morphological image processing

4,520 views

Published on

1 Comment
14 Likes
Statistics
Notes
  • I don't understand anything about this it, except hit & mis
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total views
4,520
On SlideShare
0
From Embeds
0
Number of Embeds
86
Actions
Shares
0
Downloads
0
Comments
1
Likes
14
Embeds 0
No embeds

No notes for slide
  • Department of Computer Engineering, CMU
  • morphological image processing

    1. 1. Chapter 9: MorphologicalImage ProcessingDigital Image Processing
    2. 2. 2Mathematic Morphology used to extract image components that areuseful in the representation and description ofregion shape, such as boundaries extraction skeletons convex hull morphological filtering thinning pruning
    3. 3. 3Mathematic Morphologymathematical framework used for: pre-processing noise filtering, shape simplification, ... enhancing object structure skeletonization, convex hull... Segmentation watershed,… quantitative description area, perimeter, ...
    4. 4. 4Z2and Z3 set in mathematic morphology representobjects in an image binary image (0 = white, 1 = black) : theelement of the set is the coordinates (x,y)of pixel belong to the object  Z2 gray-scaled image : the element of the setis the coordinates (x,y) of pixel belong to theobject and the gray levels  Z3
    5. 5. 5Basic Set Theory
    6. 6. 6Reflection and Translation},|{ˆ Bfor bbwwB ∈−∈=},|{)( Afor azaccA z ∈+∈=
    7. 7. 7Logic Operations
    8. 8. 8Example
    9. 9. Structuring element (SE)9 small set to probe the image under study for each SE, define origo shape and size must be adapted to geometricproperties for the objects
    10. 10. Basic idea in parallel for each pixel in binary image: check if SE is ”satisfied” output pixel is set to 0 or 1 depending onused operation10
    11. 11. How to describe SE many different ways! information needed: position of origo for SE positions of elements belonging to SE11
    12. 12. Basic morphological operations Erosion Dilation combine to Opening object Closening background12keep general shape butsmooth with respect to
    13. 13. Erosion Does the structuring element fit theset?erosion of a set A by structuring elementB: all z in A such that B is in A whenorigin of B=zshrink the object13}{ Az|(B)BA z ⊆=−
    14. 14. Erosion14
    15. 15. Erosion15
    16. 16. 16Erosion}{ Az|(B)BA z ⊆=−
    17. 17. Dilation Does the structuring element hit theset? dilation of a set A by structuringelement B: all z in A such that B hits Awhen origin of B=z grow the object17}ˆ{ ΦA)Bz|(BA z ≠∩=⊕
    18. 18. Dilation18
    19. 19. Dilation19
    20. 20. 20Dilation}ˆ{ ΦA)Bz|(BA z ≠∩=⊕B = structuring element
    21. 21. 21Dilation : Bridging gaps
    22. 22. useful erosion removal of structures of certain shape andsize, given by SE Dilation filling of holes of certain shape and size,given by SE22
    23. 23. Combining erosion anddilation WANTED: remove structures / fill holes without affecting remaining parts SOLUTION: combine erosion and dilation (using same SE)23
    24. 24. 24Erosion : eliminating irrelevantdetailstructuring element B = 13x13 pixels of gray level 1
    25. 25. Openingerosion followed by dilation, denoted ∘ eliminates protrusions breaks necks smoothes contour25BBABA ⊕−= )(
    26. 26. Opening26
    27. 27. Opening27
    28. 28. 28OpeningBBABA ⊕−= )(})(|){( ABBBA zz ⊆∪=
    29. 29. Closingdilation followed by erosion, denoted • smooth contour fuse narrow breaks and long thin gulfs eliminate small holes fill gaps in the contour29BBABA −⊕=• )(
    30. 30. Closing30
    31. 31. Closing31
    32. 32. 32ClosingBBABA −⊕=• )(
    33. 33. 33PropertiesOpening(i) A°B is a subset (subimage) of A(ii) If C is a subset of D, then C °B is a subset of D °B(iii) (A °B) °B = A °BClosing(i) A is a subset (subimage) of A•B(ii) If C is a subset of D, then C •B is a subset of D •B(iii) (A •B) •B = A •BNote: repeated openings/closings has no effect!
    34. 34. Duality Opening and closing are dual with respectto complementation and reflection34)ˆ()( BABA cc=•
    35. 35. 35
    36. 36. 36
    37. 37. Useful: open & close37
    38. 38. Application: filtering38
    39. 39. Hit-or-Miss Transformation(HMT)⊛ find location of one shape among a set of shapes”template matching composite SE: object part (B1) and backgroundpart (B2) does B1 fits the object while, simultaneously,B2 misses the object, i.e., fits the background?39
    40. 40. 40Hit-or-Miss Transformation)]([)( XWAXABA c−−∩−=∗
    41. 41. 41Boundary Extraction)()( BAAA −−=β
    42. 42. 42Example
    43. 43. 43Region Filling,...3,2,1)( 1 =∩⊕= − kABXX ckk
    44. 44. 44Example
    45. 45. 45Extraction of connectedcomponents
    46. 46. 46Example
    47. 47. Convex hull A set A is issaid to beconvex ifthe straightline segmentjoining anytwo pointsin A liesentirelywithin A.iiDAC41)(=∪=,...3,2,1and4,3,2,1)( ==∪∗= kiABXX iikik47
    48. 48. 48
    49. 49. 49ThinningcBAABAABA)()(∗∩=∗−=⊗
    50. 50. 50Thickening)( BAABA ∗∪=•
    51. 51. 51SkeletonsKkk ASAS0)()(=∪=BkBAkBAASk )()()( −−−=})(|max{ Φ≠−= kBAkK))((0kBASA kKk⊕∪==
    52. 52. 52
    53. 53. 53Pruning}{1 BAX ⊗=AHXX ∩⊕= )( 23314 XXX ∪=H = 3x3 structuring element of 1’s)( 1812kkBXX ∗∪==
    54. 54. 54
    55. 55. 55
    56. 56. 56
    57. 57. 57
    58. 58. 585 basic structuring elements

    ×