ลอการิทึม..[1]
Upcoming SlideShare
Loading in...5
×
 

ลอการิทึม..[1]

on

  • 14,894 views

 

Statistics

Views

Total Views
14,894
Views on SlideShare
14,894
Embed Views
0

Actions

Likes
1
Downloads
97
Comments
1

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

ลอการิทึม..[1] ลอการิทึม..[1] Presentation Transcript

  • ฟังก์ชันลอการิทึม ( Logarithm function )
    • บทนิยาม ฟังก์ชันลอการิทึม คือ ฟังก์ชัน f = { (x,y) ∈ R + ×R | y = log a x; a > 0 , a ≠ 1 }
    ฟังก์ชันลอการิทึม ( Logarithm function ) เป็นฟังก์ชันผกผันของฟังก์ชันเอกซ์โพแนนเชียล หรือ f = { (x,y) ∈ R×R + | y = a x , a > 0 , a ≠ 1 } จากบทนิยาม ความสัมพันธ์ระหว่าง x กับ y ที่เขียนในรูป x = a y มีความหมายเดียวกับ y = log a x y = log a x ก็ต่อเมื่อ x = a y
  • สมบัติของลอการิทึม เมื่อ a, M, N เป็นจำนวนจริงบวก , a ≠ 1 และ x เป็นจำนวนจริง 1. log a MN = log a M + log a N 2. log a ( M/N) = log a M – log a N 3. log a M n = n log a M 4. log a a = 1 5. log a 1 = 0 6. 10 log M = M 7. log N M = log a M / log a N เมื่อ N ≠ 1 8. M log N = N log M 9. log a M = 1 / log M a; M ≠ 1 10. log b a = 1 / log a b 11. log a n M = 1 / n log a M 12. log a n a M = M / N
  • กราฟของฟังก์ชันลอการิทึม จากสมการ y= log a x; x > 0; a > 0 และ a ≠ 1 จึงสามารถแบ่ง a ได้เป็น 2 ช่วง คือ a > 1 และ 0 < a < 1 เมื่อนำมาเขียนกราฟได้ดังนี้
  • ข้อสังเกตจากกราฟ 1. กราฟของฟังก์ชัน y = log a x; a > 0 และ a ≠ 1 จะผ่านจุด ( 1 , 0 ) เสมอ 2. ถ้า 0 < a < 1 แล้ว y = log a x เป็น ฟังก์ชันลด ถ้า a > 1 แล้ว y = log a x เป็น ฟังก์ชันเพิ่ม 3. ฟังก์ชันลอการิทึมเป็นฟังก์ชัน 1-1 จาก R + ไปทั่วถึง R 4. ฟังก์ชันลอการิทึมเป็นฟังก์ชัน 1-1 จะได้ว่า log a x = log a y ก็ต่อเมื่อ x = y 5. เนื่องจาก y = log a x ก็ต่อเมื่อ a y = x เมื่อแทนค่า y ในสมการหลัง จะได้ 10 log x = x และเมื่อแทนค่า x ในสมการแรก จะได้ y = log a a y ดังนั้น 10 log x = x y = log a a y
  • จงเขียนสมการแต่ละข้อให้อยู่ในรูปลอการิทึม 1. 2 5 = 32 เขียนอยู่ในรูปลอการิทึมได้ คือ log 2 32 = 5 2. 5 4 = 625 เขียนอยู่ในรูปลอการิทึมได้ คือ log 5 625 = 4 3. 3 = 3 1 เขียนอยู่ในรูปลอการิทึมได้ คือ log 3 3 = 1 4. 1 = 9 0 เขียนอยู่ในรูปลอการิทึมได้ คือ log 9 1 = 0 5. 1000 = 10 3 เขียนอยู่ในรูปลอการิทึมได้ คือ log 10 1000 = 3 6. 0.0001 = 10 -4 เขียนอยู่ในรูปลอการิทึมได้ คือ log 10 0.0001 = -4 7. 729 = 3 6 เขียนอยู่ในรูปลอการิทึมได้ คือ log 3 729 = 6 8. 11 3 = 1331 เขียนอยู่ในรูปลอการิทึมได้ คือ log 11 1331 = 3
  • จงเขียนสมการต่อไปนี้เป็นสมการในรูปเลขยกกำลัง 1. log 10 100 = 2 เขียนสมการเลขยกกำลังได้ 100 = 10 2 2. log 2 32 = 5 เขียนสมการเลขยกกำลังได้ 32 = 2 5 3. log 3 27 = 3 เขียนสมการเลขยกกำลังได้ 27 = 3 3 4. log 4 1024 = 5 เขียนสมการเลขยกกำลังได้ 1024 = 4 5 5. log 5 15625 = 6 เขียนสมการเลขยกกำลังได้ 15625 = 5 6 6. log 10 (0.01) = -2 เขียนสมการเลขยกกำลังได้ 0.01 = 10 -2 7. log 9 1 = 0 เขียนสมการเลขยกกำลังได้ 1 = 9 0 8. log 8 64 = 2 เขียนสมการเลขยกกำลังได้ 64 = 8 2
  • จงใช้สมบัติของลอการิทึมเขียนพจน์ที่กำหนดให้ในรูปผลบวก , ผลต่าง หรือผลคูณของลอการิทึมอื่นๆ จนกว่าจะไม่สามารถใช้สมบัติใดได้อีก ( กำหนดให้ลอการิทึมในแต่ละข้อหาค่าได้ ) 1. Log a 2xy 3 / 5z = log a 2 xy 3 – log a 5z = log a 2 + log a x + log a y 3 – ( log a 5 + log a 2) = log a 2 + log a x + 3log a y – log a 5 – log a 2
  • 2. log 3 a (a 2 -8) / 2x+7 = log 3 a + log 3 (a 2 -8) – (log 3 2x + log 3 7) = log 3 a(a 2 -8) – log 3 2x+7 = log 3 a + log 3 ( a 2 -8) – ( log 3 2 + log 3 x + log 3 7) = log 3 a + log 3 ( a 2 -8) – log 3 2 – log 3 x – log 3 7
  • เมื่อลอการิทึมในแต่ละข้อต่อไปนี้หาค่าได้ จงเขียนแต่ละข้อให้อยู่ในรูปของลอการิทึมพจน์เดียว 1. log 3 a + 2log 3 b + 4log 3 c d = log 3 a + log 3 b 2 + log 3 c d 4 = log 3 ( a.b 2 . c d 4 ) = log 3 ab 2 c d 4
  • 2. log 8 ( log 4 ( log 2 16)) = log 8 ( log 4 ( log 2 2 4 )) = log 8 ( log 4 4) = log 8 1 = 0 3. 3(log 3 25 + 2 log 3 81 – 2 log 3 135) = 3 (log 3 5 2 + 2log 3 3 4 – 2 log 3 3 3 . 5) = 3 (2log 3 5 + 2 log 3 3 4 ) – 2 log 3 3 3 .5 = 3.2 (log 3 5.3 4 / 3 3 .5) = 6log 3 (3 4 / 3 3 ) = 6log 3 3 = 6
  • ลอการิทึมสามัญ Common logarithm ลอการิทึมสามัญ หมายถึง ลิการิทึมฐาน 10 จะเขียน log 10 N แทนด้วย log N ดังนั้น log N = log (N 0 x 10 n ) = log N 0 + log 10 n = log N 0 + n เรียก n ซึ่งเป็น การหาค่า log N ทำโดยเขียน N เป็น N 0 x 10 n โดยที่ 1 ≤ N 0 < 10, n ∈ I จำนวนเต็มว่า ค่าแคแรคเทอริสติก ( characteristic ) เรียก log N 0 ซึ่งมีค่าเป็นเลขทศนิยมที่ มากกว่า 0 แต่น้อยกว่า 1 ว่า ค่าแมนทิสซา ( mantissa ) แอนติลอการิทึม เป็นวิธีการหาค่า N เมื่อโจทย์กำหนด log N ให้มีสมบัติ คือ 1. Antilog a = x เมื่อ log x = a 2. Antilog ( log a ) = a
  •  
  • กำหนด log 4.85 = 0.6857 จงหาค่าของ 1. log 485 = (4.85 x 10 2 ) = 0.6857 + 2 = 2.6857 2. log 0.485 = (4.85 x 10 -1 ) = 0.6857 - 1 = -0.3143 3. log 0.000485 = (4.85 x 10 -4 ) = 0.6857 - 4 = -3.3143 4. log 4850000 = (4.85 x 10 6 ) = 0.6857 + 6 = 6.6857
  • กำหนด Antilog 0.4082 = 2.56 จงหาค่า N เมื่อกำหนด 1. log N = 4.4082 = log (0.4082 + 4) = 2.56 + log 10 4 = log 2.56 x 10 4 = 25600 2. log N = 0.4082 - 2 = log (0.4082 – 2) = 2.56 – log 10 2 = log 2.56 x 10 -2 = 0.0256 3. log N = 3.4082 = log (0.4082 + 3) = 2.56 + log 10 3 = log 2.56 x 10 3 = 2560 4. log N = -0.5918 = log (0.4080 - 1) = 2.56 – log 10 = log 2.56 x 10 -1 = 0.256
  • ลอการิทึมธรรมชาติ ลอการิทึมธรรมชาติ คือ log ฐาน e เมื่อ e เป็นจำนวนอตรรกยะ และ e มีค่าประมาณ 2.718 ; log e x จะเขียนแทนด้วย In x เช่น log e 3 เขียนแทนด้วย In 3 การหาค่าของ In x ทำได้โดยเปลี่ยนให้เป็นลอการิทึมสามัญ ดังนั้น In x = log e x = log x / log e = log x / 0.4343 สมบัติต่างๆ ของ In x ก็เช่นเดียวกับ log a M เช่น In xy = In x + In y เป็นต้น
  • จงหา   ln 423  ( เมื่อ   log 4.23  =  0.6263 ) ln 423   =    ( 2.3026 )( log 423 )  =    ( 2.3026 )( log 4.23 x 10 2   ) =    ( 2.3026 )( 0.6263  +  2 )  =    ( 2.3026 )( 2.6263 )  =   6.0473 จงหาค่าของข้อต่อไปนี้ In 72 กำหนด log 72 = 1.8573 = log 72 / log e = 1.8573 / 0.4343 = 4.2765
  • สมการลอการิทึม หลักการทั่วไปในการแก้สมการ 1. สมการที่อยู่ในรูป log a x = c; x > 0, a > 0 และ a ≠ 1 ให้จัดอยู่ในรูป a c = x 2. สมการที่อยู่ในรูป log a x = log a b; x > 0, b > 0, a > 0, a ≠ 1 ให้ปลด log เป็น x = b 3. สมการเอกซ์โพเนนเชียลที่ไม่สามารถทำฐานให้เท่ากันได้ ให้ใส่ log ทั้งสองข้างเพื่อหาค่า เช่น 2 x = 5 2x-1 เขียนเป็น log 2 x = log 5 2x-1 และใช้สมบัติของ log หาค่า x 4. ค่าตัวแปรที่ได้ต้องตรวจคำตอบ โดยค่าที่ได้จะเป็นคำตอบก็ต่อเมื่อแทนค่าของตัวแปรใน สมการทุกพจน์ต้องเป็นจริงตามนิยาม
  •  
  • ถ้า x และ y สอดคล้องสมการ log k x . Log 5 k = 1 เมื่อ k > 1 และ 10 2y = 625 ตามลำดับแล้วข้อใดต่อไปนี้ผิด ก ) 5 < x + y < 7 ข ) 3 < x + y < 4 ค ) 0 < xy < 10 วิธีทำ จากโจทย์ log k x . log 5 x = 1 เมื่อ k > 1 log 5 x = 1 จะได้ x = 5 จากโจทย์ 10 2y = 625 2y = log 10 625 2y = log 10 5 4 2y = 4log 10 5 y = 2log 105 ง ) 0 < x < 1 -y 2
  • = 2 (1 – log 2) = 2 (1 - 0.3010) จะได้ y = 1.398 = 2 (0.699) ตอบ ข้อ 4 ดังนั้น 0 < x < 1 ผิด -y 2
  • อสมการลอการิทึม หลักการทั่วไปในการแก้อสมการ การแก้อสมการลอการิทึม แก้โดยใช้ความรู้เรื่องฟังก์ชันเพิ่มและฟังก์ชันลดมาช่วยแก้ปัญหา นั่นคือ เมื่อ x 1 > 0, x 2 > 0 1. ถ้า a > 1 แล้ว log a x 1 < log a x 2 ก็ต่อเมื่อ x 1 < x 2 2. ถ้า 0 < a < 1 แล้ว log a x 1 < log a x 2 ก็ต่อเมื่อ x 1 > x 2
  • จงแก้อสมการ log 4 ( 2x+3 ) < log 4 ( x-1 ) log 4 ( 2x+3 ) < log 4 ( x-1 ) 2x+3 < x-1 2 x+3+1 < x 2 x+4 < x 2x-x < -4 x < -4
  • 1. คำตอบของอสมการ e x 2 in2 < 2 x คือข้อใดต่อไปนี้ วิธีทำ จากโจทย์ e x 2 in2 < 2 x e in2x 2 < 2 x 2 x 2 < 2 x x 2 < x x 2 -x < 0 x(x-1) < 0 จะได้ x ∈ (0,1) X ∈ (0,1) ตอบ ไม่มีคำตอบ ก ) (- ∞ , in2) ค ) ( in3 , ∞ ) in3 in2 ข ) (0, in2 ) ง ) ไม่มีคำตอบ in3
  • คือเซตในข้อใดต่อไปนี้ ก ) (0,1) ข ) [10, ∞ ) ค ) (0,1) ∪ [10, ∞ ) ง ) (0,1) ∪ (1, ∞ ) วิธีทำ จากโจทย์จะได้ว่า log 2 x + log 3 x + … + log 9 x + log 10 x ≤ 1 สามารถพิจารณา x เป็น 2 กรณี ดังนี้ กรณี 1 เมื่อ 0 < x < 1 log x (10) ≤ 1 เนื่องจาก x  ∈ 0 < x < 1 และ 10 (10 > 1) เป็นตัวเลขต่างกันทำให้ log x (10) < 0 แสดงว่า X ∈ (0,1) ทำให้ log x (10) ≤ 1 เป็นจริง กรณี 2 เมื่อ X > 1 log x (10) ≤ 1 10 ≤ x x ≥ 10 แสดงว่า x  ∈ [10, ∞ ) ดังนั้น เซตคำตอบของอสมการคือ (0,1) ∪ [10, ∞ ) ตอบ ข้อ 3 2. เซตคำตอบของอสมการ 1+ 1 + .. +1 + 1 ≤ 1 log2x log3x log9x log10x