl Compounds 653.10.3Carboxylic AcidsAssignment Range CommentsCOOH 170-185 ppm In COO-, shift with respect to COOH: 0 to 13C NMR +8 PPma1 C-(COOH) 25-70 ppma1 C-(C-COOH) 5-50 ppm Shift with respect to C-(C-CH3) =-6 ppm(C)=C-(COOH) 105-160 ppmC=(C-COOH) 105-160 ppmar C-(COOH) 120-150 ppmCOOH 10.0-13.0 ppm Position and shape strongly depend on 1 NMR H experimental conditionsa1 CH-(COOH) 2.0-2.6 ppmCH=CH-(COOH) 5.2-7.5 ppmar CH-(C-COOH) 7.2-8.0 ppm For C-aromatics, shift with respect to CH-(C-H): ortho =+0.8 ppm, metu -+0.2 ppm, para =+0.3 ppmCOO-H st 3550-2500 cm-l Broad IRc=ost 1800-1650 cm-l Aliphatic: ~ 1 7 1 cm-l 5 Conjugated: ~ 1 6 9 cm-l 5 In COO- two bands: 1580 and 1420 cm-lCO-OH 6 OOP -920 cm-l For dimersMolecular ion Aliphatic: moderate, strong for long chains, Ms tendency to protonate Aromatic: strongFragments [M-17]+ Strong for aromatic acids [M-45]+Rearrange- m/z 60, 61 Aliphatic acidsments [M- 181" Aliphatic acids Ortho effect with aromatic acids:n+x* <220 nm (log E 1-2) Saturated acids w 2193 nm (log E -4) a$-Unsaturated acids 2230 nm (log E >3) Aromatic acids
  • 77. 66 3 Combination Tables 3.1 0.4 Carboxylic Esters and Lactones Assignment Range Comments13CNMR COOR 165-180 ppm Shift with respect to COOH: -5 to -10 ppm a1 C-(COOR) 20-70 ppm a1 C-(C-COOR) 5-50 ppm Shift with respect to C-(C-CH$ -6 ppm a1 C-(OCOR) 50-100 ppm Shift with respect to C-(OH) +2 to +10 ppm (C)=C-(COOR) 105-160 ppm C=(C-COOR) 105-160 ppm (C)=C-(OCOR) 100-150 ppm C=(C-OCOR) 80-130 ppm ar C-(COOR) 120-150 ppm ar C-(OCOR) 100-160 ppml NMR H a1 CH-(COOR) 2.0-2.5 ppm CH3COOR -2.0 ppm; CH2COOR ~ 2 . ppm 3 CHCOOR e2.5 ppm al CH-(OCOR) 3.5-5.3 ppm CH30COR -3.5-3.9 ppm CH20COR -4.0-4.5 ppm CHOCOR -4.8-5.3 ppm CH=CH-(COOR) 5.2-7.5 ppm Shift with respect to CH=CH-H: geminal =+0.8 ppm, cis =+1.1 ppm, trans: -+OS ppm C=CH-(OCOR) 6.0-8.0 ppm Shift with respect to CH=CH-H: CH=C-(OCOR) 4.5-6.0 ppm geminal =+2.1 ppm, cis -0.4 ppm, trans -0.6 ppm ar CH-(C-COOR) 7.5-8.5 ppm For C-aromatics, shift with respect to CH-(C-H): ortho -+0.7 ppm, meta =+O. 1 ppm, para -+0.2 ppm ar CH-(C-OCOR) 6.8-7.5 ppm For C-aromatics, shift with respect to CH-(C-H): ortho -0.2 ppm, meta -0 ppm, para -0.1 ppmIR c=ost 1745-1730 cm-l Strong; range for aliphatic esters Higher wavenumbers for ha1-C-COO, COO-C=C, COO-ar, and for small-ring lactones Lower wavenumbers for C=C-COOR and ar-COOR c-0 st 1330-1050 cm-l Mostly two bands, at least one of them strong
  • 78. 3.1 0 Carbonyl Compounds 67Assignment Range CommentsMolecular ion Aliphatic esters: weak, tendency to protonate Ms Aliphatic lactones: medium to weak, tendency to protonate Aromatic esters and lactones: strongFragments [M - RO]+ Esters [M - ROCO]+ Esters Lactones: loss of a-substituents (attached to ether carbon), decarbonylation, for aromatic lactones also double decarbonylationRearrange- Alkene elimination from the alcohol moiety:ments Elimination of the alcohol side chain with double hydrogen transfer (for > C2 alcohols) + Elimination of the alkyl chain of the acid moiety as an alkene RYc 0 1I *+ - R I-CH=CH~ D + 9H . u Alcohol elimination from ortho-substituted aromatic esters [M- 181" Lactonesn+n* c220 nm (log E 1-2) Aliphatic esters 2193 nm (log E =4) a$-Unsaturated esters 2230 nm (log E >3) Aromatic esters
  • 79. 68 3 Combination Tables 3.1 0.5 Carboxylic Amides and Lactams Assignment Range Commentsl3CNMR CONR2 165- 180 ppm a1 C-(CONR2) 20-70 PPm a1 C-(C<ONR~) 5-50 ppm Shift with respect to C-(C-CH3) --6 ppm a1 C-(NCOR) 25-80 ppm Shift with respect to C-(NH) -1 to -2 ppm C=C-(CONR2) 105-160 ppm ar C-(CONR2) 120-150 ppm ar C-(NCOR) 110-150 ppml"MR CONH 5-10 ppm Frequently broad to very broad; splitting due to H-N-C-H coupling often only recognizable in the CH signal alCH-(CONR2) 2.0-2.5 ppm al CH-(NCOR) 2.7-4.8 ppm CH3NCOR -2.7-3.0 ppm; CH2NCOR -3.1-3.5 ppm; CHNCOR ~3.8-4.8 pprn CH=CH-(CONR2) 5.2-7.5 ppm Shift with respect to CH=CH-H: geminal =+1.4 ppm, cis =+1.O ppm, trans =+OS ppm C=CH-(NCOR) 6.0-8.0 ppm Shift with respect to CH=CH-H: CH=C-(NCOR) 4.5-6.0 ppm geminal =+2.1 ppm, cis -0.6 ppm, tram -0.7 ppm ar CH-C(CONR2) 7.5-8.5 ppm For C-aromatics, shift with respect to CH-(C-H): ortho =+0.6 ppm, meru =+O. 1 ppm, para - 4 . 2 ppm ar CH-C(NCOR) 6.8-7.5 ppm For C-aromatics, shift with respect to CH-(C-H): orrho =O ppm, meta =O ppm, para: = 0 to -0.3 ppmIR N-H St 3500-3100 cm-I Position and shape depend on extent of association, often different bands for H- bonded and free NH,always at least two bands for NH2 c=ost 1700-1650 cm-l Strong, range given for amides as well as for (amideI) 6- and larger lactams, higher wavenumbers for p- and y-lactams N-H 6 and 1630-1510 cm-l Often strong, missing for tertiary amides and N-C=O st sy lactams (amide I ) I
  • 80. 3.10 Carbonyl Compounds 69Assignment Range CommentsMolecular ion Aliphatic amides: moderate, tendency to Ms protonate Aromatic amides: strongFragments Amides: cleavage on both sides of the carbonyl group followed by loss of CO; large number of fragments of even mass Lactams: loss of a-substituent, loss of CORearrange- Amides: elimination of the amine moiety,ments elimination of alkene from the amine or acid moiety in analogy to esters [M- 18]+ Lactamsn+x* e220 nm Aliphatic amides and lactams uv (log E 1-2)
  • 81. 4.1 Alkanes 71 04 13C NMR Spectroscopy C 0 4.1Alkanes4.1.1Chemical Shifts13C Chemical Shifts of Alkanes ( 6 in ppm relative to TMS) -2.3 7.3 15.9 13.0 24.1 - CH4 H,C-CH, n M 15.4 24.8 22.8 32.0 22.3 - -- 34.8 14.2 32.2 14.2 23.1 1 x - 30.1 29.5 23.1 32.4 14.1 32.1 14.1 29.5 22.8
  • 82. 72 4 13C NMR 13C Chemical Shifts of Methyl Groups (6 in p p m relative to TMS) A b Substituent X kH3-X Substituent X kH3-X -H -2.3 -3-indolvl 9.8 C -CH3 7.3 -4-indoGl 21.6 -CH2CH3 15.4 -5-indolyl 21.5 -CH(CH3)2 24.1 -6-indolyl 21.7 -C(CH3)3 31.3 -7-indolyl 16.6 -(CH2)&H3 14.1 H -F 71.6 -CH2-phenyl 15.7 a -C1 25.6 -CH2F 15.8 1 -Br 9.6 -CHZCl 18.7 -1 -24.0 -CH2Br 19.1 0 -OH 50.2 -CH21 20.4 -OCH3 60.9 -CHC12 31.6 -0CH2CH3 57.6 -CHBr2 31.8 -OCH(CH3)2 54.9 -CCl3 46.3 4C(CH3)3 49.4 -CBr3 49.4 -OCH2CH=CH2 57.4 -CH20H 18.2 -0-cyclohexyl 55.1 -CH20CH3 14.7 -OCH=CH2 52.5 -CH20CH2CH3 15.4 -0-phenyl 54.8 -CH20CH=CH2 14.6 -0COCH3 51.5 -CH20-phenyl 14.9 -OCO-cyclohexyl 51.2 -CH2OCOCH3 14.4 -OCOCH=CH2 51.5 -CH2NH2 19.0 -OCO-phenyl 51.8 -CH2NHCH3 14.3 -0COOCH3 54.9 -CH2N(CH3)2 12.8 -0S02-4-tolyl 56.3 -CH2NO2 12.3 -OS020CH3 59.1 -CH2SH 19.7 N -NH2 28.3 -CH2S02CH3 6.7 -NH~+ 26.5 -CH2S03H 8.0 -NHCH3 38.2 -CH2CHO 5.2 -NH-cyclohexyl 33.5 -CH2COCH3 7.0 -NH-pheny 1 30.2 -CH2COOH 9.6 -N(CH3)2 47.5 -c yclopenty1 20.5 -N-p yrrolidiny1 42.7 -cyclohexyl 23.1 -N-p yperidiny 1 47.7 -CH=CH2 18.7 -N(CH3)phenyl 39.9 -CZCH 3.7 -N-pyrrOlyl 35.9 -phenyl 21.4 -N-imidazolyl 32.2 -1-naphthyl 19.1 -N-p yrazoly 1 38.4 -2-naphthyl 21.5 -N-indol y 1 32.1 -2-pyridyl 24.2 -NHCOCH3 26.1 -3-pyridyl 18.0 -N(CH3)CHO 31.5; 36.5 4-pyridyl 20.6 -N(CH3)COCH3 35.0; 38.0 -2-fury1 13.7 -NO2 61.2 -2-thienyl 14.7 -CN 1.7 -2-pyrroly l 11.8 -NC 26.8 -2-indolyl 13.4 -NCS 29.1
  • 83. 4.1 Alkanes 73Substituent X kH3-X Substituent X 6CH,-X /S -SH 6.5 -coo- 24.4 / C -SCH3 19.3 -COOCH3 20.6 -S-fl-CsH 17 15.5 -COOCOCH3 21.8 -S-phenyl 15.6 -CONH2 22.3 -SSCH3 22.0 -CON(CH3)2 21.5 -SOCH3 40.1 -COSH 32.6 -S02CH3 42.6 -COSCH3 30.2 -S02CH2CH3 39.3 -COCOCH3 23.2 -SO2Cl 52.6 -coc1 33.6 -SO3H 39.6 -COBr 39.1 -S03Na 41.1 -COSi(CH3)3 35.70 -CHO 31.211 -COCH3 30.7C -COCH2CH3 27.5/ - c oc c 13 21.1 -COCH=CH2 25.7 -CO-c yclohexyl 27.6 -CO-phenyl 25.7 -COOH 21.7
  • 84. 74 4 13C NMR 13C Chemical Shifts of Monosubstituted Alkanesc ( 8 in ppm relative to TMS) Substituent Methyl Ethyl 1-Propyl -CH3 -CH2 -CH3 -CH2 -CH2 -CH3 -H -2.3 7.3 7.3 15.4 15.9 15.4 C -CH=CH2 18.7 27.4 13.4 36.2 22.4 13.6 -CZCH 3.7 12.3 13.8 20.6 22.2 13.4 -phenyl 21.4 29.1 15.8 38.3 24.8 13.8 H -F 71.6 80.1 15.8 85.2 23.6 9.2 a -C1 25.6 39.9 18.9 46.8 26.3 11.6 1 -Br 9.6 27.6 19.4 35.6 26.4 13.0 -I -24.0 -1.6 20.6 9.1 27.0 15.3 0 -OH 50.2 57.8 18.2 64.2 25.9 10.3 -OCH3 60.9 67.7 14.7 74.5 23.2 10.5 -0CH2CH3 57.6 66.0 15.4 72.5 23.2 10.7 -OCH(CH3)2 54.9 -OC(CH3)3 49.4 56.8 16.4 *phenyl 54.8 63.2 14.9 69.4 22.8 10.6 -0COCH3 51.5 60.4 14.4 66.2 22.4 10.5 -0CO-phenyl 51.8 60.8 14.4 66.4 22.2 10.5 -OSO~-4-tolyl 56.3 66.9 14.7 72.2 22.3 10.0 N -NH2 28.3 36.9 19.0 44.6 27.4 11.5 -NHCH3 38.2 45.9 14.3 54.0 23.2 12.5 -N(CH3)2 47.6 53.6 12.8 61.8 20.6 11.9 -NHCOCH3 26.1 34.4 14.6 40.7 22.5 11.1 -NO2 61.2 70.8 12.3 77.4 21.2 10.8 -CN 1.7 10.8 10.6 19.3 19.0 13.3 -NC 26.8 36.4 15.3 43.4 22.9 11.0 S -SH 6.5 19.1 19.7 26.4 27.6 12.6 -SCH3 19.3 -SSCH3 22.0 31.8 14.7 -SOCH3 40.1 -SO2CH3 42.6 48.2 6.7 56.3 16.3 13.0 -SO*Cl 52.6 60.2 9.1 67.1 18.4 12.1 -S02OH 39.6 46.7 8.0 53.7 18.8 13.7 0 -CHO 31.3 36.7 5.2 45.7 15.7 13.3 11 -COCH3 30.7 35.2 7.0 45.2 17.5 13.5 C -CO-phenyl 25.7 31.7 8.3 40.4 17.7 13.8 / -COOH 21.7 28.5 9.6 36.2 18.7 13.7 -COOCH3 20.6 27.2 9.2 35.6 18.9 13.8 -CONH, 22.3 29.0 9.7 -coc1 I 33.6 41.0 9.3 48.9 18.8 13.0
  • 85. 4.1 Alkanes 75I 3 C Chemical Shifts of Monosubstituted Alkanes (contd.)( 6 in ppm relative to TMS)Substituent Isopropyl tert-Butyl -CH -CH3 -C -CH3 -H 15.9 15.4 25.0 24.1 C -CH=CH2 32.3 22.1 33.8 29.4 -C_CH 20.3 22.8 27.4 31.1 -phenyl 34.3 24.0 34.6 31.4 H -F 87.3 22.6 93.5 28.3 a -C1 53.7 27.3 66.7 34.6 1 -Br 44.8 28.5 62.1 36.4 -I 20.9 31.2 43.0 40.4 -OH 64.0 25.3 68.9 31.2 -OCH3 72.6 21.4 72.7 27.0 -0CH2CH3 72.6 27.7 -OCH(CH3)2 68.5 23.0 73.0 28.5 -0C(CH3)3 63.5 25.2 76.3 33.8 -0-phenyl 69.3 22.0 -0COCH3 67.5 21.9 79.9 28.1 -0CO-phenyl 68.2 21.9 80.7 28.2 N -NH2 43.0 26.5 47.2 32.9 -NHCH3 50.5 22.5 50.4 28.2 -N(CH3)2 55.5 18.7 53.6 25.4 -NHCOCH3 40.5 22.3 49.9 28.6 -NO2 78.8 20.8 85.2 26.9 -CN 19.8 19.9 28.1 28.5 -NC 45.5 23.4 54.0 30.7 S -SH 29.9 27.4 41.1 35.0 -SCHZCH~ 34.4 23.4 -S02CH3 53.5 15.2 57.6 22.7 -s02c1 67.6 17.1 74.2 24.5 -S020H 52.9 16.8 55.9 25.0 0 -CHO 41.1 15.5 42.4 23.4 11 -COCH3 41.6 18.2 44.3 26.5 C -CO-phenyl 35.2 19.1 43.5 27.9/ -COOH 34.1 18.8 38.7 27.1 -COOCH3 34.1 19.1 38.7 27.3 -CONHq & 34.9 19.5 38.6 27.6 -coc1 46.5 19.0 49.4 27.1
  • 86. 76 4 13C NMR 13C Chemical Shifts of 1-Substituted n - O c t a n e sc/ ( 6 in ppm relative to TMS) Substituent 1 2 3 4 5 6 7 8 -CH2 -CH2 -CH2 -CH2 -CH2 -CH2 -CH2 -CH3 -H 14.1 22.8 32.1 29.5 29.5 32.1 22.8 14.1 C -CH=CH2 34.5 -29.6 -29.6 -29.6 -29.6 32.2 23.0 13.9 -phenyl 36.2 31.7 -29.6 -29.6 -29.6 32.1 22.8 14.1 H -F 84.2 30.6 25.3 29.3 29.3 31.9 22.7 14.1 a -C1 45.1 32.8 27.0 29.0 29.2 31.9 22.8 14.1 1 -Br 33.8 33.0 28.3 28.8 29.2 31.8 22.7 14.1 -I 6.9 33.7 30.6 28.6 29.1 31.8 22.6 14.1 04 H 63.1 32.9 25.9 29.5 29.4 31.9 22.8 14.1 -O-n-CgHI7 71.1 30.0 26.3 29.6 29.4 32.0 22.8 14.1 -ON0 68.3 29.2 26.0 29.3 29.3 31.9 22.7 14.0 N -NH2 42.4 34.1 27.0 29.6 29.4 31.9 22.7 14.1 -N(CH3)2 60.1 29.5* ~ 2 7 . 9 * e27.7" 29.7* 32.0 22.8 14.4 -NO2 75.8 26.2 27.9 -29.6 =29.6 31.4 22.6 14.0 -CN 17.2 25.5 -29.9 -29.9 -29.9 31.8 22.7 14.0 S -SH 24.7 34.2 28.5 29.2 29.1 31.9 22.7 14.1 -SCH3 34.5 29.0 29.4 29.4 29.4 31.9 22.8 14.1 -SO-L-CgH17 52.6 -29.1 -29.1 ~ 2 9 . 1 ~29.1 31.8 22.7 14.1 0 -CHO 44.0 22.2 -29.3 -29.3 -29.3 31.9 22.7 14.1 11 -COCH3 43.7 24.1 -29.5 -29.5 e29.5 32.0 22.8 14.1 C 40-phenyl 38.6 24.4 29.5 29.5 29.5 31.9 22.7 14.0 / 4OOH 34.2 24.8 -29.3 -29.3 -29.3 31.9 22.7 14.1 -COOCH3 34.2 25.1 29.3 29.3 29.3 31.9 22.8 14.1 -CONHqA 35.5 25.4 29.1 29.1 29.1 31.6 22.3 14.0 -COCl 47.2 25.1 28.5 29.1 29.1 31.8 22.7 14.1 * assignment uncertain
  • 87. 4.1 Alkanes 77Estimation of I3C Chemical Shifts of Aliphatic Compounds /(in pprn relative to TMS) C / The chemical shifts of sp3-hybridized carbon atoms can be estimated with the helpof an additivity rule using the shift value of methane (-2.3 ppm) and incrementsfor substituents in a-, p-, y-, and &position (see next pages). Some substituentsoccupy two positions. Thus, the quaternary carbon atom c in the example givenbelow is in &position relative to the carbon atom a since the sp3-hybridizedoxygen of the p-COO group occupies the y-position. This simple linear modelneeds corrections in case of strong branching of the observed C atom and/or itsneighbors (steric corrections, S ) . Substituents for which such corrections arenecessary are those with varying branching, Le., a varying number of directlybonded H atoms. They are marked with an asterisk (*) in the Table of Increments.Further correction terms are needed if y-substituents are in a sterically fixedposition (conformational corrections, K). The chemical shifts estimated with this additivity rule differ in general by lessthan about 4 ppm from the experimental values. Larger discrepancies may beexpected for highly branched systems (particularly for quaternary carbon atoms).For carbon atoms bearing several halogen, oxygen, and/or other stronglydeshielding substituents, additional correction terms are needed [ 11. Without suchcorrections, deviations can be so large as to render the rule useless.Example: Estimation of chemical shifts for N-terf-butoxycarbonylalanine H Oa base value -2.3 b base value -2.3 1 a-C 9.1 1 a-C 9.1 1 a-COOH 20.1 1 p-COOS 2.0 1 a-NH 28.3 1 p-NH 11.3 1 p-coo 2.0 1 r-coo -2.8 16-c 0.3 1 S(prim,3) -1.1 1 S(tert,2) -3.7 estimated 16.2 estimated 53.8 exP 17.3 exP 49.0c base value -2.3 d base value -2.3 3 a-C 27.3 1 a-C 9.1 1 a-OCO 56.5 2 p-c 18.8 1 y-NH -5.1 1 p-OCO 6.5 16-c 0.3 1 6-NH 0.0 3 S(quat,l) -4.5 1 S(prim,4) -3.4 estimated 72.2 estimated 28.7 exP 78.1 exP 28.1
  • 88. 78 4 13C NMR Estimation of I 3 C Chemical Shifts of Aliphatic Compounds‘c’‘ (6 in ppm relative to TMS) 6 = -2.3 + CZi + CSi + E:Kk i j “ k Substituent Increment Zi for substituents in position a B Y 6 -H 0.0 0.0 0.0 0.0 -CC$ 9.1 9.4 -2.5 0.3 -c*=C 19.5 6.9 -2.1 0.4 -c=c- 4.4 5.6 -3.4 -0.6 -phenyl 22.1 9.3 -2.6 0.3 H -F 70.1 7.8 -6.8 0.0 a -Ci 31.0 10.0 -5.1 -0.5 1 -Br 18.9 11.0 -3.8 -0.7 -1 -7.2 10.9 -1.5 -0.9 0 -0-* 49.0 10.1 -6.2 0.3 -0CO- 56.5 6.5 -6.0 0.0 *O NA 54.3 6.1 -6.5 -0.5 N -Nb 28.3 11.3 -5.1 0.0 -N+L; 1 30.7 5.4 -7.2 -1.4 -NH3+ 26.0 7.5 -4.6 0.0 -NO2 61.6 3.1 -4.6 -1.0 -CN 3.1 2.4 -3.3 -0.5 -NC 31.5 7.6 -3.0 0.0 s -s*- 10.6 11.4 -3.6 -0.4 -scO- 17.0 6.5 -3.1 0.0 -s*o- 31.1 7.0 -3.5 0.5 -s*o2- 30.3 7.0 -3.7 0.3 -s02c1 54.5 3.4 -3.0 0.0 -SCN 23.0 9.7 -3.0 0.0 0 -CHO 29.9 -0.6 -2.7 0.0 II -cO- 22.5 3.O -3.0 0.0 C -COOH 20.1 2.0 -2.8 0.0 / -coo- 24.5 3.5 -2.5 0.0 -COO- 22.6 2.0 -2.8 0.0 -CO-N< 22.0 2.6 -3.2 -0.4 -coc1 33.1 2.3 -3.6 0.0 -C=NOH syn 11.7 0.6 -1.8 0.0 -C=NOH anti 16.1 4.3 -1.5 0.0 -CS-N< 33.1 7.7 -2.5 0.6 -S n -5.2 4.0 -0.3 0.0
  • 89. 4.1 Alkanes 79Steric Corrections, S *L / Observed 3C-center S , for number of substituents at the &atomaprimary (CH3) 0.0 0.0 -1.1 -3.4secondary (CH2) 0.0 0.0 -2.5 -6.0tertiary (CH) 0.0 -3.7 -8.5 -10.0quaternaxy (C) -1.5 -8.0 -10.0 -12.5a To be applied to each of the neighboring atoms, which may have a variable number ofnon-hydrogen substituents (marked with an asterisk (*) in the Table of Increments).Conformational Corrections, K, f o r y-SubstituentsConformation Ksynperiplanar -4.0synclinalanticlinal $ix .1.0 0.0antiperiplanarnot fixed & X 2.0 0.0One can also use the chemical shifts of a reference compound as the base value ifits structure is closely related to that assumed for the unknown. The incrementscorresponding to the structural elements missing in the reference compound arethen added to the base value, while those of structural elements present in thereference but absent in the unknown are subtracted.
  • 90. 80 4 13C NMR Example: Estimation of the chemical shifts for the carbon atoms a and b in N- feu-butoxycarbonylalanineusing the chemical shifts of valine as base values (a’,’‘C’ b’): Target: Reference: a base value 61.6 b base value 30.2 1 p-coo 2.0 1 y-coo -2.8 1 6-c 0.3 1 S(prim,3) -1.1 1 S(tert3) -3.7 - 2 a-C -18.2 - 2 p-c -18.8 - 1 S(tert,3) 8.5 - 1 S(tert,3) 8.5 estimated 16.6 estimated 49.9 exP 17.3 eXP 49.0 4.1.2 Coupling Constants 1 3 C - I H Coupling Constants Coupling through one bond ( I J C H in Hz) The 13C-lH coupling constant of 125 Hz in methane increases in the presence of electronegative substituents and can be estimated by using the following additivity rule: Substituent Increments Z; Substituent Increments Z; -H 0.0 -Br 27.0 -CH3 1.o -1 26.0 -C(CH3)3 -3.0 -0H 18.0 -CH2C1 3 .O -0-phenyl 18.0 -CH2Br 3.0 -NH2 8.0 -CHzI 7.0 -NHCH3 7.0 -CHClZ 6.0 -N(CH3)2 6.0 -CCl3 9.0 -CN 11.0 -C=C 7.0 -SOCH3 13.0 -phenyl 1.o -CHO 2.0 -F 24.0 -COCH? -1.0 -c1 27.0 -COOHd 5.5 Example: Estimation of 13C-l H coupling constant of CHC13: J = 125.0 + 3 x 27.0 = 206.0 Hz (exp: 209.0 Hz).
  • 91. 4.1 Alkanes 81Coupling through more than one bond (IJCHI in H z ) C / The coupling constants can be estimated from the corresponding IH-lH couplingconstants [ 2 ] : JCH 0.62 J" 2JcH 1- 6 H-CH2-l 3CH3 4.5 3 J ~ 0-10 ~ H-CH2-CH2-l 3CH3 5.8The l3C-lH coupling constants for coupling across three bonds depend on thedihedral angle in the same way as the vicinal lH - lH coupling constants (seeChapter 5.1): H13c-13~Coupling Constants ( 1 ~ in~ HZ) ~ 1 b b d 2Ja, 4.6H3C-CH3 l J 34.6 a lJab 34.6 C -H c O a 3Jad4.6 2Jbd <1 CThe 13C-13C coupling constants for coupling over three bonds depend on thedihedral angle in the same way as the vicinal lH-lH (see Chapter 5.1) and 13C-lHcoupling constants. Maximum values of ca. 4-6 Hz are observed for dihedralangles of Oo and 180° and minimal values around 0 Hz at 90°.4.1.3References[l] A. Furst, E. Pretsch, W. Robien, A comprehensive parameter set for the prediction of the 13C NMR chemical shifts of sp3-hybridized carbon atoms in organic compounds, Anal. Chim. Acta 1990,233, 213.[2] J.L. Marshall, Carbon-carbon and carbon-proton NMR couplings, Verlag Chemie International, Deerfield Beach, FL,1983.
  • 92. 82 4 13C NMR 4.2 Alkenesc=c 4.2.1 Chemical Shifts 13C Chemical Shifts of Alkenes ( 6 in ppm relative to TMS) The I3C chemical shifts of the carbons of C=C double bonds typically range from ca. 80-160 ppm; a wider range of 40-210 ppm is observed with 0- and N- substituents. In unsaturated acyclic hydrocarbons, they can be predicted with high accuracy (see below). To estimate the I3C chemical shifts in all other substituted alkenes, one can use the substituent effects listed for chemical shifts in vinyl groups. However, since no configuration-dependent parameters are available, the values thus estimated are less accurate than those for unsaturated acyclic hydrocarbons. The 13C chemical shifts of sp3-hybridized carbon atoms in the vicinity of double bonds can be estimated using the additivity rule given on page 78. The conformational correction factors, K, for y-substituents of cis- vs. trans- disubstituted alkenes differ by 6 ppm because the relative position of these substituents is fixed by the double bond. Estimation of the 13C Chemical Shifts of sp2-Hybridized Carbon Atoms in Unsaturated Acyclic Hydrocarbons ( 6 in ppm relative to TMS) c- c-c - C= c-c -c - c Y P a t ap Y Base value: 123.3 Incrementsfor C-substituents: at C-atom under consideration (C) at neighboring C-atom (C) a 10.6 a -7.9 P 4.9 p -1.8 Y -1.5 Y 1.5 Steric corrections: for each pair of cis-a,a-substituents -1.1 for a pair of geminal a,a-substituents -4.8 for a pair of geminal a,a-substituents 2.5 if one or more P-substituents are present 2.3
  • 93. 4.2 Alkenes 83Example: Estimation of chemical shifts of cis-4-methyl-2-pentene a b c=c a base value 123.3 b base value 123.3 1 a-C 10.6 1 a-C 10.6 1 a-C -7.9 2 p-c 9.8 2 p-c -3.6 1 a-C -7.9 cis-a,a -1.1 cis-a,a -1.1 estimated 121.3 1 P-substituent 2.3 eXP 121.8 estimated 137.0 exP 138.8Effect of Substituents on the 13C Chemical Shifts of VinylCompounds (in ppm relative to TMS) CHXH, 6ci = 123.3 + Zi 1 2Substituent X Z1 Z2 Substituent X z1 z2 -H 0.0 0.0 0 -OH 25.7 -35.3 C -CH3 12.9 -7.4 -OCH3 29.4 -38.9 -CH2CH3 17.2 -9.8 -0CH2CH3 28.8 -37.1 -CH2CH2CH3 15.7 -8.8 -O(CH2)3CH3 28.1 -40.4 -CH(CH3)2 22.7 -12.0 -0COCH3 18.4 -26.7 -(CH2)3 14.6 -8.9 N -N(CH3)2 28.0* -32.0* -C(CH3)3 26.0 -14.8 -N+(CH3)3 19.8 -10.6 -CH2C1 10.2 -6.0 -N-pyrrolidonyl 6.5 -29.2 -CH2Br 10.9 -4.5 -NO2 22.3 -0.9 -CH2I 14.2 -4.0 -CN -15.1 14.2 -CH20H 14.2 -8.4 -NC -3.9 -2.7 -CH20CH2CH3 12.3 -8.8 S -SCH2CH3 9.0 -12.8 -CH=CH2 13.6 -7.0 -S02CH=CH2 14.3 7.9 -C=CH -6.0 5.9 0 -CHO 15.3 14.5 -phenyl 12.5 -11.0 11 -COCH3 13.8 4.7 H -F 24.9 -34.3 C -COOH 5.0 9.8 a -C1 2.8 -6.1 / -COOCH2CH3 6.3 7.0 1 -Br -8.6 -0.9 -COCl 8.1 14.0 -I -38.1 7.0 -Si(CH& 16.9 6.7 -Sic13 8.7 16.1* estimated values
  • 94. 04 4 13C NMRThe values listed on the preceding page can also be used to estimate the 13Cchemical shifts of sp2-hybridized carbon atoms in alkenes with more than onesubstituent (note that the cis/truns configuration is not taken into account): 6q = 123.3 + Z Z i 1Example: Estimation of chemical shifts of 1-bromo-1-propene a b Br- C= C- CH3 H Ha base value 123.3 b base value 123.3 Z1(Br) -8.6 -0.9 Z2(CH3) -7.4 Zi(CH3) 12.9 estimated 107.3 estimated 135.3 eXP 108.9 (cis) eXP 129.4 (cis) 104.7 (trans) 132.7 (trans)The following examples show some larger deviations between measured andestimated (in parentheses) chemical shifts. This is usually to be expected whenseveral substituents are present that strongly interact with the n-electrons of thedouble bond:NC a b,N(CH3)2 a 39.1 H b,N(CH3)2 a 69.2 ,c=c, (29.1) F- C a- (59.3) b 171.0 b 163.0NC N(CH3)2 (207.7) H N( CH3) 2 (179.3) ,,,NO2 a 151.0 a b,oCH3 a 54.7 c=c (150.4) ,c= c, (45.5) b 111.4 H OCH3 b 167.9(H3C)2& H (113.6) (182.1)13C Chemical Shifts of cis- and trans-l,2-Disubstituted Alkenes(6 in ppm relative to TMS) Substituent R R R R H H H H H H R -CH3 123.3 124.5 -CH2CH3 131.2 131.3 -c1 118.1 119.9 -Br 116.4 109.4 -I 96.5 79.4 -CN 120.8 120.2 -OCH3 130.3 135.2 -COOH 130.4 134.2 -COOCHq 130.1 133.5
  • 95. 13C Chemical Shifts of Enols (6 in ppm relative to TMS)The carbon atom bonded to the enolic OH group is strongly deshielded so that itsshift is close to that of a carbonyl carbon. The other carbon atom is stronglyshielded. c=cEnol: Ketone: a 22.5 a 28.5a C c 99.0 190a5 aJJ C b c 201.1 56.6 a a 28.3 a 28.3 b 32.8 b 31.0 c 46.2 c 54.2 0 d 191.1 d 203.6 e 103.3 e O e 57.313C Chemical Shifts of Aliphatic Dienes (6 in ppm relative to T M S )Conjugated Dienes 136.9 a 116.3Allenes 213.5 74.8 CH2= C= CH2Estimation of the chemical shifts of sp2-hybridized carbon atoms in substitutedallenes: see [l].
  • 96. 06 4 13C NMR13C Chemical Shifts of Substituted Allenes(6 in ppm relative to TMS) RI,~ , c=c.,,,R 3 c= C/ R2 HR1 R2 R3 a b C-H -H -H 74.8 213.5 74.8-CH3 -H -H 84.4 210.4 74.1-CH3 -CH3 -H 93.4 207.3 72.1-CH3 -H -CH3 85.4 207.1 85.4-CH2CH3 -H -H 91.7 208.9 75.3-C(CH3)3 -C(CH3)3 -H 119.6 207.0 75.8-CH=CH2 -H -H 93.9 211.4 75.1-C=CH -H -H 74.8 217.7 77.3-phenyl -H -H 94.4 210.0 78.8-F -H -H 129.8 200.2 93.9-c1 -H -H 88.8 207.9 84.5-Br -H -H 72.7 207.6 83.8-1 -H -H 35.3 208.0 78.3-OCH3 -H -H 123.1 202.0 90.3-N(CH3)2 -H -H 113.1 204.2 85.5-CN -H -H 67.4 218.7 80.7-SCH3 -H -H 90.0 206.1 81.3-COOH -H -H 88.1 217.7 80.04.2.2Coupling Constants13C-lH Coupling Constants ((J,-HI in Hz)Coupling through one bondCoupling through two bonds (typical range: 0-16)H H H H +l3C 2 J -2.4 ~ ~ /L13C 2 J 6.9 ~ ~H H c1 HAdditivity rule for the estimation of 2J,-~ of alkenes: see [2].
  • 97. 4.2 Alkenes 87Coupling through three bonds:The trans- lH-C=C-l 3C coupling constant of alkenes is always larger than thecorresponding cis coupling constant so that an assignment is possible if bothisomers are available: see [3].a C a C c=cH 13,CH3 3Jac 7.6 H, 3,CH3 3Jac 4.1 ,c=c 3Jbc 12.6 ,c=c, 3Jbc 8.1H H H c1b ba C a CH, 13/COOH 3Jac 7.6 H, 13/COOH 3Jac 7.6 c =c, 3Jbc 14.1 c=c, 3Jbc 14.1H H H CH3b b a C C H, 13/CooH 3Jab 7.7 CH? 13/COOH 3Jab 6.9 F =c 3Jac 7.4 F =c, 3Jac 13.2CH3 13CH3 H 13CH3 b a b13C-13C Coupling Constants (IJccl in H z ) C a b,CH3 lJab 70.0CH2= CH2 Jcc 67.6 CH2= C H Jbc 41.9CH2=C=CH2 Jcc 98.7 b Jab 68.8 a@d C Jbc 53.7 2Jac c 1 3Jad 9.04.2.3References[l] R.H.A.M. Janssen, R.J.J.Ch. Lousberg, M.J.A. de Bie, An additivity relation for carbon-13 chemical shifts in substituted allenes, J. R. Neth. Chem. SOC. 1981, 100, 85.[2] U. Vogeli, D. Herz, W. von Philipsborn, Geminal C,H spin coupling in substituted alkenes, Org. Magn. Reson. 1980, 13, 200.[3] U. Vogeli, W. von Philipsborn, Vicinal C,H spin coupling in substituted alkenes. Stereochemical significance and structural effects, Org. Magn. Reson. 1975, 7, 617.
  • 98. 88 4 13C NMR 4.3 AI kynes 4.3.1 Chemical Shiftsc=c 13C Chemical Shifts of Alkynes ( 6 in ppm relative to TMS) a b X-CE C- H Substituent X a b -H 71.9 71.9 C -CH3 80.4 68.3 -CH2CH3 85.5 67.1 -CH2CH2CH3 84.0 68.7 -CH2CH$H2CH3 83.0 66.0 -CH(CH3)2 89.2 67.6 -C(CH3)3 92.6 66.8 -cyclohexyl 88.7 68.3 -CH20H 83.0 73.8 -CH=CH2 82.8 80.0 -C EC-CH3 68.8 64.7 -phenyl 84.6 78.3 0 -0CH2CH3 90.9 26.5 S -SCH$H3 72.6 81.4 0 -CHO 81.8 83.1 11 -COCH3 81.9 78.1 C -COOH 74.0 78.6 / -COOCHq 74.8 75.6 Additivity rule for estimating the chemical shifts of sp-hybridized carbon atoms in alkynes: see El].
  • 99. 4.3 Alkynes 894.3.2Coupling Constants13C-lH Coupling Constants (IJcHI in H z ) [21a b C Jab 249H- 13C, C- H 2Jbc 49.3 (in substituted acetylenes: 40-60) a b c de 2Jac 50.1 3Jad 3.4 c=c H- CE C- CH3 2Jc, -10.4 3Jbe 4.7 a b cC H ~ - C= C- C H ~2Jat, -10.3 3Jac 4.3With acetylenes, the results of multipulse experiments (such as DEPT, INEPT,SEFT, or APT) to determine the number of protons attached to the carbon atomsmust be interpreted with care. As a consequence of the unusually large 13C-lHcoupling constants through one and two bonds, the sign of the signals may beopposite to the expected one.13c-13~ Coupling Constants ( 1 1 ~ in HZ) ~ ~ 1 a b c Jab 190.3H-CEC-H lJCc 171.5 H-CSC-C=C-H 153.44.3.3References[l] W. Hobold, R. Radeglia, D. Klose, Inkrementen-Berechnung von 13C- chemischen Verschiebungen in n-Alkinen, J. Prakt. Chem. 1976,318,519.[2] K. Hayamizu, 0. Yamamoto, 13C,lH Spin coupling constants of dimethylacetylene, Org. Magn. Reson. 1980, 13, 460.
  • 100. 90 4 NMR 4.4 Alicyclics 4.4.1 Chemical Shifts Saturated Monocyclic Alicyclics (6 in ppm relative to TMS)0 v -2.8 0 27.1 n 9 10 b 26.0 25.1 0 22.9 0 28.8 11 12 13 26.3 23.8 26.2 25.2 0 25.6 0 26.8 20 30 40 72 27.0 28.0 29.3 29.4 29.7 I3C Chemical Shifts of Monosubstituted Cyclopropanes (6 in ppm relative to TMS) [ 11 h Substituent X a b other -H -2.8 -2.8 C -CH3 4.9 5.6 CH3 19.4 -CH2CH3 12.8 4.1 CH2 27.8, CH3 13.6 -CH2CH2CH2CH3 10.9 4.4 1-CH2 34.7, 2-CH2 32.0 -C(CH3)3 22.7 0.3 C 29.3, CH3 28.2 -CH2C1 13.6 5.5 CH2 50.3 -CH20H 12.7 2.2 CH2 66.5 -CH=CH2 14.7 6.6 CH 142.4, CH2 111.5 -phenyl 15.3 9.2 C 143.9, CH 125.3-128.2 H -c1 27.3 8.9 a -Br 14.2 9.1 1 -I -20.1 10.4 0 -OH 45.7 6.8 N -NH2 24.0 7.4 -NO2 54.3 11.7 -CN -4.5 6.2 CN 121.5 0 -CHO 22.7 7.4 co 202.1 II -COCH3 20.1 9.6 CO 207.3, CH3 29.1 C -COOH 12.7 8.9 CO 181.6 / -COOCHg 12.2 7.7 CO 174.7, CH3 51.1
  • 101. 4.4 Alicyclics 9113C Chemical Shifts of Monosubstituted Cyclopentanes( 6 in ppm relative to TMS) [2] bSubstituent X a b c other -H 25.5 25.5 25.5 C -CH3 34.8 34.8 25.4 CH3 21.4 -CH2CH3 42.3 32.6 25.4 CH2 29.2, CH3 13.2 -CH(CH3)2 -C(CH3)3 -CH20H 47.4 50.3 41.2 30.0 26.5 28.3 24.7 25.1 24.5 CH 33.9, CH3 21.7 C 32.5, CH3 27.6 CH2 67.0 0 H -F 95.5 32.8 22.5 lJCF 173.5, 2JCF 22.1, 3JCF ~ 1 . 5 a -C1 61.8 37.5 23.3 1 -Br 53.1 38.4 23.7 -I 28.7 40.7 24.9 0 -OH 72.5 34.5 22.7 -0CH3 82.2 31.4 23.1 CH3 56.0 -0COCH3 77.7 33.8 24.9 CO 170.8, CH3 21.7 N -NH2 52.5 35.5 23.0 -NO2 87.0 32.6 24.8 -CN 27.0 30.5 24.2 CN 123.4 S -SH 38.3 37.7 24.6 -COOH 43.0 29.2 25.1 CO 183.8
  • 102. 92 4 13C NMR C Chemical Shifts of Equatorially and Axially Monosubstituted Cyclohexanes ( 6 in ppm relative to TMS) d W X d px Ja Substituent X a b c d a b c d -H 27.1 27.1 27.1 27.1 27.1 27.1 27.1 27.1 C -CH3 33.2 36.0 27.1 27.0 28.4 32.4 20.6 26.9 -CH2CH3 40.1 33.4 26.9 27.2 35.5 30.0 21.4 27.10 -CH2CH2CH3 -CH(CH3)2 -CHZCH~CH~CH~ 40.0 44.6 38.4 33.6 30.0 34.1 26.6 26.8 27.1 26.9 27.3 27.3 41.1 30.2 21.6 27.1 -C(CH3)3 48.8 28.1 27.7 27.1 -cyclohexyl 44.3 30.8 27.4 27.4 -CH=CH2 42.1 32.3 26.0 27.1 37.0 30.0 21.2 27.1 -C=CH 28.7 32.1 25.2 24.4 28.0 30.0 21.2 25.7 -phenyl 45.1 34.9 27.4 26.7 H -F 91.0 32.8 23.6 25.3 88.1 30.1 19.8 25.0 a -C1 59.8 37.4 26.1 25.4 60.1 33.9 20.4 26.0 1 -Br 52.4 38.3 27.3 25.6 55.4 34.9 21.5 26.4 -I 31.2 40.1 28.3 25.4 38.3 36.0 22.8 26.1 0 -OH 70.4 35.8 25.1 26.3 65.5 33.2 20.5 27.1 4CH3 79.2 32.2 24.5 26.4 74.9 30.0 21.1 26.6 -0COCH3 72.3 32.2 24.4 26.1 -OCO-phenyl 72.8 31.5 24.1 24.7 69.0 29.3 20.3 24.7 -OSi(CH3)3 70.5 36.0 24.7 25.0 66.1 33.1 19.8 25.0 N -NH2 51.1 37.6 25.8 26.3 47.4 33.8 20.0 27.1 -NHCH3 58.7 32.7 25.7 26.8 -N(CH3)2 64.3 29.2 26.5 26.9 -NH3+C1- 51.8 32.2 24.8 25.2 -N=C=N-cyclohexyl 55.7 35.0 24.8 25.5 -NO2 84.6 31.4 24.7 25.5 -N3 59.5 31.5 24.5 24.5 56.8 29.0 20.1 25.2 -CN 28.0 29.6 24.6 25.1 26.4 27.4 21.9 25.0 -NC 51.9 33.7 24.4 25.2 50.3 30.5 20.1 25.2 -NCS 55.3 33.9 24.5 24.8 50.3 30.5 20.1 25.2 S -SH 38.3 38.1 26.6 25.3 35.9 33.1 19.4 25.7 0 -CHO 50.1 26.0 25.2 26.1 46.4 24.7 22.7 -27.1 11 -COCH3 51.5 29.0 26.6 26.3 C -COOH 43.7 29.6 26.2 26.6 / -coo- 47.2 30.9 26.9 26.9 -COOCHqL 43.4 29.6 26.0 26.4 39.1 27.7 24.1 26.7 -coc1 55.4 29.7 25.5 25.9
  • 103. 4.4 Alicyclics 93Estimation of 13C Chemical Shifts of Alicyclic Compounds(in pprn relative to TMS)The chemical shift of the parent compound (e.g., 22.9 for cyclobutane, 25.6 forcyclopentane, and 27.1 ppm for cyclohexane) and the same increments as foralkanes (see Chapter 4.1) can be used to estimate the chemical shifts of sp3-hybridized carbon atoms of alicyclic compounds. Appropriate use of theconformational correction terms, K (page 79), is especially important with axialand equatorial substituents in cyclohexanes. The additivity rule is, however, notsuitable for estimating chemical shifts of substituted cyclopropanes.l 3C Chemical Shifts of Unsaturated Alicyclics( 6 in ppm relative to TMS) 0 41.6 ,K1 0 0 124.9 134.3 152.6 123.4 23.0 127.4 25.4 26.0 124.5 022.3 126.1 124.60f.i0 134.1 129.8 123.3 e!::: 29.8 28.80 130.2 25.7 26.4 29.5 28.7 cis trans cis, cis
  • 104. 94 4 13C NMR13C Chemical Shifts of Condensed Alicyclics( 6 in ppm relative to TMS)2 027A 2 16.7 . 0 5.8 21.5 @ 22.9 B 3 3 .24.6 3 H 28.0Ff 39.9 32.4 47.3 2 3 . 8 m e22.69 27.1 @la7 22.1 - H H 43.3 a 2 936.8 . 429.7 5 44.0 f l 7 . 1 fI H H 42.6 32.7 37.6 22.0 27.5 9.9 48.8 75.2 & :43.2 b z 6 . 7 143.5 143.9 136.8 123*6 1 39.1 125.5 J 29.5 124‘5 133.8 1 2 9 , o m 23.6 126.1 120.9 132*1 144.7
  • 105. 4.4 Alicyclics 954.4.2Coupling Constants1 3 C - l H Coupling ConstantsCoupling through one bond (1 J C H ~in H z )A 160 0 134 0 128 0 125Coupling through two bonds (I2Jc~I in Hz) 0A 2.6 03.5 0 3.0 0 3.7Coupling through three bonds (l3Jc~1 H z ) in H 2.1 M H 8.1 b c A ~JCC12.4 [>-CH3 lJab 13.4 Jbc 44.0 0 J c c 32.74.4.3References[I] N.C. ~ 0 1 A.D.H. Clague, 13c NMR Spectroscopy of cyclopropane , derivatives, Org. Magn. Reson. 1981,16, 187.[2] H.-J. Schneider, N. Nguyen-Ba, F. Thomas, Force field and 13C NMR investigations of substituted cyclopentanes. A concept for the adaption of 3C NMR shifts to varying torsional arrangements in flexible conformers, Tetrahedron 1982,38, 2327.
  • 106. 96 4 13C NMR4.5Aromatic Hydrocarbons4.5.1Chemical Shiftsz3C Chemical Shifts in Aromatic Hydrocarbons(6 in ppm relative to TMS) [ 11 133.7 131.8 128.0 126.2 + 128.1 125.3 / 125.5 135.2 126.3 124.6 130.1 123.9 124.6 137.4 143.9 143.5 141.6 119.7 125.9 J 124.2@3 5 :. 1 2 4 . i 2 8 133.8 126.1 120.9 1 132.1 143.2 144.7 136.8 137.3 29.2 134.7 125.5 J 29.5 1 2 9 . 0 0 3 23*6 128.0 37.7 128.0 -/- 137.3 123.9 127.5 @i;9,5 / 128.2 132.1 122.7 & 128’7 129.7 128.4 1 7.4 127.9 i4.3
  • 107. 4.5 Aromatics 97Effect of Substituents on 13C Chemical Shifts ofMonosubstituted Benzenes (in ppm relative to TMS) Substituent X Zl z2 z3 z4 -H 0.0 0.0 0.0 0.0C -CH3 9.2 0.7 -0.1 -3.0 -CH2CH3 11.7 -0.6 -0.1 -2.8 -CH2CH2CH3 10.3 -0.2 0.1 -2.7 -CH(CH3)2 20.2 -2.2 -0.3 -2.8 - C H ~ C H ~ C H Z C H ~ 10.9 -0.2 -0.2 -2.8 -C(CH3)3 18.6 -3.3 -0.4 -cyclopropyl 15.1 -3.3 -0.6 -3.6 -cyclopentyl 17.8 -1.5 -0.4 -2.9 -cyclohexyl 16.3 -1.8 -0.3 -2.8 -1-adamantyl 22.2 -2.9 -0.5 -3.1 -CH2F 8.5 -0.7 0.4 0.5 -CF3 2.5 -3.2 0.3 3.3 -CH2C1 9.3 0.3 0.2 0.0 -CHCl2 11.9 -2.4 0.1 1.2 -CC13 16.3 -1.7 -0.1 1.8 -CH2Br 9.5 0.7 0.3 0.2 -CH2I 10.5 0.0 0.0 -0.9 -CH,OH 12.4 -1.2 0.2 -1.1 -CH20CH3 8.7 -0.9 -0.1 -0.9 -CH2NH2 14.9 -1.4 -0.2 -2.0 -CH2NHCH3 12.6 -0.3 -0.3 -1.8 -CH2N(CH3)2 7.8 0.5 -0.3 -1.5 -CH2N02 2.2 2.2 2.2 1.2 -CH2CN 1.6 0.5 -0.8 -0.7 -CH2SH 12.5 -0.6 0.0 -1.6 -CH2SCH3 9.8 0.4 -0.1 -1.6 -CH2S (O)CH3 0.8 1.5 0.4 -0.2 -CH2S02CH3 -0.1 2.1 0.6 0.6 -CH2CHO 7.4 1.3 0.5 -1.1 -CH2COCH3 5.8 0.8 0.1 -1.6 -CH$OOH 6.5 1.4 0.4 -1.2 -CH2Li 32.2 -22.0 -0.4 -24.3 -CH=CH2 8.9 -2.3 -0.1 -0.8 -C(CH+CH2 12.6 -3.1 -0.4 -1.2 -C=CH -6.2 3.6 -0.4 -0.3 -phenyl 8.1 -1.1 0.5 -1.1 -2-pyridyl 11.2 -1.4 0.5 -1.4 4pyridyl 9.6 -1.6 0.5 0.5
  • 108. 90 4 I3C NMR Substituent X Z1 z2 z3 z4 H -F 33.6 -13.0 1.6 -4.4 a -C1 5.3 0.4 1.4 -1.9 1 -Br -5.4 3.3 2.2 -1.0 -I -3 1.2 8.9 1.6 -1.1 0 -OH 28.8 -12.8 1.4 -7.4 -ONa 39.6 -8.2 1.9 -13.6 -OCH3 33.5 -14.4 1.o -7.7 -OCH=CH2 28.2 -11.5 0.7 -5.8 -0-phenyl 27.6 -11.2 -0.3 -6.9 -0COCH3 22.4 -7.1 0.4 -3.2 -OSi(CH3)3 26.8 -8.4 0.9 -7.1 -OPO(O-phenyl)2 21.9 -8.4 1.2 -3.0 -OCN 25.0 -12.7 2.6 -1.00 -NHCH3 " 2 - -N(CH3)2 -"-phenyl 18.2 15.0 16.0 14.7 -13.4 -16.2 -15.4 -10.6 0.8 0.8 0.9 0.9 -10.0 -11.6 -10.5 -10.5 -N(PhenYl)2 13.1 -7.0 0.9 -5.6 -NH3+ 0.1 -5.8 2.2 2.2 -NH2+CH(CH3)2 5.5 -4.1 1.1 0.7 -N+(CH3)3 19.5 -7.3 2.5 2.4 -N(O)(CH3)2 26.2 -8.4 0.8 0.6 -NHCOCH3 9.7 -8.1 0.2 -4.4 -O "H 21.5 -13.1 -2.2 -5.3 -NHNH2 22.8 -16.5 0.5 -9.6 -N(NO)CH3 13.7 -9.4 0.9 -1.3 -N=CH-pheny 1 24.7 -6.5 1.3 -1.5 -N=NCH3 22.2 -6.2 0.5 -3.0 -NO 37.4 -7.6 0.8 7.1 -NO2 19.9 -4.9 0.9 6.1 -CN -16.0 3.5 0.7 4.3 -NC -1.8 -2.2 1.4 0.9 -NCO 5.1 -3.7 1.1 -2.8 -NCS 3 .O -2.7 1.3 -1.0 -N+=N - 12.7 6.0 5.7 16.0 S -SH 4.0 0.7 0.3 -3.2 -SCH3 10.0 -1.9 0.2 -3.6 -SC(CH3)3 4.5 9.0 -0.3 0.0 -S(CH3)2+ -1.0 3.1 2.2 6.3 -SCH=CH2 5.8 2.0 0.2 -1.8 -S-phenyl 7.3 2.5 0.6 -1.5 -S-S-pheny 1 7.5 -1.3 0.8 -1.1 -S(O)CH3 17.6 -5.0 1.1 2.4 -S02CH3 12.3 -1.4 0.8 5.1 -S020H 15.0 -2.2 1.3 3.8 -S020CH3 6.4 -0.6 1.5 5.9 -S02F 4.6 0.0 1.5 7.5
  • 109. 4.5 Aromatics 99 Substituent X Z1 22 23 z4 -s02c1 15.6 -1.7 1.2 6.8 -S02NH2 10.8 -3.0 0.3 3.2 -SCN -3.7 2.5 2.2 2.20 -CHO 8.2 1.2 0.5 5.8II -COCH3 8.9 0.1 -0.1 4.4C -COCF3 -5.6 1.8 0.7 6.7/ -COC+CH 7.4 1.o 0.0 5.9 -CO-pheny 1 9.3 1.6 -0.3 3.7 -COOH 2.1 1.6 -0.1 5.2 -COONa 9.7 4.6 2.2 4.6 -COOCH3 2.0 1.2 -0.1 4.3 -CONH2 5 .O -1.2 0.1 3.4 -CON(CH& 6.0 -1.5 -0.2 1.o -COF -coc1 -COSH 4.2 4.7 6.2 1.6 2.7 -0.6 -0.7 0.3 0.2 i:: 5.4 0 -CH=NCH3 8.8 0.5 0.1 2.3 -CS-phenyl 18.7 1.o -0.6 2.4 -CS-( l-piperidyl) 15.0 -3.1 -0.2 -0.2 -Li -43.2 -12.7 2.4 3.1 -MgBr -35.8 -11.4 2.7 4.0Si -SiH3 -0.5 7.3 -0.4 1.3 -SiH2CH3 4.8 6.3 -0.5 1.o -Si(CH3)3 11.6 4.9 -0.7 0.4 -Si(phenyl)3 5.8 7.9 -0.6 1.1 -Sic13 3.O 4.6 0.1 4.2 -Ge(CH3)3 13.7 4.5 -0.5 -0.2 -Sn(CH3)3 13.2 7.2 -0.4 -0.4 -Pb(CH3)3 20.1 8 .O -0.1 -1.0P -P(CH3)2 13.6 1.6 -0.6 -1.0 -P(phenyl)2 8.9 5.2 0.0 0.1 -Pf(phenyl)2CH3 -9.7 5.2 2.0 6.7 -PO(CH3)2 2.5 1.1 0.1 3.O -PO(-phenyl)2 5.8 3.9 -0.1 3.O -PO(OH)2 -1.9 3.6 1.5 5.6 -PO(OCH$H3)2 1.6 3.6 -0.2 3.4 -PS(CH3)2 6.7 2.0 0.2 2.9 -PS(OCH2CH3)2 6.1 2.8 -0.4 3.4 ASH^ 1.7 7.9 0.8 0.0 -As(phenyl)2 11.1 5.0 0.1 -0.1 -AsO(OH)2 3.8 1.6 0.8 4.5 -SeCH=CH2 0.7 4.7 0.4 -1.4 -SeCN -5.3 5.1 2.9 2.1 -Sb(~henyl)~ 9.8 7.7 0.3 0.0 -Hg-phenyl 41.6 9.3 -0.9 -1.6 -HCCl 22.5 8.0 -0.6 -0.9
  • 110. 100 4 13C NMR Effect of Substituents in Position 1 on the 13C Chemical Shifts of Monosubstituted Naphthalenes (in ppm relative to TMS) for X: H 6c1= 128.0 6 c 2 = 125.9 6c9 = 133.6 Substituent X c-1 c-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10 C -CH3 6.0 0.5 0.6 -1.8 0.3 -0.7 -0.5 -4.1 -1.1 -0.2 -C(CH3)3 17.9 -2.8 -0.9 -0.6 1.6 -1.4 -1.4 -1.2 -1.6 2.2 -CHqBr 4.0 1.1 -0.9 1.3 0.5 -0.1 0.3 -4.6 -2.8 0.1 -CH;OH 8.2 -0.9 -0.6 0.1 0.5 -0.3 0.1 -4.5 -2.6 0.00 HF:3 ; a -c1 -1.3 -1.8 31.5 -16.1 0.1 3.9 0.2 -0.2 5.0 -3.8 -0.9 1.0 0.1 0.2 0.8 1.4 3.1 2.0 0.7 0.8 -3.4 1.0 -7.1 -9.3 -3.6 -2.8 -3.9 2.1 1.0 I -Br -5.4 3.6 -0.2 -0.5 -0.1 0.4 1.0 -1.3 -2.0 0.6 -I -28.4 12.3 1.7 1.7 1.4 1.6 2.6 4.4 1.3 1.3 0 -OH 23.5 -17.2 -0.1 -7.3 -0.4 0.5 0.3 -6.6 -9.3 1.0 -OCH3 27.3 -22.3 -0.2 -7.9 -0.7 0.3 -0.9 -6.1 -8.1 0.8 -0COCH3 18.6 -7.9 -0.6 -2.1 0.0 0.4 0.4 -6.9 -6.9 0.9 N -NH2 14.0 -16.5 0.3 -9.3 0.3 -0.3 -1.3 -7.3 -10.2 0.6 -N(CH3)2 23.7 -11.2 0.6 -4.6 1.0 0.4 -0.3 -3.2 -3.9 2.1 -NH3+ -3.8 -4.6 -0.9 3.4 1.4 2.1 2.8 -9.0 -7.4 1.2 -NO2 18.5 -2.1 -2.0 6.5 0.5 1.3 3.4 -5.1 -8.7 0.6 -CN -19.2 5.1 -2.4 3.8 -0.7 0.2 1.2 -4.5 -2.8 -2.2 0 -CHO 2.9 10.8 -1.4 6.7 0.2 0.6 2.7 -3.5 -3.6 -0.3 11 -COCH3 6.9 2.9 -1.7 4.9 0.3 0.4 2.0 -2.0 -3.5 0.2 C -COOH -1.5 3.6 -2.4 4.3 -0.6 -0.9 0.6 -3.2 -3.2 -0.8 / -COOCH3 -0.9 4.5 -1.2 5.4 0.7 0.5 1.9 -1.8 -1.9 0.5 -CON(CH,)2 6.8 -2.1 -0.8 0.9 0.4 0.4 1.0 0.1 -4.1 -0.2 -COCl 1.2 10.6 -0.5 9.3 1.9 2.1 4.5 -2.1 -2.1 1.0 -Si(CH?)? 9.8 5.1 -0.4 1.7 1.2 -0.8 -0.7 0.1 3.8 0.2
  • 111. 4.5 Aromatics 101Effect of Substituents in Position 2 on the 13C Chemical Shiftsof Monosubstituted Naphthalenes (in p p m relative to TMS) for X: H 6 c 1 = 128.0 6 c 2 = 125.9 6 c 9 = 133.6Substituent X C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10C -CH? -1.3 9.3 2.0 -0.8 -0.5 -1.1 -0.2 -0.6 -0.1 -2.0 -3.3 22.5 -3.0 -0.4 0.0 -0.7 -0.2 -0.6 0.4 -1.3 -1.7 9.0 1.9 -0.4 -0.5 0.7 0.3 0.6 -0.6 -0.7 -2.7 12.3 -4.4 -0.1 -0.4" -0.2* 0.1* -0.2" -0.3 -0.8H -Fa -C1 J -2.0 -17.0 -1.4 -4.2 1.1" 0.1" 2.4" 34.9 -9.6 2.4 0.0 -0.7 5.7 0.8 1.5 -0.2 0.2 1.5 1.1 1.1 1.1 -0.6 -1.1 -1.1 0.7 0.7 1.3 -3.0 -1.9 0 1 -Br 1.8 -6.2 3.1 1.5 -0.3 0.2 0.8 -1.1 -2.0 0.7 -I 9.2 -34.1 9.0 2.3 0.5 1.3 1.5 -0.6 2.1 -0.80 -OH -18.6 27.3 -8.3 1.8 -0.3 -2.4 0.5 -1.7 0.9 -4.7 -OCH3 -22.2 31.8 -7.1 1.5 -0.3 -2.2 0.5 -1.2 1.0 -4.3 -0COCH3 -9.5 22.5 -4.8 1.3 -0.4 -0.3 0.6 -0.4 0.1 -2.2N -NH2 -20.6 16.7 -8.9 -0.2 -1.6 -4.8 -0.9 -3.5 -0.1 -7.0 -N(CH3)2 -21.1 23.6 -8.8 1.2 0.0 -3.4 0.7 -1.1 2.4 -5.9 -NH3+ -5.9 -0.3 -6.5 3.2 0.2 2.3 2.0 0.2 0.1 -0.3 -NO2 -3.4 20.0 -6.7 1.7 0.1 4.0 2.2 2.1 -1.1 2.4 -CN 5.8 -16.7 0.1 1.0 -0.2 3.0 1.6 0.2 -1.6 0.70 -CHO 6.2 7.9 -3.6 0.8 -0.3 2.9 0.9 1.8 2.4 -1.4 11 -COCH3 1.9 8.3 -2.2 0.2 -0.4 2.3 0.7 1.4 1.8 -1.3C -COOH 2.7 2.4 -0.6 0.2 -0.3 2.4 0.9 1.3 -1.3 1.5/ -COOCH3 3.0 1.8 -0.5 0.2 -0.1 2.4 0.9 1.4 -1.0 1.9 -COCl 2.5 9.1 -0.7 0.2* -0.4 2.2* 0.8 1.2 -1.4 -Si(CH?)q 5.8 11.9 3.9 -1.0 0.1 0.3 -0.2 0.1 -0.5 0.2* assignment uncertain
  • 112. 102 4 13C NMREstimation of 13C Chemical Shifts of Multiply SubstitutedBenzenes and NaphthalenesThe 13Cchemical shifts of multiply substituted benzenes and naphthalenes can beestimated using the substituent effects in the corresponding monosubstitutedhydrocarbons.Example: Estimation of the chemical shifts for 3,5-dimethylnitrobenzene 128.5 4 P- " CH3 NO2 - C 2 base value 128.5 1. 99 Z2(N02) -4.9 2 Z3(CH3) -0.2 Z2(CH3) 07 . estimated 148.2 Z4(CH3) -3.0 exP 148.5 estimated 121.3 exP 121.7 -C 3 base value 128.5 - C 4 base value 128.5 Zi(CH3) 9.2 2 Z2(CH3) 14 . Z3(CH3) -0.1 Z4(N02) 6.1 Zg(NO2) 0.9 estimated 136.0 estimated 138.5 exP 136.2 exP 139.6Larger discrepancies between estimated and experimental values are to be expectedif the substituents are ortho to each other or if strongly electron-donating andelectron-accepting groups occur simultaneously.4.5.2Coupling Constants13C- H Coupling Constants (IJI in H z )
  • 113. 4.5 Aromatics 103 Jab 2Jac 3Jad 57.0 2.5 10.0 6;1 3 c . 1 3 ~Coupling Constants (IIJCCI in HZ) lJab 2Ja, 3Jad 44*2 3.1 3.8 d 4Ja, 0.9 e4.5.3References[l] P.E. Hansen, 13CNMR of polycyclic aromatic hydrocarbons. A review, Org. Magn. Reson. 1979,12, 109.
  • 114. 104 4 13C NMR4.6Heteroaromatic Compounds4.6.1Chemical Shifts13C Chemical Shifts of Hetetoaromatic Compounds(6 in ppm relative to TMS)150.60’?:841 0 H 136.2<q1?:233 N Te 133.37 104.7 157‘ P 7 1 2 3 . 4 133.3 N , 147.8 N S H N-N 147.4 n130.4 n143.3 4NJ147.9 1 4 7 . 4N N p K*.N I “,N H H H H 135.9 148.4 146.0 135.6 125.7 N H I- CH349.8 CTOH t. 0 in ethanol in DMSO
  • 115. 4.6 Heteroaromatics 105Effect of Substituents on the 13C Chemical Shifts of Mono-substituted Pyridines (in ppm relative to TMS) 6c-2 = 149.8 + Zi,2 6c-3 = 123.7 + Zi,3 6 ~ -= 4 135.9 + Zi,4 6c-5 = 123.7 + Zi,5 N 6C-6 = 149.8 + zi,6Substituent in ‘22 = ‘66 ‘23 = ‘65 ‘24 = ‘64 ‘ 5 = ‘63 2 ‘26 = ‘62Dosition 2 or 6 -H 0.0 0.0 0.0 0.0 0.0 C -CH3 8.6 -0.5 0.3 -3.0 -0.7 -CH2CH3 13.7 -1.7 0.4 -2.8 -0.6 -CH=CH2 5.9 -1.3 1.1 -2.5 -0.3 -phenyl - 7.7 -1.6 0.8 -3.2 0.2H -r 13.9a -C11 -Br 1.8 -7.5 -14.0 0.8 4.6 5.4 2.8 2.6 -2.5 -1.4 -1.1 -2 Q 0.5 -I -3 1.6 11.3 1.7 -0.8 1.o0 -OH 15.5 -3.6 -1.1 -17.0 -8.2 -OCH3 14.3 -12.7 2.6 -7.1 -2.9 -&phenyl 13.9 -12.2 3.5 -5.3 -2.0 -0COCH3 7.6 -7.3 3.4 -1.8 -1.6N -NH2 8.4 -15.1 1.8 -9.7 -1.6 -NHCH3 10.9 -16.2 1.5 -11.3 -1.3 -N(CH3)2 9.6 -17.9 1.2 -12.3 -1.9 -NHCOCH3 1.4 -9.8 2.6 -3.9 -2.1 -NO2 6.9 -5.7 3.9 5.4 -0.8 -CN -15.8 4.8 1.1 3.2 1.4 S -SH 30.4 10.7 2.1 -10.6 .12.1 -SCH3 10.2 -4.6 0.0 -2.2 -0.5 -S(=O)CH3 16.2 -4.4 2.2 0.9 -0.2 -S(=0)2CH3 8.5 -2.6 2.4 3.7 0.30 -CHO 3.0 -2.0 1.2 4.2 0.4 11 -COCH3 3.8 -2.1 0.9 3.4 -0.8C -COOH -3.7 0.0 2.5 4.2 -1.7/ -COOCH3 -1.7 1.5 1.1 3.3 0.0 -CONH2 -0.3 -1.2 1.4 2.8 -1.5 -Si(CH3)3 18.6 5 .O -2.0 -1.1 0.3 -Sn(CH3)3 23.3 7.6 -2.7 -1.7 0.6 -Pb(CH3)3 33.4 9.2 -2.6 -2.3 1.1
  • 116. 106 4 13C NMR Substituent in z32 = z56 33 = 5 5 34 = z54 35 = 53 36 = 52 position 3 or 5 -H 0.0 0.0 0.0 0.0 0.0 C -CH3 1.3 8.9 0.0 -0.9 -2.3 -CH2CH3 -0.4 15.4 -0.8 -0.5 -2.7 -phenyl -1.4 12.8 -1.8 -0.3 -1.3 H -F -11.5 36.1 -13.2 0.8 -3.9 a -C1 -0.3 8.1 -0.4 0.6 -1.4 1 -Br 2.1 -2.7 2.7 1.1 -0.9 -I 7.1 -28.5 8.9 2.3 0.3 0 -OH -10.7 31.3 -12.4 1.2 -8.6 -OCH3 -12.5 31.5 -15.9 0.1 -8.4 -0COCH3 -6.5 23.4 -7.0 -0.1 -3.2 N -NH2 -11.9 21.4 -14.4 0.8 -10.8 -NHCH3 -13.6 23.1 -18.2 0.6 -11.9 -N(CH3)2 -14.0 23.3 -17.1 0.1 -11.6 -CN 3.6 -13.8 4.2 0.5 4.2 S -SH -12.8 26.1 -11.3 7.3 -2.80 -SCH3 0 -CHO 11 -COCH3 C -COOH -13.6 2.4 3.5 -6.4 24.6 7.8 8.5 13.0 -11.7 -0.2 -0.7 11.1 10.6 0.5 -0.2 4.3 -3.0 5.4 0.0 -6.0 / -COOCH3 -0.6 1.o -0.5 -1.8 1.8 -CONH2 2.7 5.9 1.1 1.2 -1.5 -Si(CH3)3 2.7 9.1 3.0 -2.3 -1.2 -Ge(CH3)3 3.9 12.8 4.2 -0.4 -0.1 -Sn(CH3)3 5.9 13.0 7.1 0.1 -0.3 -Sr~(n-CqHg)~ 6.6 12.6 7.7 0.0 -0.4 -Pb(n-CqHg)3 7.1 21.7 8.5 0.9 -1.8
  • 117. 4.6 Heteraaromatics 107Substituent in z42 = z46 z43 = z45 z44position 4 -H 0.0 0.0 0.0 C -CH3 0.5 0.7 10.6 -CH2CH3 -0.1 -0.5 16.8 -CH(CH3)2 0.4 -1.9 21.2 -C(CH3)3 0.9 -2.6 23.9 -CH=CH2 0.3 -3.0 8.4 -phenyl 0.4 -2.2 12.2 H -F 2.7 -11.9 32.8 a -Br 3.0 3.3 -3.2 1 -I 0.2 9.1 -30.8 0 -OCH3 0.9 -13.9 29.0 -0COCH3 1.7 -6.7 23.9 N -NH2 0.7 -13.8 19.3 -NHCH3 0.5 -15.9 19.8 -N(CH3)2 0.6 -16.3 19.2 -CN 2.1 2.1 -15.9 S -SH -16.9 5.9 54.3 -SCH3 0.1 -3.3 14.6 0 -CHO 1.7 -0.7 5.3 11 -COCH3 1.6 -2.7 6.6 C -COOCH3 1.o -0.8 1.4 / -CONH2 0.4 -0.9 6.2 -Si(CH3)3 -2.8 2.4 11.9 -Ge(CH3)3 -1.1 4.4 16.8 -Sn(CH3)3 -1.1 7.3 16.2 -Pb(CH3)3 -0.5 9.1 24.6
  • 118. 108 4 13C NMR Estimation of 13C Chemical Shifts of Multiply Substituted Pyridines The 13C chemical shifts in multiply substituted pyridines can be estimated using the substituent effects in the monosubstituted parent compound. Example: Estimation of the chemical shifts for 2-amino-5-methylpyridine - C 2 base value 149.8 - C 3 base value 123.7 8.4 Z23("2) -15.1 -2.3 Z53(CH3) -0.9 estimated 155.9 estimated 107.7 156.9 exP 108.4:Y - C 4 base value 135.9 - C 5 base value 123.7 1.8 Z25WH2) -9.7 0.0 Z55KH3) 8.9 estimated 137.7 estimated 122.9 eXP 138.6 exP 122.5 - C 6 base value 149.8 Z26("2) -1.6 Z56(CH3) 13 . estimated 149.5 exP 147.6 Larger discrepancies between estimated and experimental values are to be expected if the substituents are ortho to each other and if strongly electron-donating and -accepting groups occur simultaneously. Also, tautomerization and zwitterion formation have large effects on 13C chemical shifts.
  • 119. 4.6 Heteroaromatics 10913C Chemical Shifts of Condensed Heteroaromatic Rings(6 in ppm relative to TMS) 120.5 177*6102.1 123.8 ;39*8124.0 .06.9 145.0 121.7 a i 2 4 . 1 1196 124.4 3 1 2 4 w 1 2 6 . 4 111e8 155.5 111.0 1 H 122.6 139.9 135.5 120.5 140.1254@5 122*9&5124.4 0 152.6 150.0 115.4 1379 122.9 115.4 t N €4 141.5 L 25.1 125.8" *qy> 122.1* 152.6 S 122.7* 133.2 155.5 137.9 124.3 y2*2147.1 122.8 130.6m 23 O , N 109.9 162.7 139.9 122.1 134.5 i24.1@,?~ 128.6 <N 114*7 l"k6.1 121A 161.5 111.2 144.4 121.6 155*2 129.0 1 2 7 . 2 s-3 2 0110.5 125.6 133.4 1 7 . i w 9 .114.1 5 ll3so 156w 142.1 133.1 120.7 129*0 { H 148.9 100.5 125.5 154.9* assignment uncertain
  • 120. 110 4 13C NMR 128.0 135.5 126.9 127.6 J. 135.7 126.2 J. 120.2 128.0 124.7 120.8 130.1 / 142.7 132.2 / 146.1 129.2 6 3 a i 5 ~ 1 ~ 7 . 0 a N 1 2 . 2 132.1 & N 129.5 t 129.2 t 127.3 t 152.2 148.1 128.5 151.0 a 125.2 127.4127.90::134.1 128.6 155.9 3160.7 t 129.4 142.8 129.6 J. N ] 144.8 133.1 126.7 126.7 J. 152.0 /N 150.103n aAn rn 124.2 120.6 f 111.6 156.2 122.6 / 127.0 122.6 120.0 H 1 118.4 / 125.4 110.8 139.6 134.9 121.9 f 122.9 138.5 124.6 / 127.0 142.7 126.6 116.8 120.0 0: & t 135.8 129.5 128.3 / 125.5 126.7* 121.3 / 125.6*a S 3 1 112.8 b . 0 t 130.3 149.1 113.8 131.8 141.7 142.2 144.0 119.9 130.9 127.4* 151.9* assignment uncertain
  • 121. 4.6 Heteroaromatics 1114.6.2Coupling Constants13C-lH Coupling Constants (IJI in H z )13C-13C Coupling Constants ((Jcclin Hz)
  • 122. 112 4 13C NMR 4.7 Halogen Compounds The additivity rules for estimating the 13C chemical shifts of various skeletons can be applied to those haloalkanes that do not have more than one halogen atom at a given carbon atom. In all other cases, the simple linear models fail but correction terms for non-additivity are available for halomethanes and derivatives (see [I, 21). 4.7.1 Fluoro Compounds Fluorine in nature occurs 100% as 19F, which exhibits a spin quantum number, I = 1/2. The signals of carbon atoms up to a distance of about four bonds are split by coupling to 19F. 13C Chemical Shifts and 19F-13C Coupling Constants of Fluoro Compounds (6 in ppm relative to TMS, IJI in H z ) 71.6 109.0 116.4 118.5 CH3F Jc, 161.9 CHzFz JCF 234.8 CHF3 JCF 274.3 CF4 JCF 259.2Hal 2 J 19.5 ~ ~ 2 J 22.4 ~ ~ 28.3 15.8 23.6 22.6 7;s /F A F 80.1 9.2 85.2 7 8 7 . 3 3 J c 6.7 JCF 163.3 ~ 4Jc~ 0 2J ~ ~ 1 8 . 3 = 116.2 2 J 24.8 ~ ~ CF3-CF, 14.1 31.9 29.3 30.6 88.5 F- JCF 271 k F 22.7 29.3 25.3 84.2 147.7 2 J 48.1 ~ ~ 3 J c 6.2 JCF 164.8 ~ JCF 267.2 JCF 177 JCF239 lJCF 283.2 78.9 108.1 115.0 CH2FYE.5 cHF2KE2 C F 3 ~ z . 0 O 2~cF22 Jc~28 2J,, 43.6
  • 123. 4.7 Halogen Compounds 1136 91.0; JCF 171 32.8; 2 J ~ 22 25.3; 4 J c ~ 0 p 23.6; 3 J c 5~ 8 163.3; JCF 245.1 115.5; 2 J c 21.0 ~ 130.1; 3 J c7.8 124.1; 4 J c ~ 3.2 ~ 6 C H 84.9; JcF 166 ~ ~ 1 3 7 . 02JcF 17 ; 127.8; 3 J ~6 129.0; 5 J c 3 ~ F 1 128.9; 4 J c ~ - 168.7; J,, 111.8; 2 J ~ F 261.8 16.1 152.5; 3 J c 6.4 ~ N 122.7; 2JcF 17.7 141.3; 3 J c 7.5 ~ 121.2; 4 J c 4 . 2 m . 7 ; 2 J 37.6 ~ ~ ~1245: 3JcF43 @ ; : 8 . JCF 255.1 147.8; 3 J c 14.9 N ~ 145.9: 4 ,, J __ 3.7 N 138.3; 2 J 22.5 ~ ~ t F 163.7; ,, J 236.3 HalEstimation of 13C Chemical Shifts of Linear Perfluoroalkanes( 6 in ppm relative to TMS) [3] 6 = 124.8 + CZi i Increments Zi for the CF2- or CF3-substituent in position: a P Y -8.6 1.8 0.5Example: Estimation of the chemical shifts in perfluorobutane ,CF2 ,CF3 F3C CF2CF3 base value 124.8 CF base value 124.8 1aCF2 -8.6 1aCF3 -8.6 1 P CF2 1.8 1a C F 2 -8.6 1 YCF3 0.5 1 P CF3 1.8 estimated 118.5 estimated 109.4 exP 118.5 eXP 109.3
  • 124. 114 4 13C NMR 4.7.2 Chloro Compounds I3C Chemical Shifts of Chloro Compounds ( 6 i n ppm relative to T M S ) 25.6 54.0 77.2 96.1 CH3C1 CHZClZ CHC13 cc14 18.9 26.3 27.3 34.6 V C l m C 1 39.9 11.6 46.8 7 2 7 31.6 51.7 46.3 105.3 c1 a-cl 96.2 Y1 c E 1 CCly-CC13 117.2 c1 c1 c1 119.9 +Cl 113.3 127.1 w118.1 c &Cl 1 126.1 c1Hal c1 c1 c1 c 1 =( 1 117.6 c 125.1 >=( 121.3 c1 c1 40.7 63.7 88.9 CC13 OH C 217 HC’. f E 0 cHc12YE.4 y167.0 0 0 F 59.8 L 0;;:; 25.4 126.6 128.5 129.7 135.5 __ 138.7 124.3 n : ! 8 122.3 m . 5 128.4 148.4 N 149.5 149.8 N t cl 130.3 151.6
  • 125. 4.7 Halogen Compounds 1154.7.3Bromo Compounds13C Chemical Shifts of Bromo Compounds ( 6 in ppm relative to TMS)9.6 21.4 12.1 -28.7CH3Br CH2Br2 CHBr3 CBr419.4 36.4 Br 27.6 13.0 35.6 Y E 131.8 32.4 49.4 53.4 CBr3--CBI~ Br-Br 31Y F r 5 X Br. 1 Br122.4 Br Br. Br 109.4 +Br 127.2 =( 97.0 w 114.7 Br 116.4 Hal 25.9 31.3 ". 50 "k"g;.7112.4 B~ Br Br 0 0 128.7 Br 138.5 122.6 m8 3 . 150.3 N t Br 142.3
  • 126. 116 4 13C NMR 4.7.4 lodo Compounds I3C Chemical Shifts of Zodo Compounds ( 6 in ppm relative to TMS) -24.0 -54.0 -139.9 -292.5 CH3I (33212 CHI3 CI4 20.6 27.0 31.2 40.4 -1 -1.6 -1 15.3 9.1 y i . 9 Xi.0 3.O 130.3 I I 79.4 I- 1 -1 85.2 u 96.5 1 1 -I. mi & J d31.2 40.1 28.3 I 130.1 @j 25.4 127.4 127.6 I 144.8 126*o0 / 6 5 . 2 150.1 N ‘ 156.9 - 122.9 150.8 mO . : 137.6 N t 118.2 4.7.5 References [l] G.R. Somayajulu, J.R. Kennedy, T.M. Vickrey, B.J. Zwolinski, Carbon-13 chemical shifts for 70 halomethanes, J. Magn. Reson. 1979,33, 559. [2] A. Furst, W. Robien, E. Pretsch, A comprehensive parameter set for the prediction of the 13C NMR chemical shifts of spjl-hybridized carbon atoms in organic compounds, Anal. Chim. Acta 1990,233, 213. [3] D.W. Ovenall, J.J. Chang, Carbon-13 NMR of fluorinated compounds using wide-band fluorine decoupling, J. Magn. Reson. 1977,25, 361.
  • 127. 4.8 Alcohols, Ethers, and Related Compounds 1174.8Alcohols, Ethers, and Related Compounds4.8.1Alcohols13C Chemical Shifts of Aliphatic Alcohols ( 6 in ppm relative to TMS)50.2 18.2 25.9 25.3CH30H /OH //OH 57.8 10.3 64.215.2 36.0 31.2 23.8 33.6 -H O 20.3 62.9 YE O -H 15.3 29.4 63.2 26.2 73.314.2 31.9 32.9 14.3 39.4 30.5 OH - 23.0 25.8 62.1 1 4 s 6 7 . 2 23.2 39.2 23.5 7 19.2 OH 72.2 10.113C Chemical Shifts of Aliphatic Glycols and Polyols 0(6 in ppm relative to TMS)HOWOH HO//OH 36.4 68.2 ‘3 7 2 OH 7 b . x ~ ~ ~ 63.4 60.2 18.7 ‘ 23.0 , 67.7 ’ 71.6 , a in CDCl,, in D,OH 73.7 ........... HO 48.3 64*3 76.1 72.9 74.3 74.5 66.0H O Y d ! ? H 91.2 H Y % . 3 OH OH
  • 128. 118 4 13C NMR 13C Chemical Shifts of Alcohols ( 6 in p p m relative to TMS) 125.1 99.1 63.4 OH CF3-0H CC13-0H _TOH 50.0 61.4 75.9 114.9 137.5 73.8 83.0 [Jlc~ HZ 278 *1J1,, 35 Hz OH QH 8ti.8 25.1 26.3 121.1 108.5 13C Chemical Shifts of Enols ( 6 in ppm relative to TMS) -pH 1 9 0 . a 9 0 . 5 J&Ol.l 88.0 149.0 56.6 28.5 22.5 99.0 22.50 32.8 31.0 46.2 1 28.3 46.2 A :::; 103.3 0UFa6 57.3
  • 129. 4.8 Alcohols, Ethers, and Related Compounds 1194.8.2Ethers13C Chemical Shifts of Ethers ( 6 i n p p m relative to TMS) 60.9 57.6 67.7 59.1 74.5 10.5 / 54.9 k . 6 0 0- - 0 23.2 ‘ 0 14.7 21.459.1 73.4 20.5 O W 9 ‘- 0 49<0# 27.0 72.3 58.4 32.9 15.0 72.752.5 152.7 57.4 73.1 116.4 14.2 - 0 ‘0- 84.4 134.4 / 55.1 1 5 9 6 114.1 54’8 129.5 26.4 120.8 128.2 0 121.613C Chemical Shifts of Cyclic Ethers ( 6 in p p m relative to TMS)145.6 98.4 0 68.6 28.5 1 4 4 . 1 0 6: 99.4 4: 0 II 141.1 101.1 19.4
  • 130. 120 4 13C NMR I3C Chemical Shifts of Acetals, Ketals and Ortho Esters (6 in ppm relative to TMS) 109.9 <0- 53.7 99.9 95.0 u64.5 OAo 108.8 147*8 121.8 O-I.,100.7 ‘ 0 94.8 ono u ono 27.5 67.5 Lo, 93.7 115.0 112.9 15.2 121.0 -0 10 -0 53: 50.40
  • 131. 4.9 Nitrogen Compounds 1214.9Nitrogen Compounds4.9.1Amines13C Chemical Shifts of Amines ( 6 in ppm relative to TMS) as well as hydrochloride -Shifts Induced by Protonation (in parentheses: 6aamineSamine,measured in D20)The protonation of amines causes a shielding of the carbon atoms in the vicinityof the nitrogen. This shielding amounts to -2 ppm for an a-carbon atom, -3 to -4for a P-carbon, and -0.5 to -1 .O ppm for a y-carbon. The most frequent exceptionsoccur in branched systems: Tertiary and quaternary carbon atoms in the a-positionare generally deshielded by protonation of the nitrogen (A6 = +OS to + 9 ppm)PI.28.3 38.2 47.6 56.5(-1.8) (-2.0) (-1.2) N ;( ICH3-NH2 / " P- " 2 7 7 / 54.4 9.519.0(-5.0) 36.9 1" (-0.2) 15.7 44.5 (-3.2) (-0.6) 27.4 (-5.4) 2 " 24.0 LNH11.5 44.6(-0.4) (-1.8) (2??52.4 1210 (-1.4) 12.0 10.9 (-0.5)26.5 32.9(-4.9) (-4.7) %? 4 (+5.7)
  • 132. 122 4 13C NMR 14.3 23.2 22.5 28.2 (-2.6) H (-2.9) H (-3.1) H (-1.2) H N r c / N 45.9 35.2 12.5 54.0 36.1 50.5 " 3 3 . 9 y x"28.5 (-0.4) (-1.8) (-0.9) (-2.1) (-2.0) (+1*9) (-2.5) (-2.7) 50.4 (+6.6) 12.8 20.6 18.7 25.4 (-2.1) I (-2.0) I (-1.3) I (-0.8) 1 N f i K 53.6 44.6 11.9 61.8 45.2 55.5 " 4 0 . 9 y KNl8.7 (+0.5) (-1.3) (-0.8) (-1.6) (-1.2) (+3.8) (-0.8)53.6 (+0.2) (+8.9) 44.8 I"; - 113.6 139.9 *doubly protonated form *doubly protonated form 64.2 (-5.4) H O m N H 2 44.6 H 60.3 e, ,, , (-1.9)td HO 6 33.5 (-1.5) 41.1 (-0.7) 6 6 51.1 (+0.7) 37.6 (-5.4) 58.7 (+0.6) 64.3 (+2.4) 25.8 (-1.0) 32.7 (-2.7) 29.2 (-1.6) 26.3 (-1.1) 25.7 (-0.3) 26.5 (-0.9) 26.8 (-0.7) 26.9 (-1.2) 30.2 39.9 / NH N 118.5 129.3 (jZ3 @:.l 129.3 129.4 116.9 117.0
  • 133. 4.9 Nitrogen Compounds 123 128.3 117.9 126.5 129.4 118.0 122.913C Chemical Shifts of Cyclic Amines ( 6 in p p m relative to TMS) I 42.7 H 25.7 0 56.7 24.4 H 0:I C :::: : J 147.7 25.9 26.44.9.2Nitro and Nitroso Compounds13C Chemical Shifts of Nitro and Nitroso Compounds( 6 in ppm relative to TMS)61.2 12.3 21.2 20.8 13.3 29.6CH3N02 k N 0 2 b N 0 2 NO2 70.8 10.8 77.4 19.8 75.626.9 1 0 - 385.0 14.0 31.4 ~ 2 9 . 626.2 22.6 ~ 2 9 . 6 NO2 27.9 75.8 28.6 18.7
  • 134. 124 4 13C NMR 6 1 148.4 6 2 3 . / 129.4 25.5 134.6 135.5 4.9.3 Nitrosamines and Nitramines 13C Chemical Shifts of Nitrosamines ( 6 in ppm relative to TMS) 32.1 11.5 38.4 11.3 ? 7 //O I 9 . 2 //o 19.14 y ,/o 39.9 /-" 14.5 47.0 20.3 22.51 " 23.7 3 )N * / 54.2 51.1 11.8 13C Chemical Shifts of Nitramines ( 6 in ppm relative to TMS)N 4.9.4 Imines and Oximes 13C Chemical Shifts of Imines ( 6 in p p m relative to TMS) 22.6 29.3 29.7 163*4)=&r.6 17.8 128.6 129.0 137.3 129.8 130.2 137.4 122.0 129.8 130.8 - P E W 1 3 2 . 4 w E a 127.0 153.2
  • 135. 4.9 Nitrogen Compounds 12513C Chemical Shifts of Oximes ( 6 in p p m relative to TMS) 11.2 OH 15.0 OH /147.8)”p” 148*2/=N 155.4)=N/ H 15.0 21.7 19’6y13.6 151.9 -N /OH 2 0 . 31.5 ’ 13.9 7 OH ,OH 32.3 8 9 . 27.5 1 5 5 5 6 126.0 4 y .5 ,OH 26.3 26.1 / 128.5 24.6 129.14.9.5Hydrazones and Carbodiimides13C Chemical Shifts of Hydrazones ( 6 in pprn relative to TMS) 22.6 167.2 13a7 20.1 ydr.2 N / ’ 16e2 r46.513C Chemical Shifts of Carbodiimides ( 6 in pprn relative to TMS) 35.0 24.8 0 - p 25.5 ~ 55.7
  • 136. 126 4 I3C NMR4.9.6Nitriles and Isonitriles13C Chemical Shvts of Nitriles (6 in p p m relative to TMS)1.7 117.4 10.6 120e8 1 9 . y 119.9 19.9 123.7 CH3CN /CN mCN 10.8 13.3 19.3* * assignment uncertain13.2 21.9 19* 28.5 125.1 110.5 118.0 C -N NC-CN N m C N 16.8 27.4 8.6 14.6137.5 117.2 +CN 107.8 122.4 25.8 24.6 6::; 118.7 132.813C Chemical Shifts of Isonitriles(6 in ppm relative to TMS, IJI C,J in Hz)Because of the symmetrical electron distribution around the nitrogen atom, the13C-14N-coupling can be observed in the 13C NMR spectra of isonitriles:triplets with relative intensities of 1:1:1 (spin quantum number of 14N: I = 1,natural abundance 99.6%).2J 7.5 J 5.8 35= o J 5.3 3J= o J 5.0 165.7 J 5.2 626.8 158.2 15.3 156.8 120.6 165.7 CH3NC NC b N C 126.7 J 13.2 36.4 119.4 126.3 2J=0 2J 6.5 2J 11.7 129.9 3J = 0 129.4 4J=0
  • 137. 4.9 Nitrogen Compounds 1274.9.7Isocyanates, Thiocyanates and lsothiocyanates13C Chemical Shifts of Isocyanates ( 6 in pprn relative to TMS)26.3 121.5 13.6 34.2 125 (broad) 110.7 124*2 CH3NCO -NCO +NCO 20.4 43.3 124.713C Chemical Shifts of Thiocyanates and Zsothiocyanates(6 in ppm relative to TMS)15.4 111.8 133.3 29’3 128*7 13.3 32.3 131 (broad) SCN S CN- CH3NCS -NCS 28.7 20.0 45.04.9.8References[l] J.E. Sarneski, H.L. Surprenant, F.K. Molen, Ch.N. Reilley, Chemical shifts and protonation shifts in carbon- 13 nuclear magnetic resonance studies of aqueous amines, Anal. Chem. 1975,47, 2116. N
  • 138. 128 4 13C NMR 4.1 0 Sulfur-Containing Functional Groups 4.10.1 Thiols 13C Chemical Shifts of Thiols ( 6 in p p m relative to T M S ) 6.5 19.7 27.6 27.4 CH3SH V S H b S H 19.1 12.6 26.4 12.0 35.7 35.0 22.2 33.9 -H S 21.0 23.7 Y’’ - S H 14.0 30.6 24.6 28.1 38.8 14.0 31.4 34.1 H S W S H 1 64.2 W S H 28.7 HOwsH 22.6 28.1 24.7 27.3 25.9 28.8 126.8 6 130.6 129.2 / 128.8 125.3S 4.1 0.2 Sulfides 13C Chemical Shifts of Sulfides ( 6 i n pprn relative to TMS) 19.3 25.5 34.3 13.7 ‘S’ -S- -sv ,l,k.4 14.8 23.2 23.6 34.1 22.0 A s k 4 5 . 6 r s y . 9 -S- 31.4 13.7 33.2 32.6
  • 139. 4.1 0 Sulfur-Containing Functional Groups 12915.5 34.1 22.0 54.8 43.1 $- ‘9 31.4 13.7 30.4 25.4 132.3 141.8 772.6 81.4 -* s S e14.2 110.5 106.9 15.6 128.7 131.0 124.9 127.013C Chemical Shifts of Cyclic Sulfides ( 6 in p p m relative to TMS)A 18.7 528.0 26.0 <’> S 18.6 C=X_,.1 -/128.8 38.1 Q 34.4 S 26.9 ;;:; 26.6 29.8 c:, 29.1
  • 140. 130 4 13C NMR 4.10.3 Disulfides and Sulfonium Salts 13C Chemical Shifts of Disulfides and Sulfonium Salts ( 6 in ppm relative to TMS) 22.0 32.8 vs,s-. 13*0 127.4 14.5 / 127.2 129.3 27.5 -s+1- / 4.1 0.4 Sulfoxides and Sulfones 13C Chemical Shifts of Sulfoxides and Sulfones ( 6 in ppm relative to TMS) / i? 0 40.1 8 25.4 54.3 1> 4& 123.5 43*9 129.6 130.9 42.6 39.3 48.2 40.3 56.3 13.0s / //Y + - A 0 0 dq$-, 6.7 0 0 16.3 37.1 k 3 . 5 0% 4 0 15.2 34.2 x57*6 0 0 22.7 0% 133.2 141.6
  • 141. 4.10 Sulfur-Containing Functional Groups 1314.1 0.5Sulfonic and Sulfinic Acids and Derivatives13C Chemical Shifts of Sulfonic and Sulfinic Acids andDerivatives (8in pprn relative to TMS)39.6 8.0 18.8 16.8 25.0CH3S03H b S 0 3 H m S 0 3 H 46.7 13.7 53.752.6 9.1 18.4 17.1 24.5CH3S02Cl k 60.22 " S o AO 12.1 67.1 2" 7 6 ; y 1 yiyl 42.7 48.7 s/S 0 13.7 0 o0 18.2 132.3 143.5 6 134.9 134.4 127.9 / 130.0 135.3 144.1 131.7 139.34 . 1 0.6Sulfurous and Sulfuric Acid Derivatives S13C Chemical Shifts of Sulfurous and Sulfuric Acid Derivatives(6 in pprn relative to TMS) n 26.0 57.1 9 0 8 0
  • 142. 132 4 13C NMR4 . 1 0.7Sulfur-Containing Carbonyl Derivatives13C Chemical Shifts of Sulfur-Containing Carbonyl Derivatives(6 in ppm relative to TMS)The chemical shifts of thiocarbonyl groups are higher by about 30 ppm than thoseof the correspondingcarbonyl groups: 6+, 1.5 6 p o - 57.5Carbonyl groups of thiocarboxylic acids and their esters are deshielded by about 20ppm with respect to the corresponding oxygen compounds. 278.4 i l - 11.3 32.6 SH 30.2 194.5 195.430.1 194.1 28.4 22.2 32.1 13.6 39.2 Ad 234.1 20.6 33.3 A " 2 205.6 - s 202.132.7 199.4 1 42.3 132.1
  • 143. 4.1 1 Carbonyl Compounds 1334.1 1Carbonyl Compounds4.1 1.1AldehydesAdditivity Rule f o r Estimating the 13C Chemical Shifts ofAldehyde Carbonyl Carbon Atoms ( 6 in p p m relative to TMS) 6,=, = 193.0 + Z Z i 1 -Cp-CrCHO Substituent i z , Z8 -Cf 6.5 2.6 -CH=CH2 -0.8 0.0 -CH=CH-CH3 0.2 0.0 -phenyl -1.2 0.013C Chemical Shifts of Aldehydes ( 6 i n p p m relative to TMS)197.0 31.3 200.5 5.2 202.7 15.7 201.6CH2=O CH3- CHO vCHO m C H O 36,7 13.3 45.715.5 204*6 13.8 24.3 201*3 23.4 205.6 95.3 176.9 -H CO CC13-CHO 22.4 43.6 194.4 - 176.8 204.7 192.0 c=x CHO - CHO CHO CHO 4 83.1 81.8137.8 138.6 25.2 / 129.0 25.2 134.3
  • 144. 134 4 13C NMR4.1 1.2KetonesAdditivity Rule for Estimating the 13C Chemical Shifts ofKetone Carbonyl Carbon Atoms ( 8 in ppm relative to TMS) 6,=, = 193.0 + CZi i 0 II -cp-c,--c-c,(-p- Substituent i Za Zp -CC 6.5 2.6 -CH=CH* -0.8 0.0 -CH=CH-CH3 0.2 0.0 -pheny 1 -1.2 0.013C Chemical Shifts of Aliphatic Ketones ( 6 in ppm relative to T M S )206.7 0 207.6 30.7 29.3 45.2 13.5 0 213.5 26.5 27.5 29.4 43.5 23.8 24:hUa313C Chemical Shifts of Halogenated Ketones(6 in ppm relative to TMS)203.5 0 187.5 0 115.6 x/F 25.1 84.9 23.1
  • 145. 4.1 1 Carbonyl Compounds 135 193.6& a ;2 186.3 q:l 27.2 49.4 22.1 21.1 c c 1 1 qB: c1 & 203.5 187.5 27.0 35.5 25.1 Br 84.9 Br Br 23.1 Br 1 715 . g ; : c C c1 c1 c113C Chemical Shifts of Unsaturated and Alicyclic Ketones( 6 in ppm relative to TMS)197S k U 8 . 0 207*9l h 0 . 3 29.9 25.7 137.1 81.9 78.1 21.1209.4 128.4 51.5 26.3 137.4 / 132.9 132.2 137.813C Chemical Shifts of Diketones ( 6 in p p m relative to TMS) Enol form: see Chapter 4.8
  • 146. 136 4 13C NMR13C Chemical Shifts of Cyclic Ketones and Quinones(6 in ppm relative to TMS) 0 34.0 29.1 8209.8 134.2 165.3 38.2 22.9 150.6 b 185.8 127.3 156.76 25.8 37.9 26.7 131.8 187.0 136.4 139.7 0 04.1 1.3Carboxylic Acids and CarboxylatesAdditivity Rule f o r Estimating the 13C Chemical Shifts ofCarboxyl Carbon Atoms ( 6 in ppm relative to TMS) 6= ,, = 166.0 + X Zi i -C+p-C,COOH Substituent i za ZB Zr -Cf 11.0 3 .O -1.0 -CH=CH, 5.0 -phenyl 6.0 1.o
  • 147. 4.1 1 Carbonyl Compounds 137I3C Chemical Shifts of Carboxylic Acids (6 in pprn relative to T M S ) 166.3 21.7 176.9 9.6 180.4 18.7 179.4H-COOH CH3- COOH k C O O H a C O O H 28.5 13.7 36.218.8 184.1 14.2 27.7 180.6 r;:.Y -COOH 22.7 34.8 =/ 171.7 COOH133.1 128.3 - COOH _. 78.6 74.0 156.5 8;:; 182.1 26.6 172.6 133.7115.0 163.0 40.7 173.7 63.7 170.4 88.9 167.1 CF,-COOH C HZC1-COOH CHC12-COO H CC1, - C O O H 169.2 173.9 166.1 166.6160.1FooHCOOH ( 40.9 COOH 28.9O (H 130.4 (,," 134.2JC00H COOH COOH COOH HOOC13C Chemical Shifts of Carboxylate Anions( 6in ppm relative to TMS; measured in water unless indicated otherwise) 171.3 24.4 182.6 11.1 185.1 188.6-coo- 20.8* 177.6* 10.6* 181.3" CH3- COO- * solvent: CDCl, /coo- 31.5 28.4* Too- c=x * solvent: CDCl,/DMSO =PO0- 174.5126.7 134.3 0::; COO- 185.4 26.9 133.145.0 175.9- 65.6 171.8 96.2 167.6CH2Cl-COO CHClZ--COO CCl, -COO-
  • 148. 138 4 13C NMR 4.1 1.4 Esters and Lactones Additivity Rule for Estimating the 13C Chemical Shifts of Ester Carbonyl Carbon Atoms (6 in ppm relative to TMS) = 166.0 + Z,Zi i - c r cp-c- coo- Ca- -CL -CH=CHz - Substituent i za 11.0 5 .O Zp 3.0 -1.0 zct -5.0 -9.0 -phenyl 6.0 1.o -8.0 13C Chemical Shifts of Acetic Acid Esters ( 6 in ppm relative to TMS) 170x0) 20.9 14.4 17 O x 0 & 21.3 .5 21.9 22.3 28.1 1 6 9 3 21.0 x>"" O f 32.2 24.4 1 6 9 3 20.8 0"" 121.4 128.9 72.3 150.9 13C Chemical Shifts of Methyl Esters ( 6 in ppm relative to TMS) 161.6 173.3 172.2 9 0* &: 5 1 f i 8 1 . 9.: )( H 20.6 27.2 13.8 35.6 23.9 34.9 26.0 26.4
  • 149. 4.1 1 Carbonyl Compounds 139 167.8cl 40.7 d cl c1 64.1 c1 89.6 166.51 3 0 . 4 a 0 / 5 1.5 128.8 74.8 16.* & 130.5 51.8 129.7 / 128.4 132.8 17 6.) 6- : 52*3 2 ; , ;0 y 3 51.3 41.2 O, 0130.1 1 I 6 5 52.1~ ~ $d ~ 52.2 1521:~~~ % 133.5 0 0 0 013C Chemical Shifts of Lactones ( 6 in ppm relative to TMS)&C 168.6 58.7 39.1 68.8 178.1 27.8 22.3 69.3 6 22.3 171.2 29.2 19.1 c=x 6:& .: 6 1 . 117.0 6 69.2 23.1* 28.9* 29.5" 152.1 142.9 106.0 * assignment uncertain
  • 150. 140 4 13C NMR 4.1 1.5 Amldes and Lactams Additivity Rule for Estimating the 13C Chemical Shifts of Amide Carbonyl Carbon Atoms ( 6 in ppm relative to T M S ) Substituent i za zp zq a zp -Cf 7.7 4.5 -0.7 -1.5 -0.3 -CH=CH* 3.3 -phenyl 4.7 -4.5 13C Chemical Shifts of Amides ( 6 in ppm relative to TMS) Fonnamides: 167.6 163.3 0 166.5 ?!AN,24.8 - H H H = 90% = 10% I 28.2 36.5 161.8 162.6 H 164c3t XNT - NH H 14.6 - H H 12.8 36.9k 1 6 . 8-.x = 90 % = 10% Primary and Secondary Acetamides: 173.4 171.7 22.3 22.7 H * in water
  • 151. 4.1 1 Carbonyl Compounds 141 169.8 168.6 169.0 22.5 H 22.5 22.6 H 22.3 23.6 H t 49.9Tertiary Aliphatic Amides:“03 N ,35.0 169.6 gNK 170.1 gN)1.4 21.5 I 21.4 13.1 21.5 38.0 42*9L 14.2 50.65 2”:.;” ‘11.2 40.114.0 35.1 [ - 13’2 42*0 14.413C Chemical Shifts of Lactams ( 6 in ppm relative to T M S ) 179.4 175.5 171.942.4 20.8 49.5 147.6 42.0 22.334‘4N.(z;3 49.9 23.3 21.6 m ( : & . 8 136.1 ‘ 106.6 142.0 “3:: 42.0 29.9* 30.7* * assignment uncertain
  • 152. 4 . 1 1.6Miscellaneous Carbonyl DerivativesI3C Chemical Shifts of Carboxylic Acid Halides(6 in ppm relative to TMS) A70.4 A65.7 k 8 . 9 9 0 7 4 . 7 c1 Br I c133.6 39.1 41.01 3 7 3 65.6 176.3 168.0 131.4 c1 25.9 6 l% c/ 133.2 131.2 / 128.8 135.113C Chemical Shifts of Carboxylic Acid Anhydrides( 6 in ppm relative to TMS)HHO 158.5 167.4 170.9- 27.4 AA0h 169.6 37.2 13.4 & 0 % / 162.4 128.9 / *f28.9 134.5
  • 153. 4.1 1 Carbonyl Compounds 14313C Chemical Shifts of Carboxylic Acid Imides( 6 in ppm relative to TMS)135*5(173*0 133.12@ 131S0 167.5 I ” N- 23.2 0 0l 3 C Chemical Shifts of Carbonic Acid Derivatives(6 in ppm relative to TMS)CO 181.3 C02 124.2 ~ 0 168.2 ~ ~ - (2%192.8 0 lo, 54.9 0 - 1 - 0 67.3 19.1 156.5 155.9 30.9 13.6 226.2 21.7 68.1 27.4 N lo) 157.8 14.7 k63.5 165.4H2N “2 N ‘”38.5 I I k61.3 “uN/ 45.0 31.2 22.5
  • 154. 144 4 NMR 4.1 2 Miscellaneous Compounds 4.12.1 Derivatives of Group IV Elements 13C Chemical Shifts and Coupling Constants of Derivatives of Group ZV Elements (6 in ppm relative to TMS, IJI in Hz) I 0.0 -Si- I 128.3 129.6 129.1 4 4J 19 +9*3 I -4.2 --.Pb - I 129.1 128.5 A 16.2 S y>cl 1 129.6 I .i2*0 +S 136.3 f 26.7 16.6 c1 138.7 co- 21.6 4*7 169.0MISC.
  • 155. 4.1 2.2Phosphorus Compounds13C Chemical Shifts and 31P-13C Coupling Constants ofAliphatic Phosphorus Compounds ( 6 i n ppm relative to TMS, IJI in Hz) 3J 11 J12 3J 12.5 J -10.9 126.0; J 12 24.5 32.6 J 16 24.8 28.67-13.9 28.3 14.4 -- L 14.0 27.9 130.8 @pH2 2J20450 2J 14 4J0 2J 15 3J 10 2J 14 27.0 28.9 10.7 J55 /< I- 12.3; J 49 6.3 TP+- 1- 2 J 5 - L J 8 3J 15 J 48 3 J l l J44 3J 11 J20 24.1 1 8 . 7 y 23.4 42.9 24.7 33.6 -c2 p1 /V-PMO,1 3 z c 13.7 25.1 4J 0 2J 14 14.0 24.8 4 J 0 2J 16 A , 53.44J 0 2J 4 2J 12 3J 13 J 66 J 143 0 61.4;2J7 24.4 2 7 . 8 y -PO 6.6 "Fk o/ 0 - 16.5 3J 6 -13.6 24.0 2J 74J 0 2J 5 48.8 13.7 33.4 0, T 2 J 12 5 J 0 3J5 I/ 8 /o 19.1 61.9 Misc. /N 4~~ *J 113J 6 13.6 32.616.2 0- 5J0 -0-yo- 3J7 ? k0-#=0 63.6 4J 0 2J 6 -b 2 J 6 O4 18.9 67.2
  • 156. 3J 16 J 54 J 54 3J 16 J 51 14.9 23.9 34.61 20.8 24*0 30*9y 53.8/& FS YN2J4 13.6 24.8 1 3 z L 2J 5 % 4J 0 2J 4 4J 0 2J4 13C Chemical Shifts and 3 1 P - 1 3 C Coupling Constants of Aromatic Phosphorus Compounds ( 6 in ppm relative to TMS, IJI in H z ) 2J 20 12 J 2J 10 104 J 137.2 / 3J 12 132.3 135.6 128.5 132.3 11.4; J 145 0 II qPP- 120.5; 3J 4 HO-P-OH 128.1; 3J 15 0 0 0 1 5 0 . 4 y 0 129*87 0 2J 8 125.1 5J 4J 130.5; 4J 0 2J 8 129.5 124.1 151.5 4J 129.7 120.1 3J 150.4 - 5J0 O O - T - O G 5J 0 O ! - l - O G Ja 125.5 PMisc.
  • 157. 4.12 Miscellaneous Compounds 14713C Chemical Shifts and 3 1 P - 1 3 C Coupling Constants ofPhosphoranes ( 6 in ppm relative to TMS, (JI in Hz) 2~ 93J 11132.9<128.5- J 83 .? 11.0 130.6 2J 4 4J 3 I 3..2 24.1; 3J 6 J 1114.1 2.3Miscellaneous Organometallic Compounds 3C Chemical Shifts and Coupling Constants of MiscellaneousOrganometallics ( 6 in ppm relative to TMS, IJI in H z ) -16.6 14.8 I 6.2 -6.3Li- -BL Li+ /B- I /* 11.2 I 8.4 -AS+- I-/As- I 4 / 136.8 129.4 d S b o 129.1 / 139.3 qB;p 1.o 128.3 2J 85 3J 104 137.4 128.3 170.3 Misc, 131.1 J 1275 (couplings with 199Hg)
  • 158. 148 4 13C NMR 4.1 3 Natural Products 4.13.1 Amino Acids I3C Chemical Shifts of Amino Acids ( 6 i n ppm relative to TMS;solvent: water) 41.5 42.8 46.0 + ~ 3 ~ % 02 ? H 3 N 7 - 173.6 H2NV0- 182.7 (pH 0.45) (pH 4.53) (pH 12.01) 7+ :H N 3 : * 0 34.8 11 179.4 H 2 N 5 10 2 . 7 y 0 (pH 0.49) (pH 5.03) (pH 12.56) 17.5 21.7 fH3Nf174.0 q O H 50.1 51.9 52.7 (pH 0.43) (pH 4.96) (pH 12.52) 18.0 18.5 17.8 19.2 17.9 20.3 H3N 30&75.40 59.8 0 61.9 63.2 (PH 3.0) (PH 5.64) (pH 12.60) 22.1 21.8 22.5Natural 25/1 40.1 22.7 25/1 40.7 22.9 45.5$ 2 5 23.7Products +H3N 0 +H34%6.3 52.8 54.4 (pH 0.37) (pH 7.00) (pH 13.00)
  • 159. 4.13 Natural Products 149 12.1 12.4 2 . L $ . 6 1 H2Nf 184.1 0 62.3 58.7 60.9 (pH 0.28) (pH 6.04) (pH 12.84) 60.4 < OH 56.0 6 57.5 O 57.8 o (pH 1.12) (pH 6.05) (pH 9.28) 20.2 HO H o d 66*3$0H+H3Nf 171.7 59.8 61.5 0 62.1 0 (pH 1.36) (pH 5.87) (pH 9.27) 25.1 rSH 55.9 0 56.7 60.7 (pH 1.75) (pH 5.14) (pH 11.02) / 15.2 HO t N H 3 + 31+H3Nf 175.3 9) 55.3 0 39.0fS 44.1 f s +H3Nf - 1 1 O 180.7 55.8 0 Natural (in D20) Products
  • 160. 150 4 13C NMR 1 3 130.7 129.5 1 p 1 3 0 p z F 3 117.5 =145 , ~138, 37.5 37.5 +H3N b5 ?.O 57.3 0 174.4 35.0 P OH 178.7 0- 181.3 53.5 O 55.3 O (pH 0.41) (pH 6.73) (pH 12.73) 182.4 26.1/ 30.7 28.2 33.0 0- 53.4 0 56.0 57.2 (pH 0.32) (pH 6.95) (pH 12.51) 33.3 0- 53.7 0 55.5 0 57.2 0 (pH 0.46) (pH 5.02) (pH 13.53)Natural 30.5 31.2 35.7Products + H 3 N h O H 0- 173.2 54.0 55.9 0 57.3 0 (pH 0.50) (pH 6.03) (pH 13.85)
  • 161. 4.1 3 Natural Products 151 H2N NH2 y157.9 "7 41.6 ""e;") 42.1 28.8 / 25.0 32.7 25653.9 0 56.6 (pH 1.33) (pH 7.87) (pH 11S 2 )24.4 29.4 24.8 30.0 24.8 30.0 62.30- 173.3 4 7 . 2 k 175.4 175.8 H2+ 0 (pH 1.27) (pH 7.26) (PH 9.8) 53.9 174.9 H2+ 0 127.7 53.6 133.1 55.7- 133.5 56.1 (pH 1.74) (pH 7.82) (pH 9.21) 56.1 "3 174.4 74.8 120.3 %108.7 125.8 H 1193 ~-2, 112.7 H 137.3 (in D20, sat., 80 OC) Natural Products
  • 162. 152 4 13C NMR4.1 3.2Carbohydratesl 3 C Chemical Shifts of Monosaccharides(6 in ppm relative to TMS)Ribose 68.1 63.80 68.2 63.8 H 0 7 m 70.84 * 3 9 - 69.7 OH 71.9 83.8 "/OH - . Hdf fbH H d f fbHHorn 70.8 71.7 71.2 76.0 H0y>103.1 100.4 70.4 84.6 "lo- 5 5.5 - . OH 69.2 56.7 H d f fibH 69.8 71.1 68.6 63.9H o s Y57.0 . - OH 71.0 103.1 H d f f"bH 70.9 74.3Glucose 61.6 OH 72.3 7 HO 0 . e OH HO 92.9 76.7 OH 96.7 72.5 75.1
  • 163. 4.13 Natural Products 1537 .% 0; 100.0 70.6% HO 74.1 58.1 72.2 o55.9 76.8 OH 104.0 74.1 x3 (: 69.4 Ac 0 Ac 0 70.5Fructose 99.1 OH Ho-O 65.9 - H 0 7 J 3 i y o H 70.0 in water and in DMSO: traces in water: 75%; in DMSO: 25% 61.9 1055 63.8 Ho82.2 W O OH H 77.0 82.9 75.4 76.4 in water: 4%; in DMSO: 20% in water: 21%; in DMSO: 55%1 3 C - l H Coupling Constants through one Bond (JCH in H z ) Natural I I Products OR H lJCH 169-171 ~ J C H158-162
  • 164. 154 4 l3C NMR 4.1 3.3 Nucleotides and Nucleosides 13C Chemical Shifts of Nucleotides and Nucleosides (6 in ppm relative to TMS) " 2 164.4 H H H e (in DMSO/water, 1:2) (in DMSO) (in D20) " 2 10 1.7 93.8?% 141.4 I k 5 165*5 5.4 140.6 I NAg0.7 109.5 I :y;;:q;; N O 136.2 I I I 69.3 69.8 70.5 OHOH OHOH OH (in D20) (in D20) (in D20) 140.3 tpJ 119.1 2 # " N H 156.4 153.4 168.8 151.7 162.2 (in DMSO) (in D20)NaturalProducts
  • 165. 4.13 Natural Products 15586.2 7 0 . 6 1 73.9 OHOH OHOH (in DMSO) (in DMSO) Hq62.5 I 152.088.3 88.0ky 84.8 7 2 . 0 v 39.6 OH OH (in DzO) (in D20) Natural Products
  • 166. 156 4 13C NMR 4.1 3.4 Steroids 13C Chemical Shifts of Steroids ( 6 in p p m relative to TMS) 21.2 38.0 38.8 26.8 27.4 26.6 32.3 28.9 H 28.9 11.0 197.7 123.9 32.5 197.4 124.0 32.3 18.8 12.0 I 39.2 22.7 32.6 23.1 23.8N iit t I ra IP!odllc:s
  • 167. 4.1 4 Spectra of Solvents and Reference Compounds 1574.14Spectra of Solvents and Reference Compounds4.1 4.113C NMR Spectra of Common Deuterated Solvents(125 MHz, 6 in ppm relative to TMS)Acetone-dg I 206.0 1 1 1 1 9 I , I 31 . - A I 30 29 I ~ 29.8 I 1 I I 1 - . I L 1 200 180 160 140 120 100 80 60 40 20 0Acetonitrile-d3 I 118.3 I 1 ~ 1 ~ 1 ~ 1 - 2 ~ 1 1 ~ I ~ 200 180 160 140 120 100 80 60 40 20 0Benzene-dg 129 128 127 1 I I I l l ~ 1 ~ , * , . I . I 2bO 180 160 140 120 100 80 60 40 20 0Bromoform-d 11 io I I ~ I l ~ 1 , I I - I T I . 1 3 I . I 200 180 160 140 120 100 80 60 40 20 0Chloroform-d I . I I . . . I . ( . 78 77 76 - - I I I I , . I . l . I . l ~ 1 , L l Solvents 200 180 160 140 120 100 80 60 40 20 0
  • 168. 158 4 13C NMRCyclohexane-dl2 27 26 1 l 1 1 1 1 1 1 ~ 1 1 ~ ~ ~ 200 180 160 140 120 100 80 60 40 20 0Dimethyl sulfoxide-dg 1 ~ 1 1 - 1 - 1 - 40 1 39 ~ 1 L ~ 1 1 1 1 200 180 160 140 120 100 80 60 40 20 0Methanol-dl I I I I - R I 51 ~ 50 I 49 I I 49.9 l ~ I ~ I I 200 180 160 140 120 100 80 60 40 20 0Methanol-d4 50 49 48 1 L I . I 1 1 1 ~ 1 ~ 1 , 1 ~ 1 ~ 1 200 180 160 140 120 100 80 60 40 20 0Pyridine-dg 1149 - - - L 135.5 123.5 151 150 149 1 136.0 135.0 124.0 123.0 A 6k - - 68 67 26 25 25.3 I
  • 169. 4.14 Spectra of Solvents and Reference Compounds 1594.1 4.2 3C NMR Spectra of Secondary Reference CompoundsChemical shifts in 13C NMR spectra are usually reported relative to the peakposition of tetramethylsilane (TMS), which is added as an internal reference. WhenTMS is not sufficiently soluble in the sample, use of a capillary containing TMSas external reference is recommended. Owing to the different volumesusceptibilities, the local magnetic fields differ in the solvent and reference.Therefore, the position of the reference must be corrected. For a D2O solution in acylindrical sample and TMS in a capillary, the correction amounts to +0.68 and-0.34 ppm for superconducting and electromagnets, respectively. These valuesmust be subtracted from the shifts relative to external TMS if its position is set to0.00 ppm. Alternatively, secondary references with (CH3)3SiCH2 groups may beused. The following spectra of two secondary reference compounds in D 2 0 weremeasured at 125 MHz with TMS as external reference. Chemical shifts are reportedin ppm relative to TMS upon correction for the difference in the volumesusceptibilities of D20. As a result, the peak for the external TMS appears at 0.68PPm. 0.68 TMS (external reference) - .9 H3C, FH3 Si.,-.-SO3Na 55.1 H3C 19.8 15.8 1 1 I I 2,2,3,3-D~-3-(Trimethylsilyl)-propionic sodium salt acid -2.0 0.68 TMS A e r n a lreference) 186.3 -l----l-- 187 186 33 32 31 13 12 31.9 12.7 11 260 180 1bO 140 1 O ; 100 sb I 60 40 I 20 I 0 I ~ Solvents
  • 170. 160 4 13C NMR4.1 4.3 3C NMR Spectrum of a Mixture of Common NondeuteratedSolventsThis broad band-decoupled I3C NMR spectrum of a CDC13 sample with 20common solvents (0.05-0.4 ~ 0 1 % ) shown as a guide for the identification of issolvent impurities (125 MHz, 6 in ppm relative to TMS). Chemical shifts ofsignals marked with an asterisk (*) may change up to a few ppm if the samplecontains solutes with functional groups that can form hydrogen bonds. DMF:dimethyl formamide; THF tetrahydrofuran; EGDME: ethylene glycol dimethylether. 149.9* pyridine ethyl acetate DMF 206.8* acetone 192.6 CS, 171.1 162.5210 205 200 195 190 185 180 175 170 165 160 155 150 145 140 pyridine 129.1 toluene 136.0 128.4, 128.3 toluene, benzenetoluene 123.8 pyridine137.9 dimethyl sulfoxide 41.1 25.6 DMF36.4 THF
  • 171. 5.1 Alkanes 1615 l H NMR Spectroscopy / / C5.1AI kanes5.1.1Chemical ShiftsI H Chemical Shifts of Alkanes ( 6 in ppm relative to TMS, J in H z )CH4 0.23 Jgem -12.4 fH3 0.86 FH3 0.91 Jvic 7.4 CH3 FH2 1.33 CH3 FH3 0.89 Jvic 6.8 FH3 a 0.91 3J,b 7.3 CH 1.74 7H2 b 1.31 2Jbb -12.4 I 3Jbc 5.7CH3 CH3 7H2 c 3Jbci 8.5 CH3In long-chain alkanes, the methyl groups at ca. 0.8 ppm typically show distortedtriplets because of second order effects:
  • 172. 162 5 H NMR,, IHin Chemical Shifts ofC ( 6 ppm relative to TMS) Monosubstituted Alkanes1 , Substituent Methyl Ethyl Propyl -CH3 -CH2 -CH3 -CH2 -CH2 -CH3 -H 0.23 0.86 0.86 0.91 1.33 0.91 C -CH=CH2 1.71 2.00 1.oo 2.02 1.43 0.91 -C=CH 1.80 2.16 .15 2.10 SO 0.97 -phenyl 2.35 2.63 .21 2.59 .65 0.95 H -F 4.27 4.36 .24 4.30 .68 0.97 a -C1 3.06 3 -47 .33 3.47 .81 1.06 1 -Br 2.69 3.37 .66 3.35 .89 1.06 -I 2.16 3.16 .88 3.16 .88 1.03 0 -OH 3.39 3.59 1.18 3.49 1.53 0.93 -0-alkyl 3.24 3.37 1.15 3.27 1.55 0.93 -OCH=CH2 3.16 3.66 1.21 *phenyl 3.73 3.98 1.38 3.86 1.70 1.05 -0COCH3 3.67 4.12 1.26 4.02 1.65 0.95 -OCO-phenyl 3.88 4.37 1.38 4.25 1.76 1.07 -0S02-4-tolyl 3.70 4.07 1.30 3.94 1.60 0.95 N -NH2 2.47 2.74 1.10 2.61 1.43 0.93 -NHCH3 2.3 -N(CH3)2 2.31 2.32 1.06 -NHCOCH3 2.79 3.26 1.14 3.18 1.55 0.96 -NO2 4.29 4.37 1.58 4.28 2.01 1.03 -CN 1.98 2.35 1.31 2.29 1.71 1.11 -NC 2.85 3.39 1.28 S -SH 2.00 2.44 1.31 2.50 1.63 0.99 -S-alkyl 2.09 2.49 1.25 2.43 1.59 0.98 -SS-alkyl 2.30 2.67 1.35 2.63 1.71 1.03 -SOCH3 2.50 -S02CH3 2.84 2.94 2.80 0 -CHO 2.20 2.46 1.13 2.42 1.67 0.97 11 -COCH3 2.09 2.47 1.05 2.32 1.56 0.93 C -CO-phenyl 2.55 2.92 1.18 2.86 1.72 1.02 / -COOH 2.10 2.36 1.16 2.31 1.68 1.oo -COOCH3 2.01 2.32 1.15 2.22 1.65 0.98 -CONH, * 2.02 2.23 1.13 2.19 1.68 0.99 -coc1 2.66 2.93 1.24 2.87 1.74 1.00
  • 173. 5.1 Alkanes 163 H Chemical Shifts of Monosubstituted Alkanes (contd.) /(6 in ppm relative to TMS) C / Substituent Isopropyl Butyl tert-Butyl -CH -CH3 -CH2 -CH2 -CH2 -CH3 -CH3 -H 1.33 0.91 0.91 1.31 1.31 0.91 0.89 C -CH=CH2 2.06 ~ 1 . 5 ~ 1 . 2 .0.90 1.02 -C_CH 2.59 1.15 2.18 1.52 1.41 0.92 1.22 -phenyl . . 2.89 1.25 2.61 1.60 1.34 0.93 1.32 H -F 4.34 1.65 0.95 1.34 a -C1 4.14 1.55 3.42 1.68 1.41 0.92 1.60 1 -Br 4.21 1.73 1.76 -I 4.24 1.89 3.20 1.80 1.42 0.93 1.95 -OH 3.94 1.16 3.63 1.53 1.39 0.94 1.22 -0-alkyl 3.55 1.08 3.40 1.54 1.38 0.92 1.24 -OCH=CH2 4.06 1.23 3.68 1.61 1.39 0.94 -0-phenyl 4.51 1.31 3.94 1.76 1.47 0.97 -0COCH3 4.99 1.23 4.06 1.60 1.39 0.94 1.45 -0CO-phenyl 5.22 1.37 1.58 -0S02-4-tolyl 4.70 1.25 4.03 1.62 1.36 0.88 N -NH2 3.07 1.03 2.68 1.43 1.33 0.92 1.15 -NHCOCH3 4.01 1.13 3.21 1.49 1.35 0.92 1.28 -NO? 4.44 1.53 4.47 2.07 1.50 1.07 1.59 -CNL 2.67 .35 2.34 .63 1.50 0.96 1.37 -NC 3.87 .45 1.44 S -SH 3.16 .34 2.52 .59 1.43 0.92 1.43 -S-alkyl 2.93 .25 2.49 .56 1.42 0.92 1.39 -SS-alkyl 2.69 .64 1.42 0.93 1.32 -SO~CHQ 3.13 .4 1 1.44 0 -CHb 2.39 .13 2.42 .59 1.35 0.93 1.07 11 -COCH3 2.54 1.08 1.12 C -CO-phenyl 3.58 1.22 2.95 1.72 1.41 0.96/ -COOH 2.56 1.21 2.35 1.62 1.39 0.93 1.23 356 117 2.31 1.61 1.33 0.92 1.20 2.22 1.60 1.37 0.93 1.22 -coc1 2.97 1.31 2.88 1.67 1.40 0.93
  • 174. 164 5 H NMR / Estimation of IH Chemical Shifts of Aliphatic Compounds C (6 in ppm relative to TMS)[ l ]/ CH, ~ C H ~ 0.86 + Z, =X ~ C H ~ C X Y= 0.86 + Z zpi i CH2 ~ C H ,= 1 . 3 7 + Z Z a i +ZZpj i j CH 6CH=1.50+xZ,i +xzpj i j Substituent (X, Y, Z) CH3 CH2 CH z , q3 z , q 3 z , zP -C 0.00 0.05 0.00 -0.04 0.17 -0.01 -c=C 0.85 0.20 0.63 0.00 0.68 0.03 -c c- 0.94 0.32 0.70 0.13 1.04 -phenyl 1.49 0.38 1.22 0.29 1.28 0.38 H -F 3.41 0.41 2.76 0.16 1.83 0.27 a -C1 2.20 0.63 2.05 0.24 1.98 0.3 1 1 -Br 1.83 0.83 1.97 0.46 1.94 0.41 -I 1.30 1.02 1.80 0.53 2.02 0.15 0 -OH 2.53 0.25 2.20 0.15 1.73 0.08 -0-c 2.38 0.25 2.04 0.13 1.35 0.32 -0c=c 2.64 0.36 2.63 0.33 -0-phenyl 2.87 0.47 2.61 0.38 2.20 0.50 -o(C=Ot 2.81 0.44 2.83 0.24 2.47 0.59 N -N 1.61 0.14 1.32 0.22 1.13 0.23 -N+ 2.44 0.39 1.91 0.40 1.78 0.56 -N(C=Ot 1.88 0.34 1.63 0.22 2.10 0.62 -NO2 3.43 0.65 3.08 0.58 2.31 -CN 1.12 0.45 1.08 0.33 1.oo -NCS 2.51 0.54 2.27 2.14 s -s- 1.14 0.45 1.23 0.26 1.06 0.3 1 -sco- 1.41 0.37 1.54 0.63 1.31 0.19 S(=O)- 1.64 0.36 1.25 -S(=0)2- 1.98 0.42 2.08 0.52 1S O -SCN 1.75 0.66 1.62 1.64 0 -CHO 1.34 0.21 1.07 0.29 0.86 0.22 II -co- 1.23 0.20 1.12 0.24 C -COOH 1.22 0.23 0.90 0.23 0.87 0.32 / -coo- 1.15 0.28 0.92 0.35 0.83 0.63 40-N 1.16 0.28 0.94 -coc1 1.94 1.51 For other approaches: see [2]
  • 175. 5.1 Alkanes 165 H Chemical Shifts of Aromatically Substituted Alkanes(6 in ppm relative to TMS) C/ / C H 3 2.65 dmCH3 2.46 QCH3 2.17 d3 0 1.940r p3 a H 2.16 d N CH3 2.05 a 3 3.50 H<a3H 2.42 2.27 pJ N P Y a N 3 3.80 H ,CH3 2.79 CH3 2.05 P N I? H CH3 2.21 2.18 CHQCH3 2.41 0 2.47 CH3 qLCH3 2.74 tJ om 2.32 3 2.37 ,CH3 2.30 -CH3 2.30 (333 3.60 H or";, H
  • 176. 166 5 H NMR 5.1.2c/ coupIing constants Geminal Coupling Constants (25" in HZ) -8 to 2 J ~ ~ H -18 Hz Electronegative substituents cause a decrease in IJI while a double or triple bond next to the CH2 group causes an increase. The fzKr effect is strongest if one of the C-H bonds is parallel to the K orbitals: Compound Jgern Compound Jgem CH4 -12.4 CH3COCH3 - 14.9 CH3Cl -10.8 CH3COOH -14.5 CH2C12 -7.5 CH3CN -16.9 CH30H -10.8 CH2(CN)2 -20.3 -14.3 O C - C N -18.5 H2 Vicinal Coupling Constants ( 5 3" in HZ) conformation not fixed: 3J" = 7 fixed: 3 J = 0 - 18 ~ ~ Influence of Substituents on the Vicinal Coupling Constant
  • 177. 5.1 Alkanes 167Vicinal coupling constants strongly depend on the dihedral angle, @ (Karplus /equation): C / J = Jo COS:! @ - 0.3 Oo I Q I 90° J = J180 cos2 @ - 0.3 90° I @ 5 180°The same relationship between torsional angle and vicinal coupling constant holdsfor substituted alkanes if appropriate values are used for Jo and J180. Theselimiting values depend on the electronegativity and orientation of substituents, thehybridization of carbon atoms, bond lengths, and bond angles. J/Hz 15 - 10 - - 5- 0- I , I I I ( I I I I I ( I I , I I ( J I I I I I I I I I ( I I I I I 0 30 60 90 120 150 180 4 I degreesLong-Range Coupling Constants (IJl" in Hz)Coupling constants through more than three bonds (long-range coupling) inalkanes are generally much smaller than 1 Hz and thus not visible in routine 1DNMR spectra. They are, however, much larger than 1 Hz for fixed conformations(e.g. in condensed alicyclic systems, see Chapter 5.4) and in unsaturatedcompounds (see Chapter 5.2). They are also significant when electronegativesubstituents are present between the coupling partners, as e.g.: ~ 0 4J" 0.7 ~ ~ ~ 3 Ro CH35.1.3References[l] R. Burgin Schaller, C. Arnold, E. Pretsch, New parameters for predicting H NMR chemical shifts of protons attached to carbon atoms, Anal. Chim. Acta 1995, 312, 95.[2] E. Friedrich, K.G. Runkle, Empirical NMR chemical shift correlations for methyl and methylene protons, J. Chem. Educ. 1984, 61, 830.
  • 178. 168 5 ‘H NMR 5.2 Alkenesc=c 5.2.1 Substituted Ethylenes IH NMR Chemical Shifts and Coupling Constants of Alkenes ( 6 in ppm relative to TMS, J in Hz) 2.5 4.88 H ~ H ; 5 . 7 3 3Jab 10.0 - 3Jac 16.8 H H trans 19.1 4.97Hc CH31.72 3Jad 6.4 2Jbc 2.1 4Jbd -1.3 4Jcd -1.8 cH&H15*55 b -1.7 4J,b 3Jac 15.1 3Jad 6.5 HkHa5*3 CH3 CH31.54 3Jab 10.9 4Jac -1.8 3Jad 6.8 Hc CH31.58 5Jbd 1.6 C d 5Jcd 1.2 4.87 HwH:5.7: 3Jab 10.3 4Jbd -1.3 - 3Jac 17.2 4Jcd -1.7 4.94Hc CH2-CH3 3Jad 6.2 2.00 1.00 2Jbc 2.0 Geminal and Vicinal Coupling of Alkenes (J in Hz) The coupling constants strongly depend on the electronegativity of the substituents (see Table on pp 170, 171). They decrease with increasing electronegativity and number of electronegative substituents. The same trend holds for the signed values of geminal coupling constants but not for the absolute values because Jgem can be positive or negative. Although the total ranges of cis and trans vicinal coupling constants overlap, JtranS> Jcis always holds for given substituents. Typical ranges: Jgem -4 to 4 Jcis 4 to 12 JtranS 14 to 19
  • 179. Coupling Over More than Three Bonds in Alkenes (Long-RangeCoupling) ( J in H z )Allylic Coupling l @ n c=c b : Ha H 4 CiSOid Jab -3.0 to +2.0 =,-?: c-: transoid: Jac -3.5 to +2.5 H CIn acyclic systems, lJlcisoid > IJ(transoid usually holds. The magnitudes of thecoupling constants depend on the conformation. Largest absolute values areobserved if the C-H bond of the substituents overlaps with the n-electrons (@=0): @ Jab Jac 00 -3.0 -3.5 90° +1.8 +2.2 1800 -3.0 -3.5 270° 0.0 0.8Homoallylic Coupling tfb ra . * : cisoid i" IJlab 0-3 transoid lJlac 0-3 HcAllylic and homoallylic couplings with methyl groups are often comparable:4JH-C=C-CH3 5JCH3-C=C-CH3In acyclic systems, IJlcisoid < lJltransoid usually holds. Large homoallyliccoupling constants are generally observed in cyclic systems: Jab 5-11 xx X: 0, NH HxR R: any substituent bX: CH, NR: any substituent
  • 180. 170 5 H NMR H Chemical Shifts and Coupling Constants of Monosubstituted Ethylenes ( 6 in ppm relative to TMS, J in Hz)c- c HRHa Hb Substituent X Ha Hb Hc Jab Jac Jbc Other -H 5.28 5.28 5.28 19.1 11.6 2.5 C -CH3 5.73 4.97 4.88 16.8 10.0 2.1 CH3 1.72 -CH2CH=CH2 5.71 4.95 4.92 16.9 10.3 2.2 CH2 2.72 -CH2-phenyl 5.89 5.01 5.00 17.0 10.0 1.9 CH2 3.19 -c yclopropyl 5.32 5.04 4.84 17.1 10.4 1.8 -cyclohexyl 5.79 4.95 4.88 17.6 10.5 1.9 -CH2F 5.89 5.24 5.12 17.2 10.6 1.5 CH2 4.69 -CF3 5.90 5.85 5.56 17.5 11.1 0.2 -CH2C1 5.93 5.30 5.17 16.9 10.1 1.3 CH2 3.91 -CH2Br 5.99 5.29 5.11 16.8 10.0 1.2 CH2 3.87 -CH$ 6.04 5.23 5.95 16.5 9.7 1.3 CH2 3.82 -CH20H 5.98 5.26 5.12 17.4 10.5 1.7 CH2 4.12 -CH2NH2 5.97 5.15 5.04 17.3 10.4 1.7 CH2 3.29 -CH2N02 6.11 5.46 5.49 16.7 10.7 0.8 CH2 4.93 -CH=C=CH2 6.31 5.19 4.99 17.2 10.1 1.6 -C=C-CH3 5.62 5.39 5.24 17.0 11.1 2.3 -phenyl 6.72 5.72 5.20 17.9 11.1 1.0 -2-naphthyl 6.87 5.86 5.32 -2-m-xyl yl 6.65 5.22 5.48 17.9 11.4 2.1 CH3 2.27 -2-nitrophenyl 7.19 5.68 5.45 17.4 10.7 1.1 -3-nitrophenyl 6.74 5.86 5.42 17.5 10.9 0.4 -4-nitrophenyl 6.77 5.90 5.48 17.4 10.9 0.8 -2-pyridyl 6.84 6.22 5.45 18.5 11.3 1.4 -4-pyridyl - 6.61 5.91 5.42 17.6 10.8 0.7 H -r 6.17 4.37 4.03 12.8 4.7 -3.2 a -C1 6.26 5.48 5.39 14.5 7.5 -1.4 1 -Br 6.44 5.84 5.97 14.9 7.1 -1.9 -I 6.53 6.57 6.23 15.9 7.8 -1.5 0 -OH 6.45 4.18 3.82 -OCH3 6.44 4.03 3.88 14.1 7.0 -2.0 CH3 3.16 -0CH2CH3 6.46 4.17 3.96 14.4 6.9 -1.9 -OCH=CH, 6.49 4.52 4.21 14.0 6.4 -1.8 -0-phenyl 6.64 4.74 4.40 13.7 6.1 -1.6 -0CHO 7.33 4.96 4.66 13.9 6.4 -1.7 CHO 8.07 -0COCH3 7.28 4.88 4.56 14.1 6.3 -1.6 CH3 2.13 -OCOCH=CH2 7.39 4.96 4.62 14.2 6.4 -1.6 -0CO-phenyl 7.52 5.04 4.67 13.8 6.3 -1.7 -OPO(OCHiCH3)2 6.58 4.91 4.59 13.8 6.0 -2.1
  • 181. 5.2 Alkenes 171Substituent X Ha Hb Hc Jab Jac Jbc Other N -NH2 26-05 24.04 23.99 -N+(CH3)3Br- 6.50 5.76 5.54 15.1 8.2 -4.3 -NHCOCHq -1.33 -4.53 24.68 c=c J -NO2 7.12 6.55 5.87 14.6 7.0 1.4 -CN 5.73 6.20 6.07 17.9 11.8 0.9 -NC 5.90 5.58 5.35 15.6 8.6 -0.5 -NCO 6.12 5.01 4.77 15.2 7.6 -0.1 S -SCH3 6.35 4.84 5.08 16.4 10.3 -0.3 CH3 2.12 -%phenyl 6.53 5.32 5.32 16.7 9.6 -0.2 -S(O)CH3 6.77 6.08 5.92 16.7 9.8 -0.6 CH3 2.61 -S02CH3 6.76 6.43 6.14 16.5 10.0 -0.5 CH3 2.96 -S02CH=CH2 6.67 6.41 6.17 16.4 10.0 -0.6 -S020H 6.73 6.41 6.13 16.8 10.2 -1.2 -SO2OCH3 6.57 6.43 6.22 16.9 10.1 -0.6 CH3 3.85 -S02NH2 6.93 6.17 5.98 16.3 10.0 0.0 NH2 6.7 -S02NH-phenyl 6.56 6.18 5.86 16.7 10.1 -0.3 NH 9.07 -SFg 6.63 5.96 5.64 16.6 9.8 0.4 -SCN 6.19 5.66 5.70 0 -CHO 6.26 6.11 6.26 17.4 10.0 1.0 CHO 9.51 1 1 -COCH3 6.30 6.27 5.90 18.7 10.7 1.3 CH3 2.25 C -COCH=CH2 6.67 6.28 5.82 17.9 11.0 1.4 / 40-phenyl 7.20 6.52 5.81 17.7 9.9 2.3 -COOH 6.15 6.53 5.95 17.2 10.5 1.8 COOH 12.08 -COOCH3 6.14 6.40 5.83 17.4 10.6 1.5 CH3 3.76 -CONH2 6.48 6.17 5.71 17.3 7.9 5.0 NH2 7.55 -CON(CH3)2 6.64 6.12 5.55 17.0 9.8 3.4 -COF 6.14 6.60 6.25 17.3 10.7 0.8 -coc1 6.35 6.63 6.16 17.4 10.6 0.2 P -P(CH3)2 6.23 5.39 5.51 18.3 11.8 2.0 CH3 0.95 -P(CH=CH2)2 6.16 5.59 5.64 18.4 11.8 2.0 -PC19 7.48 6.64 6.68 18.6 11.7 0.4 6.72 6.25 6.21 18.9 12.9 1.8 6.42 6.13 5.90 17.5 11.0 0.3 6.60 6.26 6.14 17.9 11.8 1.8 6.82 6.34 6.17 17.9 11.7 1.6 -L1 23.9 19.3 7.1 -MgCl 6.68 5.57 6.20 23.0 17.6 7.5 -MgBr 6.67 5.51 6.15 23.3 17.7 7.6 -Si(CH3)3 6.11 5.63 5.88 20.2 14.6 3.8 CH3 0.06 -Sn(CH=CH2)3 6.39 5.75 6.21 20.7 13.4 3.1 -Pb(CH=CH2)3 6.70 5.46 6.19 19.8 12.2 2.1 -HgBr 6.45 5.52 5.92 18.7 11.9 3.1
  • 182. 172 5 H NMREstimation of IH Chemical Shifts of Substituted Ethylenes(6 in ppm relative to TMS)Substituent R zgem %is Ztrans -H 0.00 0.00 0.00 C -alkyl 0.45 -0.22 -0.28 -alkyl ring 0.69 -0.25 -0.28 -CH2-aromatic 1.05 -0.29 -0.32 -CH2X, X: F, C1, Br 0.70 0.11 -0.04 -CHF2 0.66 0.32 0.21 -CF3 0.66 0.6 1 0.32 -CH20 0.64 -0.01 -0.02 -CH2N 0.58 -0.10 -0.08 -CH2CN 0.69 -0.08 -0.06 -CH2S 0.7 1 -0.13 -0.22 -CH2CO 0.69 -0.08 -0.06 -C=C 1.oo -0.09 -0.23 -C=C conjugated2 1.24 0.02 -0.05 -c=c 0.47 0.38 0.12 -aromatic 1.38 0.36 -0.07 -aromatic, fixed3 1.60 -0.05 -aromatic, o-substituted 1.65 0.19 0.09H -F 1.54 -0.40 -1.02 a -C1 1.os 0.18 0.13 1 -Br 1.07 0.45 0.55 -I 1.14 0.81 0.880 -0c (sp3) 1.22 - 1.07 -1.21 -0c (sp2) 1.21 -0.60 -1.00 -0co- 2.1 1 -0.35 -0.64 1.33 -0.34 -0.66 0.80 - 1.26 -1.21 1.17 -0.53 -0.99 -NCO-R 2.08 -0.57 -0.72 -N=N-pheny 1 2.39 1.11 0.67 -NO2 1.87 1.30 0.62 -CN 0.27 0.75 0.55
  • 183. 5.2 Alkenes 173Substituent R %emI Zcis Ztrans s -s- 1.11 -0.29 -0.13 -so- 1.27 0.67 0.41 402- 1.55 1.16 0.93 -sco- 1.41 0.06 0.02 C=C -SCN 0.94 0.45 0.41 -SFg 1.68 0.61 0.490 -CHO 1.02 0.95 1.17 11 -co- 1.10 1.12 0.87C -CO- conjugated2 1.06 0.91 0.74/ -COOH 0.97 1.41 0.71 -COOH conjugated2 0.80 0.98 0.32 -COOR 0.80 1.18 0.55 -COOR conjugated2 0.78 1.01 0.46 -CON 1.37 0.98 0.46 -coc1 1.11 1.46 1.01 -PO(OCH2CH3)2 0.66 0.88 0.671) The increment for "alkyl ring" is to be used if the substituent and the double bond arepart of a cyclic structure.2) The increment "conjugated" is to be used if either the double bond or the substituentis conjugated to other substituents.3) The increment "aromatic, fixed" is to be used if the double bond conjugated to anaromatic ring is part of a fused ring (such as in 1,2-dihydronaphthalene). H Chemical Shifts of Substituted Isobutenes(6 in ppm relative to TMS)1.70 4.63 1.68 5.13 1.80 5.17 CH3 H cH&H CH3 H 1.62 H C i 1.881.75 5.78 1.65 6.79 1.91 5.63 cH$==(H Br CH3 cHf4H CH3OCOCH3 c k HH CH3 CHO1.75 1.65 2.111.86 5.97 1.84 5.62 1.97 6.01 cHkH cHkH cHkH CH3 COCH3 CH3 COOCH3 CH3 COCl2.06 2.12 2.12
  • 184. 174 5 NMR HIH Chemical Shifts of Enols ( 6 in ppm relative to TMS, J in Hz) =16 =16 Hb Hb 5.04 5.605.2.2DienesI H Chemical Shifts and Coupling Constants of Conjugated Dienes( 6 in pprn relative to TMS, J in Hz)5.06 6*27 3Jab 10.2 4.86 6.21 5.61 3Jab10.2 5Jbf 0.7 #He b 3Jac 17.1 3Jac 16.9 4Jcd -0.8 3Jad 10.4 3Jad 10.3 6Jce -0.7 4Jae -0.9 5Jae 0.4 5Jcf 0.7 1.71 4Jaf -0.8 Hc Hd 4Jaf -0.8 4Jde -1.6 5.16 2Jbc 1.8 4.98 5.98 2Jbc 1.9 3Jdf 15.1 5Jbe 1.3 4Jbd -0.8 3Jef 6.6 5Jbf 0.6 6Jbe -0.7 5Jcf 0.7 6.59 1.72 3Jab 10.2 2Jbc 2.1 5Jc, 0.7 3Jac 16.9 4Jbd -0.8 6Jcf -0.65.03 3Jad 10.9 5Jbe -0.7 3Jde 10.8 H e 4Jae 5.45 -1.1 6Jbf 0.7 4Jdf -1.8 Hc Hd 5Jaf 0.2 4J,d -0.8 3Jef 7.0 5.11 5.92IH Chemical Shifts and Coupling Constants of Allenes( 6 in pprn relative to TMS, J in Hz)
  • 185. 5.3 Alkynes 1755.3Alkynes5.3.1Chemical Shifts and Coupling ConstantsI H Chemical Shifts and Coupling Constants of Alkynes C=C(6 in ppm relative to TMS, J in Hz)1.80 1.80 1.80 - -I: - H - CH3 4JH,CH3 2.91.91 2.15 1.12 4Jab 2.6 1.15H-CHz-CH3 2.59 ,CH3a b c 5 ~ a c0 3Jbc 7.4 I: = cy CH3 1.74 1.77 2.13 1.11 CH3 CH2-CH3 5 a b I Jlab 2.5 5.34 4Jab 2.0 5 ~ a c 1.0 2.93 7.42 7.23 5Jab 0.28i&ci:9 CH3 d 3Jbc 0.6 6~~~ 10.5 4 J b ~ 1.6 a - - b c d 7.24 6Jac -O.ll 7Jad 0.22 1.85 3Jcd 6.51.7-2.4 2.7-3.4 H = - R - H-mR1.3 2.1-3.3H+ 0-alkyl alkyl
  • 186. 176 5 NMR H 5.4 Alicyclics H Chemical Shifts and Coupling Constants of Saturated Alicyclic Hydrocarbons ( 6 in ppm relative to TMS, J in H z ) 0.20 2Jgem -4.3 In derivatives: 2Jgem -3 to -9 * 01.94 In derivatives: 2Jgem -10 to -17 3Jcis 9.0 3Jcis 6 to 12 3J,is 4 to 12 3~trans 5.6 3~trans to 9 2 3Jp,, 2 to 100 Throughout: Jcis > Jtrans 4Jcis =O 4Jpans -1 In derivatives: .44 In derivatives: 0 lS1 2Jgem -8 to -18 3Jcis 5 to 10 3Jtrans 5 to 10 0 At-lOOC: 2Jgem -11 to -14 3J,x,ax 8 to 13 3 Jeqm 2 to 6 Ha, 1.1 3~e9,eq 2 to 5 Generally: Jeq,ax Jeq,eq + 1 c b In derivatives: b 5.95 ,13.7 701 a 0.92 3Jab 1.5 to 2.0 3Jbc 0.5 to 1.5 io a 2.57 1.o -0.3 1.8 4.6 2.8 ed0~5*66 2Jgem,a -12.8 4Jbd 3Jab 1.3 b 2.27 3Jab,cis 9-3 5Jbe,cis -23 2*1 edoc;;3i8 a 3Jab,trans 5*7 5Jbe,trans 3*0 a 1.79 2Jgem,., -16.1 3Jcd 5.8 2.80 4Jbd 1.1 3Jbc 2.3 5Jbe 2.0 3Jcd 1.9 a 6-53 3Jab 5.1 4Jbc -0.2 b 6.22 5Jac 0.5 4Jbd -0.4 5.59 3Jab =lo 5Jad 1.4 4Jbe 2.0 1.96 3Jbc 1.5 5.85 4Jae 13 2Jcd O d 3Jaf 2.0 1.65
  • 187. 5.4 Alicyclics 177 b 5.71 3Jab=10 0 e 2.49 C 2.11 3Jbc 3*7 d 2.62 6 6 . 5 0 3Jab 11.2 5J,g -0.6 a b5.56 3Jab=10 c 6.09 4Jac o.8 3Jde C 2.1 1 3Jbc 5.3 3Jbc 5.5 4Jdf 0 f e d 5.26 3Jcd 8.9 5Jdg 2.22 5Jcf 0 0 2Jgem,e -13.0 0 0.51.47 f e 2.14 4J1,4 1.2 4J4,6n -0.5 4J1,5n -0.3 4J4,6x 0.7 4 J i , 5 ~ 0.2 3 ~ 4 , 7 a 2.1 3 ~ 1 , 6 n 0.1 3J4,7s 1.6 3 ~ 1 , 6 x 4.7 2J5n,5x -12.8 J I ,7a 1*2 3J5n,6n 9*1 3J1,7s 1.6 3J5n,6x 4.7 2J3n,3x -17.6 ~5 n ,7a -0.1 3J3n,4 0 ~5 n ,7 s 2.1 1.44 4J3n,7a 4.2 3J5x,6n 4.6 ~ 3 n , 7 a 4.2 3J5x,6x 12e1 3J3x,4 4.8 2J6n,6x -12.3 4J3x,5x 2.3 J6n,7 a 3 ~ 4 , 5 n 0.1 4J6n,7s 2.3 3J4,5x 4.3 2J7a,7s -10.2
  • 188. 178 5 H NMR In condensed alicyclics, couplings over four or more bonds are often observed. Such long-range couplings are particularly large if the arrangement of the bonds between the two protons is w-shaped: 4Jac = 7 4 J a ~4Jbd = 0 , H H HC CH3 signal broadened due to long- range coupling0 H Chemical Shifts and Coupling Constants of Monosubstituted Cyclopropanes (6 in ppm relative to TMS, J in Hz) Substituent X Ha Hb,d H ~ , e 3Jab 3Jac 2Jbc 3Jbd 3Jbe 3Jce -H 0.20 0.20 0.20 9.0 5.6 -4.3 9.0 5.6 9.0 C -CH=CH2 2.36 0.64 0.34 8.2 4.9 -4.5 9.3 6.2 9.0 -phenyl 1.71 2.65 2.83 9.5 6.3 -4.5 9.5 5.2 8.9 H -F 4.32 0.69 0.27 5.9 2.4 -6.7 10.8 7.7 12.0 a -C1 2.55 0.87 0.74 7.0 3.6 -6.0 10.3 7.1 10.6 1 -Br 2.83 0.96 0.81 7.1 3.8 -6.1 10.2 7.0 10.5 -1 2.31 1.04 0.76 7.5 4.4 -5.9 9.9 6.6 10.0 0 -OH 3.35 0.59 0.34 6.2 2.9 -5.4 10.3 6.8 10.9 N -NH2 2.23 0.32 0.20 6.6 3.6 -4.3 9.7 6.2 9.9 -CN 1.36 0.94 0.93 8.4 5.1 -4.7 9.2 7.1 9.5 0 -CO-cyclopropyl 1.70 0.56 1.02 7.9 4.6 -3.5 9.1 7.0 9.5 11 -COOH 1.59 0.91 1.05 8.0 4.6 -4.0 9.3 7.1 9.7 C -COOCH3 1.95 0.81 0.85 8.0 4.6 -3.4 8.8 6.9 9.6 / -COF 1.66 1.20 1.11 8.0 4.6 -4.5 10.1 7.5 9.3 -coc1 2.11 1.18 1.28 7.9 4.4 -4.5 9.2 7.6 10.0 -Li -2.53 0.43 -0.12 10.3 9.1 -1.6 7.7 3.2 6.5 -B(cyclopropyl)2 -0.25 0.66 0.61 8.9 5.8 -3.3 8.2 5.9 8.4 -Hg-cyclopropyl 0.00 0.75 0.47 9.6 6.9 -3.7 8.5 4.8 7.9
  • 189. 5.4 Alicyclics 179 H Chemical Shifts of Axially and Equatorially MonosubstitutedCyclohexanes (6 in p p m relative to TMS)Substituent R la 2a 2e 3a 3e le 2a 2e 3a 3e -D C -CHq -pheiyl 1.12 1.27 2.47 1.12 1.60 1.12 1.60 0.81 1.57 1.15 1.60 1.60 1.93 2.98 1.12 1.60 1.12 1.60 1.37 1.40 1.39 1.34 0 H 3.63 4.34 1.7 a -Br 3.81 4.62 1 -I 3.98 4.72 0 -OH 3.38 1.09 1.78 1.19 1.61 3.89 1.35 1.58 1.58 1.33 -0COCH3 4.46 4.98 1.47 2.3 N -NH2 2.52 3.15 -NHCH3 2.08 2.70 -NO2 4.23 2.2 1.9 4.43 1.6 2.6 S -SH 2.57 0.7 1.3 3.43 1.5 1.9
  • 190. 180 5 H NMR5.5Aromatic HydrocarbonsIH Chemical Shifts and Coupling Constants of AromaticHydrocarbons ( 6 in ppm relative to TMS, J in Hz) In derivatives: In derivatives: 0 7 . 2 6 3~0d0 6.5-8.5 7.67 3Jab 8-9 5Jae ~ 0 . 9 4J,eta 1.O-3.0 g~ 87.32 4Jac 6Jaf =-Oal 5Jpara 0.0-1 .O 5Jad 5Jag =0.2 f 35bc 5-7 4Jah=-0.5 e d 7Jbf ~ 0 . 3 6Jbg ~ 0 . 1 7.98 In derivatives: b7.61 3Jab 8.4 ; 7.44 3Jab 8*5-9*5 4Jac 0.8-1.5 5Jad 0.6-0.9 e d 5Ja, 10.8 8.40 3Jbc 6.5-8.0 f 4Jde 10.4 In derivatives: 3Jef 4In routine spectra, the small long-range couplings between aromatic protons andaliphatic substituents are not resolved. Nevertheless, they are diagnostically highlyrelevant because the line broadenings caused by them are easily detected (if there isa reference line in the spectrum, e.g. from another methyl group, or in an AAXXspin system of the aromatic protons). As a confirmation, a decoupling experimentmay be useful (line sharpening on weak irradiation of the frequency of thecoupling partner) or a COSY experiment is recommended.
  • 191. 5.5 Aromatics 181 CH3 ,CH31.25 FH31.32 CH3-C- CH37.09 7.08 6 7.05 7.28 7.186*99a & 7.08 2.91 2.04 c 3.33 8 6*82 3Jab 5.8 b 6.50 4Jac 0.7 6 Jad 2.0 3Jbc 2.0 . 7.01 2.85 9 3 a 1.60 3.91 7.31 7.38 7.19 3.87 7.55 7.28 A 2 -7.29 7.75 7.22 3 - a 7.15 ad d 7.46 d 7.79 4Jbd 0.6 3Jcd
  • 192. 182 5 NMR HEffect of Substituents on H Chemical Shifts of MonosubstitutedBenzenes (in ppm relative to TMS)Substituent X z2 z3 z4 -H 0.00 0.00 0.00C -CH3 -0.20 -0.12 -0.21 -CH2CH3 -0.14 -0.05 -0.18 -CH(CH3)2 -0.13 -0.08 -0.18 -C(CH3)3 0.03 -0.08 -0.20 -CF3 0.19 -0.07 0.00 -CC13 0.55 -0.07 -0.09 -CH20H -0.07 -0.07 -0.07 -CH=CH2 0.04 -0.05 -0.12 -CH=CH-phenyl (trans) 0.16 0.00 -0.15 -CZCH 0.16 -0.03 -0.02 -C eC-phenyl 0.20 -0.04 -0.07 -phenyl 0.22 0.06 -0.04 -2-pyridyl - 0.73 0.09 0.02H -r -0.29 -0.02 -0.23 a -C1 0.01 -0.06 -0.12I -Br 0.17 -0.11 -0.06 -I 0.38 -0.23 -0.010 -OH -0.53 -0.17 -0.44 -OCH3 -0.49 -0.11 -0.44 -OCH2CH=CH2 -0.45 -0.13 -0.43 -0-phenyl -0.34 -0.04 -0.28 -0COCH3 -0.19 -0.03 -0.19 -0CO-phenyl -0.1 1 0.07 -0.10 -0SO2CH3 -0.05 0.07 -0.01N -NH2 -0.80 -0.25 -0.64 -NHCH3 -0.83 -0.22 -0.68 -N(CH3)2 -0.67 -0.18 -0.66 -N+(CH3)31- 0.72 0.40 0.34 -NHCOCH3 0.38 -0.02 -0.26 -NHNH2 -0.60 -0.08 -0.55 -N=N-phenyl 0.67 0.20 0.20 -NO 0.55 0.29 0.35 -NO2 0.93 0.26 0.39 -CN 0.25 0.18 0.30 -NCS -0.11 0.04 -0.02
  • 193. 5.5 Aromatics 183Substituent X z2 z3 z4 S -SH -0.08 -0.16 -0.22 -SCH3 -0.08 -0.10 -0.24 -,%phenyl -0.06 -0.20 -0.26 -S-S-phenyl 0.24 0.02 -0.06 -SOzCH3 0.68 0.35 0.39 -S020CH3 0.68 0.34 0.36 -s02c1 0.68 0.23 0.34 -S02NH2 0.59 0.32 0.32 0 -CHO 0.61 0.25 0.35 11 -COCH3 0.60 0.11 0.19 C -COCH2CH3 0.63 0.08 0.18 / -CO-phenyl 0.44 0.10 0.19 -CO-(2-~yridyl) 0.86 0.1 1 0.20 -COOH 0.87 0.21 0.34 -COOCH(CH3)2 0.73 0.1 1 0.20 -COO-phenyl 0.88 0.15 0.25 -CONH2 0.69 0.18 0.25 -COF 0.71 0.21 0.38 -coc1 0.81 0.21 0.37 -COBr 0.77 0.21 0.38 -CH=N-phenyl 0.64 0.24 0.24 -Li 0.77 0.26 -0.29 -MgBr 0.40 -0.19 -0.26 -Mg-phenyl -0.49 0.18 0.25 -Si(CH& 0.19 0.00 0.00 -Si( phenyl)&l 0.32 0.07 0.12 -Sic13 0.52 =0.2 =0.2 P -Pb(phenyl)2Cl 0.68 0.28 0.11 -P(PhenY 112 -0.02 -0.33 -0.33 -PO(OCH3)2 0.46 0.14 0.22 -Zn-phenyl. - -0.36 0.02 0.05 -Hg-phenyl 0.00 0.00 -0.20
  • 194. 184 5 NMR H Effect of Substituents in Position 1 on the IH Chemical Shifts of Monosubstituted Naphthalenes (in ppm relative to TMS) Substituent X H-2 H-3 H-4 H-5 H-6 H-7 H-8 C -CHq -0.22 -0.13 -0.16 -0.03 -0.03 -0.01 0.10 -CH;CH3 0.01 0.08 0.03 0.17 0.14 0.17 0.380 -CH2CtCH -CH$1 -CF3 - 0.25 0.13 0.67 -0.07 0.01 0.15 -0.06 0.09 0.18 0.00 0.13 0.23 0.03 0.14 0.23 0.13 0.20 0.29 0.69 0.42 0.52 H -r -0.22 0.01 -0.11 0.13 0.15" 0.17* 0.42 a -C1 0.17 -0.04 -0.02 0.07 0.11 0.16 0.54 1 -Br 0.38 -0.09 0.03 0.05 0.11 0.19 0.51 -I 0.10 -0.48 0.18 -0.20 -0.07 -0.02 0.27 0 -OH -0.68 -0.15 -0.36 0.01 0.03 0.06 0.41 -OCH3 -0.68 -0.09 -0.38 -0.01 0.04 0.03 0.50 -0C0CH3 -0.15 0.11 -0.10 0.03 -0.07 0.07 0.16 N -NH2 -0.77 -0.17 -0.51 -0.06 -0.02 -0.01 -0.01 -N(CH3)2 -0.30 0.03 -0.19 0.11 0.13 0.10 0.55 -NHCOCH3 0.40 0.17 0.05 0.26 0.20 0.24 0.44 -NO2 0.80 0.14 0.19 0.33 0.21 0.32 0.72 -NCO -0.29 -0.15 -0.19 -0.03 0.05 0.03 0.24 -CN 0.48 0.12 0.30 0.16 0.22 0.29 0.51 0 -CHO 0.44 0.10 0.21 0.06 0.14 0.23 1.52 11 -COCH3 0.38 -0.07 0.10 0.01 0.04 0.13 1.08 C -COOH 1.11 0.23 0.42 0.24 0.25 0.34 1.43 / -COOCHq- 0.80 0.05 0.22 0.08 0.10 0.20 1.30 -coc1 1.17 0.17 0.37 0.17 0.21 0.30 1.04 * Assignment uncertain
  • 195. 5.5 Aromatics 185Effect of Substituents in Position 2 on the lH Chemical Shifts ofMonosubstituted Naphthalenes (in ppm relative to TMS)Substituent X H-1 H-3 H-4 H-5 H-6 H-7 H-8C -CH3 -0.21 -0.14 -0.06 0.01 -0.04 -0.01 -0.03 -CH2CH3 -0.05 0.02 0.09 0.12 0.08 0.12 0.10 -CH(CH3)2 -0.07 0.01 0.05 0.07 0.04 0.06 0.07 -CH=CH2 0.06 0.30 0.11 0.11 0.10 0.12 0.11 -CF3 0.45 0.30 0.23 0.25 0.22 -c1 0.13 0.08 0.07 0.12 0.13 0.15 0.05 -Br 0.23 0.14 -0.09 -0.08 0.05 0.07 0.010 -OH -0.69 -0.35 -0.05 -0.04 -0.11 -0.02 -0.14 -OCH3 -0.70 -0.28 -0.07 -0.03 -0.11 0.00 -0.07 -0COCH3 -0.19 -0.14 0.01 0.06 -0.04 0.11 0.08N -NH2 -0.88 -0.56 -0.16 -0.12 -0.23 -0.09 -0.23 -N(CH3)2 -0.90 -0.33 -0.13 -0.12 -0.23 -0.08 -0.16 -NHCOCH3 0.50 0.14 0.07 0.06 0.07 0.10 0.08 -NO2 0.98 0.82 0.18 0.18 0.28 0.24 0.26 -CN 0.51 0.25 0.20 0.19 0.31 0.26 0.190 -CHO 0.62 0.61 0.23 0.21 0.30 0.24 0.29 11 -COCH3 0.76 0.69 0.19 0.17 0.25 0.21 0.26C -COOH 1.00 0.73 0.37 0.36 0.36 0.32 0.48/-COOCH3 0.83 0.66 0.09 0.09 0.15 0.11 0.17 -coc1 1.02 0.74 0.39 0.49 0.32 0.37 0.37
  • 196. 186 5 ’H NMR5.6Heteroaromatic Compounds5.6.1Non-Condensed Heteroaromatic Rings‘ H Chemical Shifts and Coupling Constants of Non-CondensedHeteroaromatic Compounds ( 6 in ppm relative to TMS, II in H z ) J 4Jb, 2.3 b 7.12 3Jab 5.4 b7.09 3Jab 0.8 b7.13 3Jab 1-2d‘0 Se a 7.70 4Jac c l a 1 4Jad 2.5 7.95 0 n a 7.69 4Jac O S c 4Jbc 0.0 7.70 N 0a7.13 4Jac 1-2 3Jbc 3Jbc 3.6 Hd 13.4 (J values in derivatives) ;gba ‘qb 8.15 6.28 3Jab 1.7 7.55 6.25 3Jab 2.1 4Jac 0.3 4Jac 0.0 4Jbc 1.8 y N a7.55 3Jbc 2.1 0 8.39 H d 13.7 (in CS,)8.56 3 19b7.26 aJacc0.4 :b 4.7 a8.72 3Jbc 1.7 S H 12 N-Nc( 8.27 N H 13.5 -12 (in H2S04)
  • 197. 5.6 Heteroaromatics 187 7.64(in CDCl3) b 7.25 In DMSO: a 8.59 7*38 775 In den- vatives: 3Jab 6.0 4-6 4Jac 1.9 0-2.5 5Jad 0.9 0-2.5 6 e 9.04 N H 3Jab 6.0 b8.50 4JaC 16 5Jad 0.8 a9.23 45 ae 1.0 3Jbc 7.9 4Jae 0.4 0-0.6 (in CD3CN) 4Jbd 1.4 3J13c7.6 7-9 4Jbd 1.6 0.5-2de 7.32 C f b 7.40 4JaC 3Jab 6.5 5Jad 0.6 a 8 * l 9 4Jae 1.9 3Jbc 7.7 9 N, / b755 a9.24 7.22 1.o 0 4Jbd 2.1 0
  • 198. 188 5 H NMR Effect of Substituents on the IH Chemical Shifts of Mono- substituted Furans (in ppm relative to TMS) 6H-2 = 7.38 + zi,2 6H-3 = 6.30 + zi,3 6H-4 = 6.30 + zi,4 ~ H - S= 7.38 + Zi,5 Substituent in position 2 or 5 : in position 3 or 4: 23 24 25 32 34 z35 z54 z53 z52 z45 z43 z42 -H 0.00 0.00 0.00 0.00 0.00 0.00 C -CH3 -0.42 -0.12 -0.17 -0.27 -0.17 -0.15 -CH20H -0.11 -0.05 -0.08 -CH2NH2 -0.24 -0.06 -0.10 -CH=CHCHO 0.70 0.35 0.420 0&H3 -Br N -NO2 -0.02 0.12 -1.34 1.21 0.03 -0.13 -0.23 0.55 -0.01 -0.01 -0.68 0.51 -0.13 -0.46 0.04 -0.28 -0.22 -0.37 -CN 0.85 0.32 0.28 0.45 0.22 -0.02 S -SCH3 -0.12 -0.06 -0.09 -0.18 -0.05 -0.15 -SCN 0.40 0.06 0.10 0.19 0.19 0.03 0 -CHO 0.93 0.31 0.34 0.48 0.37 -0.07 II -COCH3 0.81 0.23 0.19 0.46 0.36 -0.12 C -COCF3 1.34 0.50 0.64 / -COOH 0.94 0.33 0.41 0.89 0.54 0.36 -COOCH3 0.85 0.22 0.25 0.45 0.33 -0.14 -coc1 1.20 0.39 0.48
  • 199. 5.6 Heteroaromatics 189Effect of Substituents on the I H Chemical Shifts of Mono-substituted Pyrroles (in ppm relative to TMS) Substituent in 212 z13 position 1 15 z14 -H 0.00 0.00 -CH3 -0.25 -0.13 -CH2CH3 -0.16 -0.12 -CHz-phenyl -0.12 -0.04 -phenyl 0.33 0.14 -COCH3 0.56 0.12 -CO-phenyl 0.57 0.18Substituent in position 2 or 5: in position 3 or 4: z23 z24 z25 z32 z34 z35 254 253 z5 2 z45 z43 z42 -H 0.00 0.00 0.00 0.00 0.00 0.00 C -CH3 -0.33 -0.16 -0.26 -0.34 -0.20 -0.20 N -NO2 1.06 0.24 0.43 1.04 0.70 0.13 -CN 0.83 0.23 0.5 1 S -SCH3 0.18 0.05 0.10 -SCN 0.48 0.10 0.28 0 -CHO 0.93 0.27 0.61 11 -COCH3 0.78 0.10 0.44 0.79 0.63 0.15 C -COOCHq 0.79 0.13 0.29 0.90 0.73 0.16
  • 200. 190 5 NMR HEffect of Substituents on the I H Chemical Shifts of Mono-substituted Thiophenes (in p p m relative to TMS) 5H-2 = 7.20 + zi,2 54032 S 6 ~ - = 6.96 + Zi,3 3 6 ~ - = 6.96 + Zi,4 4 6 ~ =~ 5 + Zi,5 7.20Substituent in position 2 or 5: in position 3 or 4: z23 z24 z25 z32 z34 z35 z54 z53 z52 z45 z43 z42 -H 0.00 0.00 0.00 0.00 0.00 0.00 C -CH3 -0.36 -0.24 -0.29 -0.45 -0.22 -0.14 -C%CH 0.15 -0.16 -0.12 H -c1 -0.25 -0.22 -0.22 -0.22 -0.11 -0.03 a -Br -0.05 -0.27 -0.11 -0.12 -0.08 -0.10 0.13 -0.33 0.01 0.06 0.00 -0.19 -0.72 0.59 -3.10 -0.94 -0.43 -0.82 -1.10 -0.38 -0.20 N -NH2 -0.95 -0.45 -0.85 -1.25 -0.53 -0.25 -NO2 0.82 -0.03 0.30 0.95 0.60 0.03 -CN 0.47 0.00 0.28 0.63 0.20 0.15 S -SH 0.00 -0.20 -0.07 -0.22 -0.20 -0.10 -SCH3 -0.03 -0.18 -0.05 -0.33 -0.10 -0.03 -S02CH3 1.03 0.20 0.79 0.96 0.48 0.46 -soy21 0.73 0.06 0.45 -SCN 0.30 -0.05 0.28 0.25 0.05 0.05 0 -CHO 0.65 0.10 0.45 0.79 0.45 0.03 11 -COCH3 0.57 0.00 0.28 0.68 0.47 -0.02 C -COOH 0.80 0.08 0.40 0.99 0.48 0.24 / -COOCH3 0.70 -0.05 0.20 0.78 0.47 -0.05 -coc1 0.88 0.06 0.44 1.05 0.50 0.03* Present in the keto form
  • 201. 5.6 Heteroaromatics 191Effect of Substituents on the I H Chemical Shifts of Mono-substituted Pyridines (in p p m relative to TMS; solvent: DMSO) 6H-2 = 8.59 + zi,2 4 6H-3 = 7.38 + zi,3 6H-6 = 8.59 + zi,6Substituent in position z23 z24 z25 z262 or 6 z65 z64 z63 z62 -H 0.00 0.00 0.00 0.00 C -CH3 -0.11 -0.01 -0.16 0.08 -CH2CH3 -0.09 -0.08 -0.15 0.03 -CHz-phenyl 0.12 -0.08 -0.20 0.02 -CH20H 0.37 0.30 0.02 0.06 -CH2NH2 0.20 0.07 -0.09 0.05 -CH2S-n-C3H7 0.04 -0.08 -0.26 -0.06 -CH2S02-phenyl 4 =-0.3 4 -0.2 -CH=CH2 0.1 1 -0.14 -0.1 1 0.04 -phenyl 0.16 -0.28 -0.40 -0.03 -2-pyridyl .. 1.12 -0.09 -0.26 0.00 H SF -0.10 0.40 0.12 -0.13 a -C1 0.32 0.29 0.29 0.20 1 -Br 0.41 0.17 0.19 0.02 0 -OH -0.7 0.0 -1.0 -0.9 -0-n-CqHg -0.53 -0.03 -0.49 -0.32 N -NH2 -0.68 -0.3 1 -0.78 -0.48 -NHCOCH3 0.94 0.16 -0.20 -0.10 -NHCOOCH2CH3 0.59 0.07 -0.24 -0.21 -N 2 "O 0.34 0.31 -0.03 -0.41 -NO2 1.09 0.67 0.74 0.26 -CN 0.88 0.38 0.55 0.39 S -SCH3 -0.09 -0.11 -0.29 -0.11 0 -CHO 0.93 0.42 0.50 0.44 11 -COCH3 0.82 0.37 0.39 0.28 C -CO-phenyl 0.62 0.55 0.32 0.28 / -COOH 0.97 0.43 0.48 0.42 -COO-n-CqHg 0.86 0.39 0.35 0.35 -CONH2 1.05 0.47 0.43 0.30 -CSNH2 1.41 0.37 0.33 0.25 -CH=NOH 0.40 0.28 0.01 0.16
  • 202. 192 5 NMR HSubstituent in position 3 or 5: in position 4: z32 z34 z35 z36 z42 z43 z56 z54 z53 z52 z46 z45 -H 0.00 0.00 0.00 0.00 0.00 0.00C -CH3 -0.02 -0.06 -0.09 -0.02 0.01 -0.10 -CH2-phenyl 0.00 -0.15 -CH20H 0.11 0.15 0.04 -0.04 0.07 0.14 -CH2NH2 0.16 0.13 0.04 0.00 0.01 0.03 -CH2S-n-C3H7 -0.06 -0.13 -CH2S02-phenyl -0.24 -0.15 -0.22 0.01 -0.09 -0.18 -CH=CH2 0.12 0.13 -CH=CH-COOH 0.45 0.52 0.34 0.17H -F -0.01 0.00 0.14 -0.10 -0.07 -0.03a -C1 0.20 0.24 0.19 0.09 0.00 0.051 -Br 0.20 0.43 0.34 0.18 0.09 0.350 -OH -0.03 -0.37 0.15 -0.24 -OCH3 0.02 -0.29 -0.06 -0.49 0.02 -0.36 -0.15 -0.74 0.37 0.50 0.06 -0.16 -0.05 0.3 1 -CN 0.63 0.72 0.43 0.50 0.46 0.62S -SCHz-phenyl -0.02 0.04 -S-phenyl 0.05 -0.16 -SO3H 0.70 1.14 0.81 0.700 -CHO 0.45 0.42 0.12 0.20 0.47 0.58 I t -COCH3 0.72 0.68 0.30 0.37 0.40 0.58C -CO-phenyl 0.47 0.54 0.37 0.34 0.36 0.40/ -COOCH3 0.62 0.60 0.23 0.34 -COO-n-CqHg 0.34 0.54 -CSNH2 0.68 0.67 0.24 0.26 0.35 0.68 -CH=NOH 0.39 0.43 0.19 0.15 0.24 0.37
  • 203. 5.6.2Condensed Heteroaromatic Rings H Chemical Shifts of Condensed Heteroaromatic Rings(6in ppm relative to TMS, IJ( in Hz) 7.49 3Jab 2.5 4Jce 1.2 5Ja,, 6Jad, 6Jae, 5Jaf: 0 5Jcf 0.87.13d a 7.52 4Jbc, 5Jbd, 6Jbe: 0 3Jde 7.37.19e 5Jbf 0.9 4Jdf 0.9 f 7.42 3Jcd 7.9 3Jef 8.4 7.55 3Jab 3.1 4Jce 1.26.99 d @ 7.26 a 5Ja,, 6Jad, 6J,e, 5Jaf: 0 3Jag 2.5 5Jcf 0.9 5Jcg 0.87.09 e 4Jbc, 5Jbd, 6Jbe: 0 3Jde 7.1 f Hs 10.1 7.40 5Jbf 0.7 4Jdf 1.3 4Jbg 2.0 3Jef 8.1 3Jcd 7.8 6Jdg, 5Jeg, 4Jfg: 0 7.83 3Jab 5.5 4Jce 1.1 5Jc. @4:L 5Jac, 6Jad, 6Jae,5Jaf:0 0.97.36 d 4Jbc, 5Jbd, 6Jbe: 0 3Jde 7.27.34e 5Jbf 0.8 4Jdf 1.0 f 7.88 3Jcd 8.0 3Jef 8.0 OJaC -0.17.41~ a 8.42 6Jad 0.47.41d 0 5 -ae n n 1 -.- 4J,e 1.2 e 7.67 3Jbc 8.2 3Jde 8.3 7.70 7.70
  • 204. 194 5 H NMR 8.08 5Jab 0.1 4Jbd 1.1 6Jac -0.2 5Jbe 0.6 a 9.26 6Jad 0.4 3Jcd 7.27.50d e s 5J,e 0.1 4Jce 1.1 8.14 3Jbc 8.2 3Jde 8.2 7.60 7.96 d 3Jab 9.2 L 9.06T) N 8.34 H =116.50 eWa2 7.256.31f N / b 6.64 a 7.14 3Jab 2.7 4Jac 1.2 5Jcg 1.0 3Jde 9.0 4Jdf 1.0 5Jdg 1.2 3Jef 6.4 7.76 4Jeg 1.0 3Jfg 6.8
  • 205. 5.6 Heteroaromatics 1956*71 c a()6.52 d 0 577 3Jab 7.9 4Jac 1.5 5 Jad 0.4 3Jbc 7.9 7.63 7.80 3Jab 9.8 3Jde 8.6 3Jcd 8.5 4Jdf 1.8 4Jce 2.0 3Jef 8.5 5Jcf 0.0 f 7.20 3Jab 6.1 3Jde 7.0 3Jcd 8.0 4Jdf 1.17.43d / b 6.34 4Jce 1.8 3Jef 8.47.68e a 7.88 5JCf0.5 f 7.47 7.19 Jab 7.8 4J,c 1.37 . 1 2 b u 1 ) 6.42 5Jad 1.1 c 3Jbc 7.1 d 7.68 8.00 3Jab 4.3 4Jdf 1.6 4Jac 1.8 5Jdg 0.57.43e / b 7.26 3Jbc 8.3 3Jef 6.87.61 f @a 8.81 5Jcg 0.8 4Jeg 1.1 g 3Jde 8.2 3Jfg 8.2 8.05
  • 206. 196 5 H NMR 7.74 3Jab 6.0 4Jac 1.1 3Jbc 8.5 g J . 8.75 0 7.71 7.50 4J,b 0.8 3Jde 8.7 5Jac 0 4Jdf 1.1 5Jad ~0.5 5Jdg 0.9 3Jbc 6.0 3Jef 7.0 g a 7.87 9.15 5Jcg 0.8 4Jeg 1.3 3Jfg 8.2 8.77 7.57 7.73 3Jab 5.7 3Jde 6.9 5Jbf 0.8 4Jdf 1.3 3Jcd 7.8 3Jef 8.6 4Jce 1.5 f 5Jcf 0.8 8.30 7.84 9.29 4Jab 0 3Jde 6.9;:;::$yJ 5Jbf 0.5 4Jdf 1.2 3Jcd 7.9 3Jef 8.5 f a 9.23 4Jce 1.2 8.01 5Jcf 0.8 8.07 3Jab 1.8 3Jc-j 8.4 4J,e 1.6 f 5Jcf 0.6 3Jde 6.9
  • 207. 5.6 Heteroaromatics 197 7.93 9.44 5Jac 0.4 3Jcd 8.2 4Jce 1.2 5Jcf 0.6 f a 3Jde 6.8 d 7.84 3Jab 8.5 3Jbc 7.3 4Jac 0.9 4Jbd 1.3 5Jad 0.6 3Jcd 7.6 a 7.48 e 8.08 5Jae 0.7 3Jcd 7.2 3Jbc 8.2 4Jce 1.2 4Jbd 0.9 3Jde 7.8 H b7.49 5Jbe 0.7 a 10.3 9.09 3Jab 9.0 3Jbc 6.6 4Jac 1.2 4Jbd 1.4d y 7 ./ 6 4 b7.89 5Jad 0.6 3Jcd 8.2 5Ja, 0.9 4Jde 0.4 a 8.22 d 8.36 3Jab 8.4 3Jbc 7.1 4Jac 1.1 4Jbd 1.8 5Jad 0.5 3Jcd 8.0 a 7.50 5Jae 0.4 3Jcd 7.0 e 8.27 3Jbc 8.6 4Jce 1.4 4Jt,d 1.0 3Jde 8.2 5Jbe 0.4 H b7.57 a11.70
  • 208. 5.7 Halogen Compounds 5.7.1 Fluoro Compounds Fluorine in nature occurs 100% as 19F, which exhibits a s in quantum number B I = 1/2. The signals of H atoms are split by coupling to F up to a distance of about four bonds. IH Chemical Shifts and Coupling Constants of Fluoro Compounds (8in ppm relative to TMS,J in Hz) 4.10 5.45 6.25 CH3F 2JHF 46.4 CH2 5 2 J 50.2 ~ ~ CHF3 2 J 79.2 ~ ~ 1.24 2J,F 46.4 1.7 ~ J , F57.3 1.34 b /F 3Jb~ 25.2 b y a F 6.1 3JbF 2009 a 3J,b 6.9 F 3J,b 4.5Ha 4.36 4.37 H b -p 2Ja~ 3Jb~ 84.7 3J,b 12.8 20.1 3Jac 4.7 1.57 H = F 3 J 15.0 ~ ~ 4.03 Hc H,6.17 3 J c 52.4 2Jbc -3.2 ~ e Hd 0.69 a 4.32 3J,b 5.9 3Jac 2.4 2Jbc -6.7 3Jbd 10.8 3Jbe 7.7 d6 C 7.03 3 J , ~ 8.9 3J,b 8.4 4 J t , ~ 4J,c 1.1 5.7 e / b7.24 J,F 0.2 J,d 0.4 a 6.97 4J,c 2.7 3Jbc 7.5 3Jc, 12.0 4Jbd 1.8
  • 209. 5.7 Halogen Compounds 1995.7.2Chloro Compoundsl H Chemical Shifts and Coupling Constants of ChloroCompounds ( 6 in ppm relative to TMS,J in H z )3.06 5.33 7.24 1.33 Cl 3J 7.2CH3Cl CH2C12 CHC13 3.472.07 3.67 1.81 0.92 1.68 a//Cl 3J 6.8 m C 1 -l C Y 9 3J 6*1 cE 1 1.06 3.47 1.41 3.421.55 3J 6.4 1.60 3Jab 14.5 3Jac 7.5 5.39 Hc Ha6.26 2Jbc -1.4 1.78 Hl - C Hal 0.870 . 7 4 Hb l :v Jab 7.0 3Jac 3.6 2Jbc -6.0 &:: d H 4 . 3 4 H i "a 2.55 3Jbd 10.3 e Hd 3Jbe 7.1 3Jc, 10.6d Fe o a 7 . 2 7 / b7.20 4 :: 3Jab 8.1 2.3 1.1 5Jad 0.5 e 6 i /7b719 3 .81 3Jab 8.1 4Jac 1.1 4Jac 0.5 5Jad 2.4 C C 7.14 3Jbc 7.5 7.17 3Jbc 7.5 4Jbd 1.7 4Jbd 1.4
  • 210. 200 5 H NMR 5.7.3 Bromo Compounds H Chemical Shifts and Coupling Constants of Bromo Compounds ( 6 in p p m relative to TMS,J in Hz) 2.69 4.94 6.82 1.66 CH~BI CH2Br2 CHBr3 Br 3.37 2.47 3.63 1.89 1.73 r?ig3J 6.4 B r w B r b B r 1.06 3.35 7% 4 Br 1.76 3Jab 14.9 2.33 yBr 5.97Hc 3Jac 7.1 Ha 6.44 2jbC -1.9 Hr B -Hal 0.96 3Jab 7.1 Hb 3Jac 3.8 &H 4.62 0.81 F y B r *JbC -6.1 H - H a 2.83 3Jbd 10.2 e Hd 3Jbe 7.0 3Jc, 10.5 3Jab 8.0 4Jac 1.1 e a 7.43 5Jad 0.5 d / b7.15 C 4J,c 2.2 3Jbc 7.4
  • 211. 5.7 Halogen Compounds 2015.7.4lodo CompoundsI H Chemical Shifts and Coupling Constants of Zodo Compounds( 6 in ppm relative to TMS, J in Hz)2.16 3.90 4.91 1.88 CHI3 /ICH3I CH212 3.162.96 - 3J 7.0 3.70 1.88 0.93 1.80 1- T 1 - 1 - y lI . 2 4 1.03 3.16 1.42 3.201.89 1.95 6.57HhI %: 1;:;; - I: - I 2.06 y:.24 Y 623HC Ha *JbC -1.5 6.53 Hal 1.04 3Ja13 7.5 Hb 3Jac 4.4 8 &: d H 4 . 7 20.76H cy: H : e Hd 2Jbc a 2.31 3Jbd -5.9 9.9 3Jbe 6.6 3Jc, 10.0 3Jab 7.9 4Jac 1.1 d b /7 b7.03 e a . 6 4 5Jad 0.5 C 4Ja, 1.9 7.25 3Jbc 7.5 4Jbd 1.8
  • 212. 202 5 H NMR 5.8 Alcohols, Ethers, and Related Compounds 5.8.1 Alcohols H Chemical Shifts and Coupling Constants of Alcohols (6 in ppm relative to TMS, J in Hz) Aliphatic and alicyclic alcohols: 0.5-3.0 (in DMSO: 4-6) Phenols: 4.0-8.0 (in DMSO: 8-12) Hydrogen bonds strongly deshield hydroxyl protons. The position of the signal may depend heavily on the experimental conditions. If a compound contains several kinds of hydroxyl protons (-OH, -COOH, H20), in general only one signal at an average position is observed because of rapid exchange. In dimethyl sulfoxide (DMSO) as solvent, this exchange in most cases is so slow that isolated signals are observed. In this case, the chemical shifts of hydroxyl protons are characteristic. However, if the sample contains strong acids or amine bases, the exchange rate increases, and also in DMSO, a signal at an average position is observed. Frequently, intermediate exchange rates lead to very broad signals extending over several ppm and, therefore, sometimes not discernible in routine spectra. As a consequence of fast intermolecular exchange of the hydroxyl protons, their0 coupling with the protons on the adjacent carbon atoms is usually not observed. However, in very pure (acid-free) solutions or in DMSO, the exchange is sufficiently slow so that the H-0-C-H couplings become visible. Their dependence on the conformation is analogous to that shown by the H-C-C-H couplings (Chapter 5.1). In case of fast rotation: 3 J = 5 Hz. In cyclohexanols, the ~ ~ ~ ~ vicinal coupling constants for axial hydroxyl protons (3.0-4.2 Hz) are lower than those of equatorial ones (4.2-5.7 Hz). 3.39 3.9 in DMSO: 1.18 2.61 liquid: in DMSO: 1.53 2.26 CH30H, 3J,b 5.2 coHa 6, 5.27 6,4.5 -H O b 6, 3.66 0.93 3.49 (in CDCl,) 3.59 6 1.19 , (in CDCl3) (in CDcl3) ,Jab 4.8 ,JbC 6.9
  • 213. 5.8 Alcohols, Ethers, and Related Compounds 203 1.16 2.16 3Jab 6.2 1.22 2.01 OH liquid: cl&OH 2.96 cl Y O H 4.15 6 , 1.23 (in CDC13) (in CDCl3) (in CDCl3) 6, in DMSO: 6.8 0OHJ (H2 = -c (in DMSO) 5.2 (a2 (in DMSO) 5.6 CH-OH (in DMSO) 3.40 For derivatives For derivatives inDMSO: 0 4.0-4.5 3Ja,0H 4.2-5.7 1.45 1.17 7.00 6.82 NO2 4Jbd 1.7 (in CDCl3) (in CC14) (in DMSO) * in DMSO: 6 0 ~ 9 . 3
  • 214. 204 5 H NMRI H Chemical Shifts of Enols ( 6 in ppm relative to TMS,J in H z ) =16 -16 3Jab 9.7 3Jab5.1 3Jbc =8 Ha CH3 Q 7.90 H b 2.11 2.00 0 5.04 5.60 (in CDC13, partly enolized)5.8.2Ethers H Chemical Shifts and Coupling Constants of Ethers(6 in ppm relative to TMS, in Hz) J 3.21 2Jgem -10.6 3.37 3.27 0.930/ f i0% b 3J& 1.15 1.55 *) y- 3.40 1.38 1.54 0.92 *O , A 1.24 3.16 Hb6.44 4Jab 0.3 3.74 . V. 6 3Jab 7.0 Hc 3.88 3Jbc 7.0 Hd 3.96 4Jbc 0.4 ao+ a&o Hd 4.03 3Jbd 14.1 2Jcd -2.0 1.27 Y 4.17 He 3Jcd 6.9 3Jce 14.4(in TMS) 2Jde -1.9 H Chemical Shifts and Coupling Constants of Cyclic Ethers( 6 in ppm relative to TMS, in Hz) J In derivatives:A 2.54 2Jgem 5 - 6 3Jcis 4.5 3~trans3.1 Throughout: Jcis > Jtrans
  • 215. 5.8 Alcohols, Ethers, and Related Compounds 205c e a 4.73 b 2.72 2Ja,gem -5.8 2Jb,gem- 11.o 3jCis trans 8.7 6.6 6 1.59 31Jlac <0.36.22 d c o 4.20 3Jab,cis b 8*3 Jab,trans 0.7 3Jbc 2.5 d 0 c a 4.63 3Jab 4J b 5.89 4JaC -2.5 4.82 2.53 ad,& 7.1 4Jbd 2.6 4Jad,trans 4*6 3Jcd 2.6 3Jbc 6.33.96 d1.85 e 0;65; 1.98 c 3Jab 6.2 4Jac 2.0 3Jbc 3.8 4Jbd 0.6 2.66 a 6.17 3Jab 5.0 ;Qa 7.89 3Jab 0.3 5Jac 6o 4Jac 2.46.38 c 5Jad 1.2 I I b 6.34 4J,d 2.7 7.56 3Jbc 6.3 0 4Jbc 1.1 4Jbd 1.5 3Jcd 9.4
  • 216. 206 5 H NMRI H Chemical Shifts and Coupling Constants of Aromatic Ethers(6 in ppm relative to TMS, J in Hz) a 5Jab~ 0 . 8f0e p 3*73 3Jbc 8.3 b 6.77 4Jbd c 7.15 5Jbe 0.4 4Jbf 2.7 d 6.82 3Jcd 7.4 C 3Jce 1.8 6.98I H Chemical Shifts and Coupling Constants of Acetals, Ketals,and Ortho Esters ( 6 in ppm relative to TMS, J in Hz) 0- 3.204.44< J 0- 5.1 - J fO-(O O 3.53 5*03 7 1 . 1 3 4.9 2Ja,gem -7.5 4.70 0 b a 3.9 3Jab,cis 7*3 ~ab,trans 6.0 0 3 . 8 0 1.68n. 0t5 ) 00
  • 217. 5.9 Nitrogen Compounds 2075.9Nitrogen Compounds5.9.1AminesAmine and Ammonium Protons (6 in ppm relative to TMS, IJI in H z )Chemical shifts of amine protons lie around 0.5-5 ppm depending on solvent,concentration, and hydrogen bonding. Those of ammonium protons are foundbetween ca. 6 and 9 ppm: alk-NH2 0.5-4.O(W2-W 2.5-5.0 @ H 2 + - a l k . 6-9 NCoupling of amine protons with vicinal H atoms is usually not seen in aliphaticamines because of their rapid intermolecular exchange. However, for =C-NH-CHmoieties (enamines, aromatic amines, amides, etc.), the exchange rate is slowerand splitting is often observed. The H-C-N-H coupling depends on theconformation in a similar way as the H-C-C-H coupling (see Chapter 5.1). ForN-CH3 and N-CH2 groups: 3 J = 5-6.~ ~ ~ ~ In acidic media (e.g., in trifluoroacetic acid as solvent), the exchange of theammonium protons is slowed down to such an extent that the vicinal couplingH-N+-C-H generally becomes observable. In other media, signals are usuallybroad owing to intermediate exchange rates. The signals of amine and especially of ammonium protons are often broadenedadditionally because the 14N-lH coupling is only partly eliminated by thequadrupole relaxation of I4N (spin quantum number, I = 1; natural abundance,99.6 %; ~ J N H= 60). This line broadening has no effect on the vicinal H-C-N-Hcoupling so that sharp multiplets can be observed for neighboring H atoms. In
  • 218. 208 5 ‘H NMR ammonium compounds of high symmetry, the quadrupole relaxation is slow and the coupling with 14N leads to triplets of equal intensity for a l three lines. l NHq+ lJNH 52.8 H Chemical Shifts and Coupling Constants of Amines (6 in ppm relative to TMS,J in Hz) 2.47 CH3NH2 1.10 H 3.06 /“2 N,/ 1.00 2.74 2.86 1 2.43 3.27 1.27 1.43 1.15 -r 2 J a =OS //“2 1.03 “2 -a b L 1- 3 J b ~1.9 0.93 2.61 3.07 1 - (in D20)N 1.50 H 1.90 1.04 H 1.0 0.92 1.43 1.77 A N - “2 0.91 2.56 1.33 2.68
  • 219. 5.9 Nitrogen Compounds 209 &.8i 2.421.62 H HNH 0.91 1.16H~ H 1r73 1.24 1.78 1.18 3J,b 8.0 / 2*78 3J,b 8.2 ,2.94 5Jad 1.1e 6 a 6 . 4 6 4Jac 0.5 3.55 HNd / b7.01 4 C J,, 2.5 6.62 3Jbc 7.4 C 4Jbd 1.6 6.58 4Jbd 1.7 NO2 6 " in DMSO: 7.32 / 2.85 3J,b 8.4 3.09 I / 3.72 4J,c 1.0e b a 6 . 5 9 5Jad Os4d / b7.08 4Jae 2.8 C 3Jbc 7.3 C 6.60 4Jbd 1.8 NO2 7.57I H Chemical Shifts and Coupling Constants of Cyclic Amines(6 in ppm relative to TMS, J in Hz) N H 0.9 H 1.84b N a 1.612Jgem=13Jab.cis =6 2.23 1.59 C z4 J 1.5 I 2.25 H 1.92 I I 2.27 (N)2.87 0 3.67 ( l88 N:37 ; N H2.12
  • 220. 210 5 H NMR 5.9.2 Nitro and Nitroso Compounds H Chemical Shifts and Coupling Constants of Nitro and Nitroso Compounds ( 6 in ppm relative to TMS, J in Hz) - 4.29 1.58 2.01 CH3N02 NO2 f i NO2 4.37 1.03 4.28 1.53 1.07 2.07 1.59 72 NO2 1.50 4.47 H 4.22 6 J 4.91 4 5 4 . 4 3 2.26, 2.12 1.88, 1.70 H H 2.2 1.6 6.55 - " "< a Hc 5.87 7.12 3Jab11.8 NO2 2Jbc 0.9 6 3Jac 17.9 e / d c b 7.52 3Jab a 8.21 4Jac 5Jad 4Jae 8.4 la2 : 0.4 2.4 6 C a b 7.57 3Jab 7.84 4Jac 5J,d 4Jae 7.9 1.3 0.6 2.0 7.64 3Jbc 7S 7.63 3Jbc 7.4bi 4Jbd 1.5 4Jbd 1.4 5.9.3 Nitrosamines, Azo and Azoxy Compounds I H Chemical Shifts of Nitrosamines, Azo and Azoxy Compounds ( 6 in ppm relative to TMS) Generally: 2.96 ZCis < Ztrans for a-CH3, a-CH2, and /? 1.15 4 q ,p P-CH3 protons &is > Ztrans for a-CH protons FN 3.76 1.52 3 4.26 N-N
  • 221. 5.9 Nitrogen Compounds 21 14.16 / N+=N N+=N 0 3.16 O-/ h1.285.9.4Imines, Oximes, Hydrazones, and AzinesI H Chemical Shifts and Coupling Constants of Imines, Oximes,Hydrazones, and Azines ( 6 in ppm relative to TMS) 7.50 7.90OC 3.4 p F 7.50 8.40 -6.8-7.9 7.2-8.6 YN-OH 7-10 H F W O H 7-10 alk ar 6a,syn > 6a,anti 6a,syn > 6a,anti N7.52 HplOH 9.9 1.86 k N / O H 9.9 1.83 6.92 HIn aldoximes and ketoximes, the chemical shift difference between syn and antiprotons at the a-CH groups, A 6 = Gsyn - Ganti, depends on the dihedral angle,@H-c-c=N: @ A6 00 1 60° 0 115O -0.3
  • 222. 212 5 H NMR6.1-7.7 )=Ff H Pf alk F "a - H 7.89 2.03 2.00 sa,syn > aa,anti5.9.5Nitriles and IsonitrilesI H Chemical Shifts and Coupling Constants of Nitriles(6 in ppm relative to TMS, J in Hz)1.98 1.31 1.71 3Jab 7.0CH3CN bCN J,ic 7.6 b -CN3Jbc 7.4 2.35 C a 4Jac -0.05 1.11 2.291.35 0.96 1.63 1.37 -CN 1.50 2.34 YCN6.07 5.73 3Jab11.8 Hc6.20 CN 2Jbc 0.9 0.94 H h H a 3Jac 17.9 0*93 Hb ?v 3Jab 8.4 3Jac 5 * 1 2Jbc -4.7 H i Ha 3Jbd 9.2 e6 C 3Jab 7.8 a 7.51 4Jac 1.3 5Jad 0.7 744 4Ja, 1.8 e 1.36 3Jbe 7 * 1 7.56 3Jbc 7.7 3Jc, 9.5 4Jbd 1.3IH Chemical Shifts and Coupling Constants of Isonitriles(6 in ppm relative to TMS, J in Hz)Because of the symmetrical electron distribution around the N atom, thequadrupole relaxation of the nitrogen nucleus is so slow that the 14N-lH couplingbecomes observable and leads to triplets with relative intensities of 1:l:l (spinquantum number of 14N: I = 1; natural abundance, 99.6 %): b a l J l a 1.8-2.8-C-C-"NC H2 H2 lJlbN 1.5-3.5
  • 223. 5.9 Nitrogen Compounds 21 32.85 2JaN 2.3 1.28 3Ja1, 7.3 1.45CH3NC a bNC a 2 J , ~2.0 3Jb~ 2.4 b y N C $ : i:: a 387 3 J b ~2.6 3.895.9.6Cyanates, Isocyanates, Thiocyanates, and lsothiocyanates H Chemical Shifts and Coupling Constants of Cyanates,Isocyanates, Thiocyanates, and Zsothiocyanates( 6 in ppm relative to TMS, in Hz) J1.45 3.02 1.20 OCN CH3NCO NCO 4.54 3.37 1.63 1.29 4.77 6.12 3Jab 7.6 f i NCO WHa 3Jac 15.20.99 3.26 2Jbc -0.1 N Hc NCO 5.012.61 1.52CH3SCN 2.983.37CH3NCS c 3.64 NCS
  • 224. 214 5 H NMR 5.1 0 Sulfur-Containing Functional Groups 5.10.1 Thiols 1H Chemical Shifts and Coupling Constan I f Thiols (6 in ppm relative to TMS, in Hz) J Typical ranges of SH chemical shifts: &-SH 1-2 O S H 2-4 The exchange with other SH, OH, NH, or COOH protons is generally so slow that the chemical shift is characteristic and the vicinal coupling with SH protons becomes visible (5-9 Hz in aliphatic systems with fast rotation). 2.00 1.26 3Ja1, 7.4 1.31 1.39 1.63 1.33 CH3SH V S H -SH b a 2.44 0.99 2.50 (in benzene) 3Ja1, 5.7 0.92 1.59 1.32 1.43 1.88 1*35 H S d HS -SH 1.43 2.52 YSH 2.68 4J,c 1.2 a Jd 0.6 4Ja, 2.1 C 7.04 3Jbc 7.5
  • 225. 5.10 Sulfur-Containing Functional Groups 2155.10.2SulfidesI H Chemical Shifts and Coupling Constants of Sulfides(6 in ppm relative to TMS, J in Hz) 2.12 2.10 2.51 2.43 0.98‘S/ S- k 9 3 1.26 & - . S V a k s 1.59 1.252.09 2.49 1.42 a 6.35 3Jab 10.3 ‘S- 1.56 0.92 &,S /I( 1.39 2a12 q s H b 5.08 3Jac 16.4 2Jbc -0.3 , H c 4.84 (in TMS) 7.16 7.02 7.20I H Chemical Shifts and Coupling Constants of Cyclic Sulfides( 6 in ppm relative to TMS, J in Hz) S 2Jgem 0 S c ()a 3.21 2Ja,gem -8-7 0 2 . 7 5L 2*27 3Jcis 7.2 1 2Jb,gem -11.7 b 1.88 S 3 ~ t r a n s5.7 3Jab,cis 8.9 2.94 3Jab,trans 6.3 4~ac,cis 1.2 ‘~ac,trans -0.2
  • 226. 216 5 NMR H5 . 1 0.3Disulfides and Sulfonium Salts H Chemical Shifts and Coupling Constants of Disulfides andSulfonium Salts ( 6 in ppm relative to TMS,J in Hz) 2.30 2.67 2.63 1.03,&As/ &+/ 1.35 &/SS-/ 1.71 */s 7.50 7.28 :::: l:: 0 2 . 7 1.9 2.94 -s+ 1-0 e d 5Jad 0.5 4Jae 2.0 , / 3Jbc 7.25.10.4Sulfoxides and SulfonesI H Chemical Shifts and Coupling Constants of Sulfoxides andSulfones (6 in ppm relative to TMS,J in Hz)qs00 + qSQo % eo/ 2.84 /u 0 2.80 2.94 1.47 1.41 2.85 1 3 x ysy 1.44 3Jbc 10.0 %go b6.14 3Jbd 16.5 O= - 3.06 296 Hb6.76 2Jcd -0.5 Q63t 7.94 7.61 7.65
  • 227. 5.10 Sulfur-Containing Functional Groups 21 75.10.5Sulfonic, Sulfinic, Sulfurous, and Sulfuric Acids andDerivatives H Chemical Shifts and Coupling Constants of Sulfonic,Sulfinic, Sulfurous, and Sulfuric Acids and Derivatives( 6 in ppm relative to TMS, J in H z ) 2.68 11-12 3.0 2.5 ,cH3 3.6alk-SOz-OH -/3.7( 3J,b 8.0 4Jac 1.2 5J,d, 0.6 e a 7. 4Ja, 7.94 2.0 J,, 2.2 , l o/ h 7 e a d- / b 7.60 3Jbc 7.6 c C 4Jbd 1.4 4Jbd 1.3 7.60 7.626 sJH2 7.37 7.85 / 7.58 7.585 . 1 0.6Thiocarboxylate Derivatives H Chemical Shifts of Thiocarboxylic Acids and Derivatives(6 in ppm relative to TMS, I JI in Hz) 3J,b 5.92.41S H 5.09 a 6*47 4J,c 2.0 7.84 3Jbc 2*82.30 s/ 2.27 6.4
  • 228. 218 5 H NMR 5.1 1 Carbonyl Compounds 5.1 1.1 Aldehydes H Chemica Shifts and Coupling Constants of ..,.#ehyi es (6 in ppm relative to TMS,J in Hz) Typical ranges for chemical shifts and coupling constants of aldehyde protons: alk-CHO 9.0-10.1 3J,ic 0-3 alken--CHO 9.0-10.1 3jVic Z8 O C H O 9.5-10.5 cHO 0: 10.2-10.5 R m , p : 9.5-10.2 9.60 2.20 9.80 1.13 9*79 CH2=O IJIgem 42.4 b a +CHO C H r C H O 3Jab 3.0 8 3Jab 1.4 2.46 1.67 0.97 2.42 9.74 3Jab 2.0 ycfo 1.13 2.39 9.57 3Jab 1.1 1.07 YCHO 9*48 6.26 6.26 3Ja1, ~ 8 . 0C=X H=i=" Hd 6.11 Ha 9.51 0 4Jac ~ 0 . 3 4Jad 10.1 7.61 4Jce 1.3
  • 229. 5.1 1 Carbonyl Compounds 2195.1 1.2KetonesI H Chemical Shifts and Coupling Constants of Ketones( 6 in ppm relative to TMS, J in Hz) 2.09 k . 0 5 2.14 2.47 a 4 4Jab 0.5 2.14 1.98 J 1& 2.32 0.85 %: (in benzene) in CDC13: c 1.56 d 0.93 6.27 5.90 6.30 6.67 2.55 2.92 2.86 1.027.45 7.44 3.58 ae 1.8 d 3Jbc 7.5 4Jbd 1.3 =
  • 230. 220 5 H NMR 7.74 ? I Qni fs ? ! 7*57 2.68 7.46* .-- 2.63 ( J 6-78 7.47 j.13 7.21 2.93 II 0 * assignment uncertain I H Chemical Shifts of Diketones ( 6 in ppm relative to TMS) 2.34 3.62 2.17 For the enol form, see Chapter 5.8.1 Long-Range Coupling in Ketones (IJI in Hz) Coupling over the C=O group is often detectable for fixed conformations in W- arrangement of the coupling path: Br 5.1 1.3 Carboxylic Acids and Carboxylates I H Chemical Shifts of Carboxyl Protons xA ( 6 in ppm relative to TMS, J in Hz) The position of the COOH signal depends on the solvent, the concentration, and the presence of other exchangeable protons. Intermediate rates of exchange with other protons may induce very broad lines, which are sometimes not even detected. 8.06 11.0 2.10 11.42 1.06 H-COOH CH3-COOH 1.16 11.73 vCOOH VCOONa 2.36 2.18 (in D20)
  • 231. 1.68 11.51 1.21 11.88 0.93 1.62 11.96 m C O O H -COOH1.00 2.31 1.39 2.351.23 11.49 11.19 12.2 COOH COOH y""" 3.45 ( COOH 2*43 Coo, (in DMSO) OOH-12.5 3Jab 7.9 3Jab 10.5 OH12.8 3Jac 172 2Jbc 1.85.95 Ha C 7.60 3Jbc 7.5 6.15 4Jbd 1.35.1 1.4Esters and Lactones H Chemical Shifts and Coupling Constants of AliphaticCarboxylic Acid Esters ( 6 in ppm relative to TMS, J in H z ) ,f,o,:z Ha8.07 b 41Jlab 0.8 l o q ! c 4 . 6 9 Ha 8.03 Hd 5.01 4Jab -0.7 3Jbc 6.4 5J,c 1.6 3Jbd13.9 5.Jad 0.8 2Jcd -1.7 c=x &672.01 2.04 1.26 2.05 1.65 4.06 1.39 0 - J O k 1.452.02 1.23 2.04 1.60 0.94
  • 232. 222 5 H NMR C 7.07 2.32 0.98 2.22 l*?Q7 2.560 . 9 w $66 1.33 2.31For esters of boronic, nitric, and sulfuric acid, see Chapter 5.12.I H Chemical Shifts and Coupling Constants of Alkyl Esters(6 in ppm relative to TMS)qoT40F 5 b y 4 % 3Jac 17.4 3Jab 10.6 2Jbc 1.5 do% 1.30 Hc 0 3.76 6.40 nK22 .37 I.4U 1.77 C 7.37 7.46
  • 233. 5.1 1 Carbonyl Compounds 223 H Chemical Shifts and Coupling Constants of Lactones(6 in ppm relative to TMS, J in H z ) 2Jab -17.5 *J,d -12.7 Ha 2.41 3J,, 9.5 3Jce 7.9&C 3.56 3Jad 6.9 3Jcf 6.3 4.29 4J,, 0.3 2Jef -8.8 4.28 Hf Hd 2.23 4jaf -0.55 . 1 1.5Amides and LactamsAmide Protons ( 6 i n ppm relative to TMS, J in Hz)R 1 " 2 R: alk, ar 1 R N H R: alk, ar 1 /o R: alk, ar R N H 5-7 6-8.5 7.5-9.5Line WidthsThe signals of the NH protons are often broad because the 14N-lH coupling isonly partly eliminated by the quadrupole relaxation of 14N (spin quantum number, C =XI = 1; ~ J N H 60). In primary amides, the hindered rotation around the CO-N bond =is another reason for line broadening. At slow rotation, the chemical shifts of thetwo primary amide protons differ by about 0.5-1 ppm.Vicinal Coupling H- C-N-HDue to the slow intermolecular exchange of amide protons, their coupling toneighboring hydrogen atoms is usually detectable. The splitting of the C-H signalis clearly observed even in those cases where the signal of the NH proton is broadand featureless. The H-C-N-H coupling depends on the conformation in a similarway as the H-C-C-H coupling (see Chapter 5.1). For N-CH3 and N-CH2groups: 3 J sz 7. ~ ~ ~ ~
  • 234. 224 5 H NMR Tertiary Alkylamides The rotation around the CO-N bond is usually so slow that, with different N- substituents, two separate signals are observed for the two conformers. In general, the following relationships hold: for NCH3, NCH2CH3, and NCH(CH3)2 Gcis to 0 5 Gwans to 0 for NCH(CH& and NC(CH3)3 for NCH, - &ram to o 5 %is to o %is to o Gtrans to o Formamides ( 6 in ppm relative to TMS, IJI in Hz) In the more stable conformer of monosubstituted formamides, the substituent occupies the cis position relative to the carbonyl oxygen. In the more stable conformer of asymmetrically disubstituted formamides, the larger substituent occupies the trans position relative to the carbonyl oxygen. H - * ii H "7.9 Ha N B R 8.1 - H7.9 90 % = 10% 2.88 8.2-8.7 7.5-9.5 ,kN/2*:8 1 - 2.71 Ha 8.02 b 2.97 4J,b -0.3 4Ja, -0.7 A 1 2 2.83 1.19 = 70 % = 30 % Acetamides ( 6 in ppm relative to TMS,J in Hz) In monosubstituted acetamides, the substituent of the only observable conformer; ; -. X is cis to the carbonyl oxygen. In disubstituted acetamides, the more stable conformer has the larger substituent cis to the carbonyl oxygen. 3J,b 4.8 0 3.26 3Jab 5.9 AN)96 1.98 Hb 1.98 H b 1.14 -2.0 H 1.55 6.4 6.7
  • 235. 5.1 1 Carbonyl Compounds 225 3.21 1.35 3Jab 8.4 N - .~ 2 . 0 H b 1.13 1.98 H 1.49 0.92 =2.O H 1.28 8.1 7.05 7.3 4 - 0 1.03 N/ 3.02 5Jab 0.1 A N L y 22.08 5Jac 0.5 2.94 f N/270 l 2 I 2.83 1.15 = 40 % = 60 % J b N ;:::-2.1 LH a 7.64 3Jab 8.2 4Jac 1.2 5Jad 0.5 4Jae 2.4 3.46 1.97 3.36l H Chemical Shifts of Lactams ( 6 in ppm relative to TMS) C=X 0
  • 236. 5.1 1 . 6Miscellaneous Carbonyl Derivatives H Chemical Shifts of Carboxylic Acid Halides DF(6 in ppm relative to TMS, J in Hz) A 3Jab 10.7 2Jbc 0.8 3Ja, 17.32.66 2.82 B , A 6.25 Ha 6.14 3Jab 10.6 3Jab 8.0 3Jac 17.4 4Jac 1.2 2Jbc 0.2 8.07 5Jad o-6 d; e & C 7.47 4 ~ a e 2.06.16 k, 3Jbc 7.5 6.35 7.63 4Jbd 1.4 H Chemical Shifts of Carboxylic Acid Anhydrides(6 in ppm relative to TMS)
  • 237. 5.1 1 Carbonyl Compounds 227 H Chemical Shifts of Carboxylic Acid Imides( 6 in ppm relative to TMS) 02.622.06 2.50 3.83l H Chemical Shifts of Carbonic Acid Derivatives( 6 in ppm relative to TMS) 4.13 1.2-1.7o+O- 0- 3.8 1.2-1.7 0.93 3.94 [>s 2.78 l N o z H 1.23 5.16 5.5 c=x
  • 238. 228 5 NMR H5.1 2Miscellaneous Compounds5.12.1Silicon CompoundsI H Chemical Shifts and Coupling Constants of Silanes andSilanols ( 6 in ppm relative to TMS, J in H z ) a For R: H, SiX3: 2-4 Jasi -150 to -380R-?i-H 2-6 other: 3-6 (4.7% natural abundance of 29Si, "Si R satellites") b H a 3.20 FH3 0.19 Jasi-202.5H-Ai-H I t y i - H 3.58 35 4 7 I a ab . H HJ,si -202.5 0.42 0.79 1.14 YH3 YH3 YH3CH3-g iC1 Cl- i C1 Cl-7x1 I$- c1 CH3 CH35.88 6.11 3 aD l d h 1. I-." 3Jac 20.2 4Ja, 1.4 2Jbc 3.8 5Jad 0.7 3Ja, 1.4 3Jbc 7.5 4Jbd 1.2
  • 239. 5.1 2 Miscellaneous Compounds 229The silanol hydrogen is exchangeable with D20. Slow intermolecular exchange isobserved in dimethyl sulfoxide as solvent so that the vicinal coupling inH-Si-OH is detectable. (in DMSO)5.1 2 . 2Phosphorus Compounds H Chemical Shifts and Coupling Constants of Phosphines andPhosphonium Compounds ( 6 in p p m relative to TMS, IJI in Hz)1.79 lJap 184.9 0.98 2.63 lJap 186.4 1-06 Jap 191.6 a b a 2Jbp 4.1 CH3p/CH3 2Jbp 3.6PH3 CH3-PH2 3Jab 8.2 H 3Jab 7.7 a 3.13I H Chemical Shifts and Coupling Constants of Phosphine Oxidesand Sulfides ( 6 in ppm relative to TMS, IJI in H z )
  • 240. 230 5 H NMR H 6.60 2Jap 13.5 3Jbc 11.8 2Jbp 25.9 3Jbd 17.9 Hc6.14 3Jcp 45.3 2Jcd 1.8 "k $ Ha6.82 2Jap 24.9 H b 3Jbp 47.0 6.17 3Jcp 25.5 3Jdp 25.4 3Jab 11.7 6.26 6*34 3Jac 17.9 2Jbc 1.6 H Chemical Shifts and Coupling Constants of Phosphonous AcidDerivatives ( 6 in ppm relative to TMS, IJI in H z ) c 1.20 2Jap 9.7 2Jap 8.7 y q r y 4 . 2 0 3JbP 9*5 N f " c 1.01 3Jbp v 8.0 a 4Jcp 6.0 f b 2.96 4Jcp ~ 1 . 0 3Jbc 7.0 1.10 a 1.18 (in CCl4) q xa 3.49 /sr,9 bl .25 3 J a ~ 8.0 I Ia 2.43 a 4Jbp 0.6 "Q " /o -0 3.85 3Ja1, 7.1 / N 3Jap 10.8 3Jap 8.9
  • 241. 5.12 Miscellaneous Compounds 231IH Chemical Shifts and Coupling Constants of Phosphonic andPhosphoric Acid Derivatives (6 in ppm relative to TMS, J in Hz) Ob ’ a -$=O1.43 I 3.66 3.65 2JaP-18.O 1.72 O G 3Jbp 19.5 I 2JaP 17*3 a p d = O 3Jcp 10.0 3Jbp 11.o &’ 7.40 7.72 3J,p 13.3 4Jbp 4.1 h=o 5Jcp 1.2 0, b 3J,b 7.5 7’48 d e 3Jab 7.7 1.06 4Jac 1.4 5Jad 0.6 4J,, 1.6 3Jbc 7.6 4Jbd 1.43.78 a 1.29 4.04 1.28 4.06 o - b a I -o-P=o -0 9I Lo+o J,p 11.0 bI H Chemical Shifts and Coupling Constants of Phosphorus Ylids(6 in ppm relative to TMS, J in H z ) 2Jab 12.7 2J,c -1.2 Misc.
  • 242. 232 5 H NMR5.12.3Miscellaneous Compounds H Chemical Shifts and Coupling Constants of MiscellaneousCompounds ( S i n ppm relative to TMS) 0- 3.5Li- CH3 -1.32 benzene) (in -1.74 ether) (in ,o-i 0- 6.80 (in DMSO) 4.78 6.15 6.67 3~~~17.7o."-o+ e / 4.2 3J,c 23.3 N-0 1.39 d H, MnBr 2Jbc 7.6 5.51 0.71 6.19 6.70 3Jab 12.2 FH3 3Jac 19.8CHrTb-CH3 2Jbc 2 1 . CH3 0.72 (in DMSO) R / 4*3 7.40 7.44o=c1-0 II 0 0.4 7.24
  • 243. 5.13 Natural Products 2335.1 3Natural Products5.13.1Amino AcidsI H Chemical Shifts and Coupling Constants of Amino Acids ( 6 i nppm relative to TMS; J in Hz, solvent: tripuoroacetic acid (TFA) or D20)[ 117.47 4.28 3.58 a b H3N)K0- 3Jab 5.7 0 0 (in D20) (in TFA) 1.86 +H3Nf ?(.- 1.49 7.i3 H3N b d 1-25 3Jab 5.7 3Jbc 4.2 OH 3Jcd 6*9 3.79 4.49 O 4.32 0 (in TFA) (in D20) (in TFA) g 1.10 3Jab 5.5 3Ja1, 5.5 1.21 d f 1.10 3Jbc =6.77.38 c , d 4 : a 3Jeg 6 . 3Jbd ~6.1 7 H3N b 4.28 0 3Jef 5.7 a 4.410 (in TFA) 7.35 (in TFA) 4.51 3Jab 6 d1.67 3J,b 5.5 cd 4.56 3Jbc 4.0* 4.82 C 3Jbc 4.5 OH 3Jbd 4.0" 7.63aH0&oH H3N b 3Jcd 6.5 2J,d -13.5 a 4.650 4.44 07.70 (in TFA) Nat ?Ir ; I i (in TFA) * average value Products
  • 244. e 3Jab 5.3 f 2.27Jab 5.5 3Jbc 5.0* 3Jbd 5.0" 2Jcd -15.5 a 4.680 3Jce 9.1* 7.58 3Jde 9.1" (in TFA) a 4.670 * average value 7.73 (in TFA) * average value z7.45 7.03 3.37 c 3.64 d +3*H HNO p 7.3 0 =745 3Jbc 8.5 3Jbd 4.5 2Jcd -14.5 7.4 a 7.27 OH a 4.68 0 7.33 4.64 6 (in TFA) (in TFA) OH 3Jab 5.5 3Jab 5.1 7.73 OH 3Jbc 4.7 2 . 5d. 4 2.63 3-01 ::bc bd 5.6* 2Jcd -15.5 7.71 a OH +H3N b 3Jce 6.2* 4.76 0 4.60 0 3Jde 6.2* (in TFA) (in TFA) * average value h 6.97 3Jab 5.8 i 6.19 i 6.19 3Jab 5.5 3Jbc 5.6* f 2.00 3Jbd 5.6" 2Jcd -15.0 +HzIY"2 3Jbc 5.3* 3Jbd 5.3* 2Jcd z-15.0 ~ 1 . 8 3Jce 6.0* 3Jce =6* 2.35 d 3Jde 6.0" OH 3Jfg ~ 6 . 0 3Jcf =6* 3Jgh e6.0 3Jde =6* 4.52 0 3Jdf r6* 4.46 0 3Jeg 6.5"r!rirl ! i R I (in TFA) 3Jfg 6.5*til l,Jt!;lS * average value (in TFA) Jgh 5.3 * average value
  • 245. 5.1 3 Natural Products 2352.06 d b2.42 3Ja1, 8.5 1.63 d b 1.96 3Jab 8.42.04 e I c 2.14 3Jac 6.5 1.60 e I c 1.68 3Jac 6.2 2Jbc -13.5 2Jbc -13.5 3Jbd 7.5 3Jbd 7.6 3Jbe 5.5 3Jbe 5.4 4.33 4Jbf -0.4 3.74 4Jbf -0.4 (in D20, pH 2.0) 4Jbg 0.0 (in D20, pH 7.0) 4Jbg 0.0 3Jcd 5.5 3Jcd 5.6 3Jce 7.5 3Jce 7.8 2Jde -13.0 2Jde -13.0 3Jdf 5.5 3Jdf 5.7 3Jdg 7.5 3Jdg 7.9 3Jef 7.5 3Jef 7.9 3Jeg 5.5 3J,g 5.7 2Jfg -11.0 2Jfg -11.01.07 d1.05 e - b 1.45 c 1.04 3J,b 8.6 3Jac 6.6 2Jbc -12.0 OH 3Jab 8.2 3Jac 10.4 2Jbc -15.0 3.9* e 3Jbd 8.1 3Jbd <2 3Jbe 5.9 39*f H2 0 3Jcd 4.2 2.81 4Jbf -0.6 8.60 g 4 8.00 h (in D20, pH 13.0) 4Jbg 0.0 3Jcd 6.7 (in TFA) 3J,e 8.5 * average value 2Jde -11.0 3Jdf 5.5 3Jdg 8.1 3Jef 7.7 3Jeg 5.7 2Jfg -10.5a a 7.05 7.205 2Jbc 4.0 3Jbd 8.0 2Jcd -15.5 d 873 (w4H 7.66 7.82 N H ~ + 4.91 3.87 0 3Jab 6.4 4J,d 1.4 (in TFA) Nat 11 ra I H Products (in TFA)
  • 246. 236 5 H NMR5.13.2Carbohydrates [2-41 3.93 z3.7 H% ~ 3 . 7H =3.7 i.r t OH t 3.52 OH 5.20 3.32 z3.7 -* (in D20) (in D20)Glucose 3.75j 3.60 a . 1 4.45* InD20 7.8 9.5 InDMSO 3J,b 6.5 3Jcd 4.5-64.81*h HO 3.30g HO OH 6.54* a 9.5 3Jef 4.5-6 f OH b4.51 9.5 3Jgh 4.5-6 4.81* 3.37 3c13 4.81* 2.8 3Jj1 5.5 5.7 3Jkl 6.0(in D20, relative to internal acetone at 6 = 2.12) ,12.8 * in DMSO 3.725 , 1 4.34" InD20 InDMSO 3Jbc 3.6 3J,t, 4.5 3J,e 9.5 3Jcd 6.8 3J,g 9.5 3Jef 4.8 3Jgi 9.5 3Jg., 5.5 3J.. 2.8 3Jjl 5.7 J 4.42* 3Jik 5.7 3Jk1 6.2(in D20, relative to internal acetone at 6 = 2.12) 2Jjk -12.8 * in DMSO
  • 247. 5.13 Natural Products 237Fructose 5.14 In DMSO In DMSO 6 in D20 3.77, 3.41 (at 70 OC) (at 25 OC) (75% p-D) 2Jbc -11.3 3J,b 7.4 b 3.68 3.62 h 3Jdf 10.1 3Jac 5.4 c 3.53 3Jfi 4.0 3Jde 6.8 d 3.76 a n 3Jhk 1.9 3Jfg 5.8 f 3.86 4.38 3-58 3Jh1 1.6 3Jhi 3.8 h 3.96 2Jk1 -12.1 k 4.00 (in DMSO, 25% p-D) 1 3.68 3.52, 3.40 3.48, 3.37 2J,b -11.0Z W O H 3Jde 3Jef 3 "OH 2Jfg -11.6 HOJ !OH 3.72 3.77 3.79 3.80(in DMSO, 20% a - D ) (in DMSO, 55% p-D)Coupling constants: at 70 OC, Coupling constants: at 70 OCtentative values5.13.3Nucleotides and Nucleosides " 2 07.50 NAO5.97 ?N H 7.41 b Hc H 10.6 10.82 (in D20) (in DMSO) (in DMSO) 3Jat, 7.5 Nat 11ra I 3Jbc 5.7 Prodiicts
  • 248. 238 5 H NMR " 2 7.71I H l . 3 "y 5.04 I c 5.91 3Jef 5.1 6.18 4 . 2 6 y 2.08 OHOH OH 5.25 (in D20) (in DMSO) NH2 7.09 I8 . l l t y 0 8.14 J N H N 12.8 (in CDC13) " 2 I 7.41 R 8 . 1 7 t x J 8.383.70 -"?rj 5.483.58 3.99 5.91 4.17H4.64 4.11H 4 . 4 3 OHOH OHOH 5.24 5.51 5.20 5.45 (in DMSO) (in DMSO)
  • 249. 5.13 Natural Products 239 5.10 6.50 4.36 OH 2.64 OH 2.22 5.3 1 5.31 (in DMSO) (in DMSO)5.1 3.4References B. Bak, C. Dambmann, F. Nicolaisen, E.J. Pedersen, N.S. Bhacca, Proton magnetic resonance at 220 MHz of amino acids, J. Mol. Spectrosc. 1968, 26, 78. B. Gillet, D. Nicole, J.-J. Delpuech, B. Gross, High field nuclear magnetic resonance spectra of hydroxyl protons of aldoses and ketoses, Org. Magn. Reson. 1981, 17, 28. M. Jaseja, A.S. Perlin, P. Dais, Two-dimensional NMR spectral study of the tautomeric equilibria of D-fructose and related compounds, Magn. Reson. Chem. 1990, 28, 283. C. Altona, C.A.G. Haasnoot, Prediction of anti and gauche vicinal proton- proton coupling constants in carbohydrates: a simple additivity rule for pyranose rings, Org. Magn. Reson. 1980,13, 417. Natural Products
  • 250. 240 5 H NMR5.1 4Spectra of Solvents and Reference Compounds5 . 1 4.1 H NMR Spectra of Common Deuterated Solvents(500 MHz; =1000 data points per 1 ppm; 6 in ppm relative to TMS)Acetone-dgBenzene-d6 1 7.1610 9 8 7 6 5 4 3 2 1 0Bromoform-dChloroform-d I 7.26 1.55 (yo)
  • 251. 5.14 Spectra of Solvents and References 24 1Cyclohexane-dl2 JL 111111 11111 1.40 1.35 1.38 I - a * , - ~ * , " ~ " ~ " ~ ~I I . - I ~ l ~ * I . lMethanol-dlMethanol-d4 I .r" ". . I 3.35 3.30 3.25 1 . ~ " " 1 " ~ ~ 1 " " J " I " I " ~ ~ ~ ~ ~ ~ ~ " ~ ~ ~Pyndine-dg 8.73 7.21 7.58 4.91 (50) ~ " ~ A ~ I, " ~ " ~ l I " " ~ " ~ " " ~ ~ " " ~ . ~ I ~ ~ ~ ~ I . ~ I -- 3.60 3.55 " I " I ~ 1.75 1.70 1 " " ~ , " ~ ~ 3.58 " " ~ L " ~ ~ 1.72 ~ ~ SOIV~!171s
  • 252. 242 5 H NMRWater-d2 0.68 TMS 4.80 (external reference)5.1 4.2 H NMR Spectra of Secondary Reference CompoundsChemical shifts in l H NMR spectra are usually reported relative to the peakposition of tetramethylsilane (TMS) added to the sample as an internal reference. IfTMS is not sufficiently soluble, a capillary with TMS may be used as externalreference. In this case, owing to the different volume susceptibilities, the localmagnetic fields in solvent and reference differ, and the peak position of thereference must be corrected. For a D20 solution in a cylindrical sample and neatTMS in a capillary, the correction amounts to +0.68 and -0.34 ppm forsuperconducting and electromagnets, respectively. These values must be subtractedfrom the chemical shifts relative to external TMS if its position is set to 0.00ppm. Alternatively, secondary references with (CH3)3SiCH2 groups may be used.The following spectra of two such secondary reference compounds in D20 weremeasured at 500 MHz with TMS as external reference. Chemical shifts are reportedin ppm relative to TMS upon correction for the difference in the volumesusceptibilities of D 2 0 and TMS. As a result, the peak for the external TMSappears at 0.68 ppm.3-(Trimethylsily1)- -propanesulfonic acid sodium salt (sodium 4,4-dimethyl-4- 1silapentane-1-sulfonate; DSS) 0.68 TMS 0.00 DD H3F (external H3c~,si8COONa reference) H3C D D 4.80HDO
  • 253. 5.14 Spectra of Solvents and References 2435.1 4.3l H NMR Spectrum of a Mixture of Common NondeuteratedSolventsThe following l H NMR spectrum (500 MHz, 6 in ppm relative to TMS) ofCDC13 containing 18 common solvents (0.05-0.4 ~ 0 1 % is shown as a guide for )the identification of possible impurities. Where the signals of several solventsoverlap, insets show signals for the individual compounds from separate spectra.Peaks in these insets are labeled with the corresponding chemical shifts from themain spectrum but their values may differ by up to 0.03 ppm. Signals that areparticularly prone to vary in their position are marked with *. THF:tetrahydrofuran; EGDME: ethylene glycol dimethyl ether. pyridine dimethyl pyridine 8.61 , formamide 7.67 I1 8.01 J r L r 1 " " 1 " 1 " ~ 1 ~ ~ I 3 " I ~ I ~ * . I ~ . I ~ I ~ ~ I . I " ~ I8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 :E> 17.35* benzene toluene pyridine llj28* -- 1 7.2 7.1 CW!? 5.29 5.4 5.3 5.2 3.47* methanol ethyl acetate 4.11 - dimethyl acetone ethyl dimethyl dimethyl sulfoxide 2.16 acetate toluene formamide 2.96 formamide 2.88 2.60 2.35 I 2.04 ether m? -r - -F 0.88 hexane
  • 254. 6.1 Alkanes 2456 IR Spectroscopy CY / 6.1Alkanes %T 1 1 i CH38 as C-H st CH28 I I 1Typical Ranges ( V in crn-l)Assignment Range CommentsC-H st 3000-2840 Intensity variable, often multiplet Beyond n o m 1 range: 2850-2815 CH3-0, methyl ethers 2880-2830 CH2-0, ethers 2880-2835, 0-CH2-0, methylenedioxy 2780-2750 ~2820 O-CH-O, acetals: weak 3050-3000 2900-2800, CH=O, aldehydes: Fermi resonance 2780-2750 2820-27 80 CH3-N, CH2-N; amines 3 100-3050, 3035-2995 D ~2700 3080-2900 0 CH-ha1 comb for cyclohexanes (CH2 as st ~2930)
  • 255. 246 6 IR / Assignment Range Comments c/ C H 3 6 as 1470-1430 Medium, coincides with CH2 6 Beyond n o m 1 range: 1440-1400 CH3-C=0, methyl ketones, acetals CH3-C=C CH2 6 1475-1450 Medium, coincides with CH3 6 as Beyond normal range: =1440 CH2-C=C CH2-CrC ~1425 CH2-C=O, CH~-CZN, CH2-X (X: hal, N02, S, P) C H 3 6 SY 1395-1 365 Medium. Doublet in compounds with geminal methyl groups: -1385, ~ 1 3 7 0 CH(CH3)2, equal intensity (y 1175-1 140, d) -1385, C(CH3)2, 1385 weaker than 1365 -1365 (y 1220-1 190, often d) -1390, C(CH3)3, of equal intensity, sometimes triplet -1365 (y 1250-1200, d) N(CH3)2, no doublet Solid-state spectra: sometimes doublet also in the absence of geminal methyl groups Beyond normal range: 1325-1310 S02-CH3 1330-1 290 S-CH3, sulfides 1310-1 280 P-CH3 1275-1260 Si-CH3, strong, sharp CH3 Y 1250-800 Intensity variable, of no practical significance Strong band in compounds with geminal methyl groups: 1175-1 140 CH(CH3)2, doublet 1220-1 190 C(CH3)2, generally doublet 1250-1200 C(CH&, doublet, often not resolved Beyond normal range: 1765 SiCH3 1855, -800 Si(CH3)2 ~ 8 4 0-765 , Si(CH3)3
  • 256. 6.1 Alkanes 247Assignment Range Comments /CH2 Y 770-720 Medium, sometimes doublet / C C-(CHZ)~-C for n > 4 at ~ 7 2 0 ; for n c 4 at higher wavenumbers; in cyclohexanes at 4 9 0 , weaker Beyond n o m 1 range: 1060-800 Cycloalkanes, numerous bands, unreliableC-D st 2200-2080 In general, substitution of L by isotope L :
  • 257. 248 6 IR 6.2 Alkenesc;,:..-c 6.2.1 Monoenes t c=cst C=C-H 6 OOP Typical Ranges (v in c m - l ) Assignment Range Comments = C H 2 st 3095-3075 Medium, often multiple bands =CH st 3040-3010 Medium, often multiple bands CH st in aromatics and three-membered rings fall in the same range In cyclic compounds: ~3075 D -3020 0 =CH 6 ip 1420-1290 Of no practical significance =CH 6 OOP 1005-675 A number of bands In the same range also: ar CH 6 oop, C-0-C y, and C-N-C y in saturated heterocyclics, OH 6 oop in carboxylic acids, NH y, NO st, SO St, CH2 y, CF st, CCl st
  • 258. 6.2 Alkenes 249Assignment Range Comments Subranges: c=c C=C-C=O C=C-OR C=C-O-C=O CH=CH2 1005-985 ~980 =960 2950 920-900 =960 415 470 c=c (with overtone -810 at 1850-1800) C=CH2 900-880 -940 =795 (with overtone 4 1 0 at 1850-1780) 990-960 -975 -960 -950 HH % 725475 -820 "H 840-800 -820 HHc=c s t 1690-1635 Of variable intensity, weak for highly symmetric compounds, strong for N-C=C and O-C=C Subranges: 1650-1635 CH=CH2 1660-1 640 C=CH2 1690-1665 % H Weak H 1665-1635 H H 1690-1660 HH Weak, often absent 1690-1650 Weak, often absent Beyond noma1 range: - down to 1590 C=C-X with X: 0, N, S ; of higher intensity; in vinyl ethers often doublet due to rotational isomers
  • 259. 250 6 IR At lowerfrequency if conjugated with: c=c =1650 ~1600 4 ~1630 czc =1600 4 =1640 CzN ~1620 c=o ~1630Examples (v in crn-I)=L 1645 994 < 1647 889 1682 972 g76: 912 669 963 1650 709 1667 825 1575 cI=/Cl 1595 1587 826 848 929c1 76 1 714 835 7807 liquid: CC14: 1610 1634 1608 / 0- E 958 1670 1652 937 987 964 793 925 810 943 1 1663 1660 1673-Ido 1663 = 16503- O 7
  • 260. 6.2 Alkenes 251w- N- 1640 1662 /< 1652 1612 1830 1621 987 818 ==L, 1800 1621 94 1 899 c=c 1607 (2270) w 1636 ==/ CN 1645 1612 CHO 1618 COOH 1635& d 1615 (1704) (1730) ( 1706) COOCH3 16374 (1735)6.2.2AllenesAssignment Range Comments(C=C)=C-H st 3050-2950C=C=C st as 1950-1930 Strong, doublet in X-C=C=CH2 if X other than alkyl Ring strain increases frequency: l)cC=CH2 ~ 2 0 2 0c=c=cst sy 1075-1060 Weak, absent with highly symmetric substitution( C = C ) = C H z 6 OOP 4 5 0 Strong, overtone at ~ 1 7 0 0weak ,
  • 261. 252 6 IR 6.3 AI kynes %T overtone EGH6C=C zC-H St CEC st zGH6 f I 3600 2800 2000 1600 1200 800 400 Typical Ranges ( v in crn-l) Assignment Range Comments =C-H st 3340-3250 Strong, sharp; in the same region also OH st, NH st C E C st 2260-2100 Weak, sharp Beyond normal range: R-CZC-H; at the lower end of the cited range R-CEC-R; usually 2 bands (Fermi resonance), often missing if symmetrical Subranges: =2 120 C-C IC-H =2220 c-c =c-c ~2240 C-CGC-CN ~2240 C-CzC-COOH =2240, -2140 C-C=C-COOCH3 In the same range: C z Z st, X=Y=Z st, Si-H st EC-H 6 700600 Strong,broad; overtone at 1370-1220 (broad, Weak)
  • 262. 6.4 Alicyclics 2536.4AlicyclicsCyclic Alkanes %T I CH2 6 CH stCyclic Alkenes %1 V c=cst I 3600 2800 2000 1600 1200 800 400The other vibrations are similar to those in noncyclic alkenes and cyclic alkanes.Typical Ranges ( v in crn-l)Assignment Range CommentsC-H st 3090-2860 StrongH-C-H 6 1470-1 430 Weakc=c st 1780-1610 Varies with ring size and substitutionTwisting and wagging CH2 as well as C-C st do not significantly differ from thecorresponding vibrations in noncyclic compounds and are of limited diagnosticvalue.
  • 263. Examples (v in crn-l)D 3090 3019 2933 0 2974 2896 1450 0 295 1 2871 1455 14340 2920 2860 1447 0 2933 2865 1462 -1780 & -1650I7 -1570 d =1640 11680 d- 11690 0 11610 B - 1660 K -1660 6 ~1670 li =1690 A b 11570 0 -1650 @ -1675 0" 0" ~1650 11665 OJ- =1670
  • 264. 6.5 Aromatics 2556.5Aromatic Hydrocarbons %T C-H st C-H C=C6 skeletal 6 oop vibrations 3600 2800 2600 1600 1200 800 400Typical Ranges ( v in c m - l ) @+Assignment Range Commentsarc-H st 3080-3030 Often numerous bands; in the same range also CH st of alkenes and small ringsarc-C 1625-1 575 Medium, often doublet: generally weak in benzene derivatives having a center of symmetry in the ring In the same range also: C=C st, C=N st, C=O st, N=O st, C-C in heterocyclics, NH 6 1525-1475 Medium, often doublet: Weak in: p-e & In the same range: C=O st, N=O st, C-C in 0 heterocyclics, B-N st, CH3 6, CH2 6, NH 6comb 2000-1650 Very weak; useful for determining substitution patterns in 6-membered aromatic rings In the same range also: C=O st, B-H*.*B st, N+-H st, H20 6
  • 265. 256 6 IRAssignment Range Commentsarc-H 6 ip 1250-950 Numerous bands of variable intensity; of no practical significancearc-H 6 oop 900650 One or more strong bands; useful for determin- ing substitution patterns in 6-membered aromatic rings In the same range also: =C-H 6 oop, C-O-C y and C-N-C y in .saturated heterocyclics, OH 6 oop in carboxylic acids, NH 6, N-O st, S-0 st, CH2 y, C-F 6, C-C1 stDetermination of Substitution Patterns in 6-Membered AromaticRings: Position and Shape of Bands Related to the Number ofAdjacent H-Atoms ( v in cm-l)Not to be used for ring systems with strongly conjugated substituents such asC=O, N02, C s N .Comb, overtones Substitution type; Comb, overtones Substitution type; CH 6 oop, ar C-C y CH 6 oop, ar C-C y mono-2000 1600 400 770-730 710-690 - 2000 1600 m-di- vic-tri- 900-860 800-770 865-8 10 720-685 8 10-750 780-760 725-6802000 1600 2000 1600 1,2,4-tri- 900-860 860-800 730-6902000 1600 2000 1600
  • 266. 6.5 Aromatics 257Comb, overtones Substitution type; Comb, overtones Substitution type; CH 6 OOP, C-C y CH 6 OOP, C-C y 1,3,5-tri- 900-840 850-800 730-6752000 1600 2000 1600 1,2,4,5-tetra- 900-8402000 1600 2000 16002000 1600 2000 1600Examples (V in m i 1 )0 3080 3040 1968 1818 a 302 1 1945 1862 1808 0" 3086 aoH 1739acl 3080 Q( I 3040 1915 1845 1775 OH 1927 1887 1764
  • 267. 258 6 IR6.6Heteroaromatic CompoundsCharacteristic Absorption Bands (v in cm-l )Furans skeletal C-O-C st vibrations I I t 3600 2800 2000 1600 1200 800 400 N-H st C-H 6 skeletal vibrations I 3600 2800 2000 1600 1200 800 400Typical Ranges ( v in cm - l)Assignment Range CommentsN-H st 3450-3200 Medium, narrow; shifted by formation of hydrogen bondsOvertones 2100-1800 Weak, characteristicRing skeleton 1610-1360 Strong, sharp bandsC-H 6 1oOCL700 Strong, broad; difficult to identifyC-H st 3 100-3000 Medium, sharpco-c st 1190-990 Medium or strong; of variable intensity
  • 268. 6.6 Heteroaromatics 2595-Ring-Heteroaromatics: 0 0 0 N H 9NH st free 3500-3400NH st H-bonded 3400-2800CH st =3 100 ~3100 =3 100Ring skeleton: intensity 1610-1560 1590-1560 1535-15 15 variable, generally multiplets 1510-1475 1540-1500 1455-1410CH 6 oop: generally strong 990-725 770-7 10 935-700
  • 269. 260 6 IR 6.7 Halogen Compounds 6.7.1 Fluoro Compounds C-F st I 3600 2800 2dOO 1600 1200 800 400 Typical Ranges (v in ernm1) Assignment Range Comments C-F st 1400-1000 Strong, often more than one band (rotationalI-hl isomers), often not resolved Subranges: 1100-1000 a1 CF2 (FC-H st: 3080-2990) 1150-1000 a1 CF2 1350-1100 a1 CF3 1350-1 150 C=CF =1745 C=CF2 st 1250-1 100 ar CF In the same range: strong bands for C-0 st, NO2 st sym, C=S st, S=O st CF2 780-680 Medium or weak,assignment uncertain CF3 780-680 (C-F S?) S-F st 815-755 Strong P-F st 1110-760 Si-F st 980-820 B-F st 1500-800
  • 270. 6.7 Halogen Compounds 2616.7.2Chloro Compounds %T c-c1 st , I 3600 2800 2000 1600 1200 800 400Typical Ranges ( v in crn-l)Assignment Range Commentsc-Cl st 1100-1020 Strong, narrow or of medium width; chloroaromatics 830- 4 0 0 Strong, often broad (rotational isomers), absent in chloroaromaticsc-Cl 6 400-280 Of medium strength and width HaiP-Cl st <600Si-Cl st <625B-Cl st 1100-650In disubstituted halobenzenes, characteristic skeletal vibrations:R,ex x ortho meta p.an c1 1055-1 035 1080-1075 1095-1 090 Br 1045- 1030 1075-1 065 1075-1 070 I 1060- 1055
  • 271. 262 6 IR 6.7.3 Bromo Compounds C-Br st 1 3600 2800 2000 1600 1200 800 400 Typical Ranges ( v in crn-l) Assignment Range Comments C-Br st 1080-1000 Strong, narrow or of medium width; bromoaromatics 700-500 Strong, of medium width; absent in bromoaromatics C-Br 6 350-250 Of medium strength and widthiiai 6.7.4 lodo Compounds c-I st I 3600 2800 2600 1600 1200 800 400 Typical Ranges ( v in c m - l ) Assignment Range Comments c - I st 650-450 Strong, two or more bands c-I 6 300-50 Of medium strength and width
  • 272. 6.8 Alcohols, Ethers, and Related Compounds 2636.8Alcohols, Ethers, and Related Compounds6.8.1Alcohols and PhenolsAlcohols C-0-H 6 c-0 st I 3600 2800 2000 1600 1200 800 400Phenols 0 I I 3600 2800 2000 1600 1200 800 400Typical Ranges ( v in crn-l)Assignment Range Comments0 - H st 3650-3200 Of variable intensity Subranges: 3650-3590 Free OH; sharp 3550-3450 Hydrogen bonded OH; broad 3500-3200 Polymer OH; broad, often numerous bands Beyond noma1 range: 3200-2500 Enols, chelates; often very broad In the same range also: NH st, zCH st (~3300, sharp), H200 - H 6 ip 1450-1200 Medium, of no practical significance
  • 273. 264 6 IR Assignment Range Comments c-0 st 1260-970 Strong, often doublet Subranges: 1075-1000 CH2-OH 1125-lo00 CH-OH 1210-1100 C-OH 1275-1 150 C-OH In the same range: bands for C-F st, C-N st, N-O st, P-0 st, C=S st, S=O st, P=O st, Si-0 st, Si-H 6 0-H 6 OOP <700 Medium, of no practical significance Examples (v in crn-l) -H O 3250 1430 1075 1050 6 (OH 3290 1430 10200 8 OH 3215 1368 1220 0: OH OH 3450 1370 1260 1195 6.8.2 Ethers, Acetals, Ketals %T C-0-C st as 1 3600 2800 2600 1600 li00 800 400 In acetals and ketals, the C-0 stretching vibrations are split into 3, sometimes even 4 to 5 bands. Acetals have an additional band due to a special C-H 6 vibration. The C-H st vibration frequency is especially low: OCH3 st, 2850-2815; OCH2 St, 2880-2835.
  • 274. 6.8 Alcohols, Ethers, and Related Compounds 265Typical Ranges (V in crn-l)Assignment Range CommentsC-0-C st as 1310-1000 Strong, sometimes split Subranges for non-cyclic ethers: 1150-1085 CH2-O-CH2 1170-1 115 CH-0-CH, often split 1225-1 180 C=C-O-alC 1275-1200 arC-0-alC Subranges for cyclic ethers: 1280 sym 870 as A -1030 sym -980 as =lo70 sym 0 -915 as ~123.5 -1100 as -815 sym 0 -950 0 ketals, acetals: 4 to 5 bands =925 ao) 0 1024, 1086C-0-C st sym -800 as =880 sym 1055-870 eo in acetals: st CH, ~ 2 8 2 0weak Strong, sometimes , multiple bands Subranges for non-cyclic ethers: 1125-1080 C=C-O-alC, medium 1075-1020 arC-0-alC, medium In the same range: strong bands for C-0 st, C-F st, C-N st, N-0 st, P-0 st, C=S St, S=O st, P=O st, Si-0 st, Si-H 6
  • 275. 266 6 IRExamples (v in cm-l)/ / 1188 9 4 1172 1138 1132 1111 1046 ep 1077 1057 10386.8.3Epoxides %T V C-H st ring st syTypical Ranges (v in cm-l)Assignment Range CommentsC-H st 3050-2990 Frequency higher than normally found in alkanesring s t as 1280-1230 Variable intensityring st sy 950-815 Variable intensityring def 880-750 Variable intensityExamples (v in cm-1)
  • 276. 6.8 Alcohols, Ethers, and Related Compounds 2676.0.4Peroxides and Hydroperoxides c-0-0 st I 8 , 1 3600 2800 2000 1600 1200 800 400Typical Ranges (v in c m - l )Assignment Range Comments0-0-H st 3450-3200 Of variable intensity Subranges: -3450 Free OOH; H-bonded: -30 cm-l higher than in corresponding alcohols In the same range: OH st, NH st, zCH st, H20c-0-0 st 1200-1000 Strong, about =20 cm-l lower than in corresponding alcohols In the same range: strong bands for C-0 st, C-F st, C-N st, 0 N-0 st, P-0 st, C=S st, S=O st, P=O st, Si-0 st, Si-H 60-0 st 1000-800 Medium or weak, often doublet, assignment uncertainAlso: 1760-1745 C=O st in peracids 1820-1770 C=O st in diacylperoxides(two bands)Examples (V in cm-l)
  • 277. 6.9 Nitrogen Compounds 6.9.1 Amines and Related Compounds rr , Fermi C-H st C-N st Secondary Amines I IN 3800 2800 2600 1600 1200 800 400 Ammonium I I N+-H st and comb I 3600 2800 2000 1600 1200 800 400
  • 278. 6.9 Nitrogen Compounds 269Typical Ranges (V in c m - ] )Assignment Range CommentsN H 2 st 3500-3300 Of variable intensity, generally 2 sharp bands, AV = 65-75 At lower wavenumbers (<3200) and broader if H-bonded. Free and H-bonded forms often simultaneously observed In primary aromatic amines additional combination band at -3200 In the same range: OH st, ECH stNH st 3450-3300 Of variable intensity, only one band At lower wavenumbers (<3200) and broader if H-bonded. Free and H-bonded forms often simultaneously observed In the same range: OH st, ECH st, H20NH; st 3000-2000 Medium, broad, highly structured 3000-2700 Major maximum, comb: ~ 2 0 0 0N H ~ st 3000-2000 Medium, broad, highly structured 3000-2700 Major maximumN H + st 3000-2000 Medium, broad, highly structured 2700-2250 Major maximum In the same range: OH st, NH st, CH st, SH st, PH st, SiH st, BH st, X=Y=Z st, XEY stNH2 6 1650-1 590 Medium or weakNH 6 1650-1550 Weak NNH; 6 1600-1 460 Medium, often more than one band; weak in aliphatic aminesNH+Z 6 1600-1460 Medium, often more than one band; weak in aliphatic aminesNH+ 6 1600-1460 Medium, often more than one band; weak in aliphatic aminesC-N st 1400-1000 Medium, of no practical significanceNH2 6 850-700 Medium or weak; 2 bands in primary aminesNH 6 850-700 Medium or weakP-N-C st 1110-930, 770-680
  • 279. 270 6 IRExamples ( v in crn-l)CH3-NH2 3470 3356 3360 L N H 2 3274 1622 H2N 3175 16506.9.2Nitro and Nitroso CompoundsNitro Compounds I I I 3600 2800 2000 1600 1200 800 400Nitroso Compounds I 1 N=O st N=O st I 3600 2800 2000 1600 1200 800 400
  • 280. 6.9 Nitrogen Compounds 271Typical Ranges ( v in crn-l)Assignment Range CommentsN O 2 st as 1660-1490 Very strong, of medium width Subranges: 1660-1625 0-NO2, nitrates 1570-1540 C-NO2, a1 nitro compounds 1560-1490 C-NO2, ar nitro compounds 1630-1530 N-NO2, nitraminesN O 2 st SY 1390-1260 Strong, of medium width Subranges: 1285-1270 0-NO2, nitrates 1390-1340 C-NO2, a1 nitro compounds 1360-1 3 10 C-NO2, ar nitro compounds; often 2 bands 1315-1 260 N-NO2, nitramines In nitrates also: 470 N-0 st, strong =760 NO2 Y =700 NO2 6Ring 6 760-705 Strong; modified deformation of aromatic ringN=O st 1680-1450 Very strong, in monomers 1420-1 250 Very strong, in dimers Subranges: 1680-1650 0-NO (nitrites) trans; 1625-1610: cis 1585-1540 C-NO, a1 C-nitroso compounds N 1510-1490 C-NO, ar C-nitroso compounds ~1450 N-NO, N-nitroso compounds In nitrites also: 3300-3 200, comb ~2500, 2300-2250 =800 N-0 st trans; cis: very weak =600 0-NO 6 trans; cis: =650C-N st 450 C-NO, a1 C-nitroso compounds: coupled with other vibrations =1100 C-NO, ar C-nitroso compoundsN-N st =lo40 N-Nitroso ComDounds
  • 281. 272 6 IRExamples (v in crn-l)CH3-NO 1564 YO 1506 NO 1497 842 I 1524 1359 85 I 8 E; aNo2 720 "7 1506 1351 1261 873 7486.9.3Imines and OximesOximes %T O-H st 0-H st free H-bonded C=N st 1 3600 2800 2000 1600 1200 800 400
  • 282. 6.9 Nitrogen Compounds 273Typical Ranges (v in c m - l )Assignment Range CommentsC=N st 1690-1520 Generally strong - Subranges: 1670 21645 R-CH=N-R R-CH=N-R R, R : a1 R or R : conjugated 21630 R-CH=N-R R, R : conjugated -1655 R R, R , R:a1 -1645 kY R: conjugated -1635 R" R R, R : conjugated 21555 21645 PW R / additional band: -1655 C=O R, R: a1 =1625 )=m R, R : conjugated R R Additional band R 1685-1580 )q = at 1540-1515 in: )=N H2N R R" R 1670-1 600 CH=N-NSH Additional bands: NH st: ~ 3 3 0 0 , 1690-1 645 "YNH C-0 st: 21325, 21100 RO Additional bands: 1680-1635 R>h2 NH2+ st: -3000 N RO 6: 1590-1540 2050-2000 C=C=N; Ketimines, very strong, sometimes doublet 1580-1520 Quinone oximes: C=O st 1680-1620 1685-1650 Aliphatic oximes 1645-1650 Aromatic oximes 1690- 1645 oC=N 1640-1605 S-C=N 1640-1 580 S-S-C=NOH st 3600-2700 Strong Subranges: 23600 Free 3300-3100 H-bonded, broad 2 22700 Quinone oximes, more than one bandOH 6 1475-1 3 15 Of no practical significanceN - 0 st 1050-400 Of no practical significance
  • 283. 274 6 IR Examples (v in crn-l) /-+- 1667 I 1637 1603 N, 1675 1672 (solid) OH Y N - O H 1662 (gas) 9, N=N st I I 3600 2800 2000 1600 1200 800 400 Typical Ranges (v in erne1) Assignment Range CommentsN N=N st 1500-1400 Very weak, missing in compounds of high symmetry 1480-1450 N=N r” st as 1335-1315 st sy ~1450 fls =lo50 N=Y 1410-1175 ,N=Y P Dimers of C-nitroso compounds 0 Subranges: 1290-1 175 Aliphatic trans 1425-1385, Aliphatic cis 1345-1 320 1300-1250 Aromatic trans ~1410, ~1395 Aromatic cis
  • 284. 6.9 Nitrogen Compounds 2756.9.5Nitriles and IsonitrilesNitriles I i 3600 2800 2000 1600 1200 800 400Isonitriles -NEC st I 3600 2800 2000 1600 1200 800 400Typical Ranges (v in ernq1)Assignment Range Comments NCEN st 2260-2240 Medium to strong, sharp; for O-CH2-C=N, of N - C H ~ ~ E N : low intensity or absent Beyond normal range: 2240-22 15 C=C-C=N 2240-2230 XC-CIN X: C1, Br, I e2275 -CF~-CEN 2225-2175 + N-GN- WGN- / / 2210-2185 >N-C=C-CrN 2200-2070 CEN--N+=C 2150-21 10 Strong
  • 285. 276 6 IR Assignment Range Comments -NkN 23 10-2130 Medium, frequency depends on anion In the same range: C=C st, X=Y=Z st as, NH+ st, PH st, POH st, SiH st, BH st Examples (v in c m - l ) 2222 -N C 2235 wcN 2252 N b C N 2273 N-N CC 2235 NC+CN 2252 NC CN 2257 CN 2245 CN 2220 NC )=( CN 2222 Q &OH NaCN, KCN 2080-2070 AgCN 2178 NH2-CN 2268 6.9.6 Diazo Compoundsri Assignment Range Comments N k N st 23 10-2130 Medium, frequency depends on anion C=N+=N- 2050-2010 Very strong Subranges: 2050-2035 R-CH=N+=N- R: a1 or ar 2035-2010 R+=N+=N- R: al or ar Beyond n o m 1 range: 2 100-2050 R-CO-C=N+=N- C=O st ~ 1 6 4 (R: al) 5 C=O st ~ 1 6 1 (R: ar) 5 C=N+=N- st sy: -1350, strong 2180-20 10 O e-% N - C=O St 1655-1560
  • 286. 6.9 Nitrogen Compounds 2776.9.7Cyanates and IsocyanatesCy an a tes I t 3600 2800 2000 1600 1200 800 400Isocyanates -N=C=O st as I 3600 2800 2000 1600 1200 800 400Typical Ranges (V in crn-l)Assignment Range Comments NOC=N st 2260-2 130 Medium to strong 2220-21 30 (WEN)- 1335-1290 (OCEN)~ SY stc-0 st 1200-1080 StrongN=C=O st as 2280-2230 Strong,sharp ~2300 -CF2NCON=C=O st sy 1450-1380 Weak Beyond n o m 1 range: 2220-21 30 (N=C=O)-
  • 287. 278 6 IR Examples (v in crn-l) CH3NCO 2265 NCO 2280 YNCO 2270 bNCO 2256 (1629 C=C) 6 O 2267 li NCO 2246 6.9.8 Thiocyanates and lsothiocyanates Thiocyanates I I 3600 2800 2000 1600 1200 800 400N Zsothiocyanates %T C-N st -N=C=S st SY -N=C=S st as I 1 3600 2800 2600 1600 1200 800 400
  • 288. 6.9 Nitrogen Compounds 279Typical Ranges (v in crn-l)Assignment Range CommentsS C = N st 2 170-2 130 Medium, sharp 2090-2020 (SC=N)c-s st 750-550 Often doubletN=C=S st as 2200-2050 Very strong, generally doublet, Fermi resonanceN=C=S s t sy 950-650 =950 a1 -N=C=S 700-650 -N=C=S Beyond n o m 1 range: 2090-2020 (N=C=S)-C-N s t 1090-1075Examples (v in crn-l)CH3NCS neat: in CCl,: 2173 2206 2221 /rNCS 2097 21 14 2106 2068 uNCS 2105 2077 eNCS 2062 6s neat: 2090 in CCl,: 2065 in CHC13: 21 12 N
  • 289. 280 6 IR 6.1 0 Sulfur-Containing Functional Groups 6.10.1 Thiols and Sulfides I I 3600 2800 2000 1600 1200 800 400 Typical Ranges ( v in c m - l ) Assignment Range Comments S-H st 2600-2540 Often weak, narrow S-H 6 915-800 Weak, of no practical significance c-s st 710-570 Weak, broad, of no practical significance s-s st 400 Weak, of no practical significance Also: ~2880 (S-)CH3 st as ~2860 (S-)CH2 st as =1430 (S-)CH3 6 as 1330-1290 (S-)CH3 6 SYS ~1425 (S-)CH2 6 815-755 S-F st, strong =630 S-N st in S-N=O 725-550 S-C in S-CsN, often doublet Examples ( v in cm-l) -H S 2950 Hs//’SH 2525 esH 2585 S,s/ 698 668 566 662 64 1
  • 290. 6.10 Sulfur-Containing Functional Groups 28 16.1 0.2Sulfoxides and SulfonesSulfones I I 3600 2800 2000 1600 1200 800 400Typical Ranges (V in c m - l )Assignment Range Comments Ss=o st 1225-980 Strong, sometimes multiple bands Subranges: 1060-10 15 R-SO-R =1100 R-SO-OH S-0 st 870-810 OH st free ~ 3 7 0 0 , H-bonded ~ 2 9 0 0~ 2 5 0 0 , e1135 R-SO-OR S-0 st 740-720,710-690 1225-1 195 RO-SO-OR ~1135 R-SO-C1 ~ 1 0 3 0~ 9 8 0 , R-SO2- ~ 1 1 0 0=lo50 , RSO N=SO: ~ 1 2 5 0~ 1 1 3 5 ,
  • 291. 282 6 IR Assignment Range Comments ‘go st as 1420-1000 Very strong / 0 st sy Subranges: 1370-1290, R-S02-R 1170-1 110 1375-1350, R-S 02-OR 1185-1 165 ~1340, 1 1 5 0 ~ R-S 02-SR 1415-1 390, RO-S02-OR 1200-1 185 1365-13 15, R-S02-N 1180-1150 N-H St: 3330-3250; N-H 6: ~1570; S-N st: 910-900 1410-1375, R-SO2-hal 1205-1 170 1355-1340, R-SO2-OH 0-H st, H-bonded: =2900, 1165-1 150 ~2400 hydrated: 2800-1650, broad 1250-1 140, R-SO3- 1070-1030 1315-1 220, RO-SO~- 1140-1050 s-0 st 870-690 Of variable intensity, weak in sulfitesS
  • 292. 6.10 Sulfur-Containing Functional Groups 2836.1 0.3Thiocarbonyl Derivatives S-H st 1 3600 2800 2000 1600 1200 8bO 4bOTypical Ranges ( v in crn-l)Assignment Range Commentsc=s s t 1275-1030 Strong, narrow Subranges: 1075-1030 Thioketones 1210-1080 Thioesters -1215 Dithioacids SH st: ~2550 SH 6: =860 1125-1075 Thioacid fluoride per