• Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
367
On Slideshare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
31
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide
  • In our session today, we’ll take a look at the current state of talent analytics and why it’s important to advance your capabilities in this arena. Then we’ll look ahead to the not too distant future and delve into the promise of talent analytics. We’ll follow that with some tangible case studies of organizations that are leveraging talent analytics to improve decision support in critical areas. And finally, I’ll share with you the top 5 talent metrics that most organizations aren’t measuring well today, but really should. If there’s time, we’ll wrap up with some Q&A. I will send this deck out to you after the session.
  • Everyone is a buzz about talent analytics these days. When you cut through the noise, you can see the draw, and it’s coming from 3 different perspectives.

    First, your company’s leaders are reading and hearing all about how talent analytics can give them a competitive advantage in the knowledge economy. They’re drawn to the siren’s song of using data to solve all their workforce challenges and boost performance. This isn’t just fiction—some companies are doing amazing things in this area and executives in your organization want to get in on the action.

    Second, from the perspective of the HR or Talent Management department, this is our last and best shot at getting a seat at the table. We’ve been trying to do it for years, and now we have a real opportunity. By providing the business with a steady stream of actionable, predictive insights about the workforce, we will become a trusted advisor that they depend on for critical decisions.

    And lastly, from a personal perspective, there’s probably nothing better that you can do to kick your career into high gear than getting into this field. Talent Analytics is a branch of data science, and the current and future prospects are bright for high-paying, fascinating, influential jobs in this arena.
  • Are your organizational leaders currently asking for quantitative measures of human capital metrics across all aspects of the HR organization? If not, it’s coming. 4 years ago, less than a third of companies were demanding this, now it’s happening in the majority of organizations. If it hasn’t happened yet for you, I fully expect 1 of 2 things to occur: your leaders will demand comprehensive talent metrics soon, or there will be an unpleasant change for either your department or the company. HR functions that aren’t doing this well will be replaced by people who can, and in the long run, companies that aren’t doing this well are going to lose the war for talent and eventually disappear.
  • Part of the reason that you are being asked for more talent metrics now or will be soon is that there is more scrutiny at the top. Executives and boards are awakened to the potential gains that strong talent management can offer and want to ensure we have the analytics in place to continually improve.

    This Harvard Business Review article from last May had the unfortunate headline of “Talent Management: Boards Give Their Companies an F”. Thanks HBR! When you dig into the data a bit you see that across every industry and in every area of talent management, very few boards strongly agree that the organization is effective.

    I attribute this to two things:
    1. There are certainly many companies that are not effective at some talent management areas
    but the second reason is that almost no companies are effective at demonstrating their effectiveness. HR has never been particularly strong at communicating successes in a way that resonates at the executive level or sharing the kind of predictive, actionable talent insights that showcase robust and effective talent management processes.
  • But that world is here, and if we’re not ready yet, there’s no time like the present to work on catching up. We have this convergence of 2 major trends: Big Data has a lot of hype around it, but it also is seeing a lot of investment, energy and momentum. Analysis of customer behaviors and intentions is well ahead of where we are with analyzing the workforce, but it’s coming along.

    Meanwhile, in the last 5 years, we have the emergence of true integrated Talent Management Suites. They are huge leaps forward from historical software for recruiting, developing, and engaging employees. When it comes to analytics, they tend to have great metrics around volume: how many people we hired, how many exited, how many training hours. But they lack the kinds of root cause and predictive insights that are needed for true talent analytics.
  • Often, we talk about talent analytics in the abstract, but when you get down to it, it’s really about answering compelling questions:

    How do we improve quality of hire?
    How do we onboard employees faster?
    How do we build our leadership pipeline?
    How do we optimize the contribution to business outcomes with our HR-led initiatives.

    You want to be asking the right questions, and then bring together the data in such a way to answer them.
  • We know what it is and why it’s important, but where do we go from here? I believe we’re on the precipice of something amazing. Imagine the HR or Talent Management function being the most important department in the company. Imagine if we could deliver on the promise of truly optimizing the workforce, of hiring ideal candidates, rapidly developing them to their true potential, and inspiring passion in their daily work.
  • Traditional HR functions are rapidly going extinct. When they’re not outsourced to BPOs, they’re automated by the latest software. And why is that? Because traditional HR is overhead. It’s a cookie cutter function across every company and dwells in the realm of the tactical and uninspired. But we can transform ourselves with Talent Analytics and become the Data-driven Talent Management function of the future, providing vital, game-changing guidance to our business leaders that drives company strategy and provides a competitive advantage.
  • What can Talent Analytics do for business executives? A massive portion of the company’s expenses are going toward talent investments—both programs and people. The questions that executives are asking are:
    Which of these talent investments are yielding the best results?
    Which are performing sub-optimally and should be changed before it’s too late?
    And where should we invest to meet the business challenges of tomorrow?
    Talent Analytics can provide the answers.
  • Moving down a level or two from Executives, we can think about how front-line managers can use talent analytics. Here we’re talking about the daily and weekly decisions that managers make to bring out the best performance in their teams. Today, many of those decisions are being made based on gut feel or anecdotal feedback, but Talent Analytics can provide the kind of decision support managers need. Perhaps even more importantly, Talent Analytics can sound the alarm when managers didn’t even know an issue existed, providing action alerts to prompt managers to step in and address emerging problems.
  • And finally, there are the employees themselves. If Talent Analytics lives up to its promise, the entire employee base benefits. Because it’s not just about squeezing the last drop of productivity out of each employee—that will yield only short-term gains. Long-term, talent analytics puts each employee in the workforce on the path to a better job fit, more engaging work, feedback to improve, and clear growth opportunities.
  • There are 2 common missteps for talent functions when it comes to talent analytics.

    First, it’s the inclination to treat measurement as a project, and not an ongoing process. What do I mean by that? Well, take employee engagement as a prime example. How often does your organization assess employee engagement. For most organizations, if they do it at all, it’s done once every 12-24 months. The problem with this is that it doesn’t provide a continuous feedback loop. After getting the employee engagement results back, there are likely initiatives that are started and changes that are made based on the feedback. How do you know those changes made a difference? Do you need to wait another 1-2 years to find out? Measurement needs to be a process that provides a constant pulse on the talent of the organization.

    Second, in HR we often times take a defensive posture and aim to use metrics to try to prove the impact of our programs and our worth to the organization. While I understand where that comes from, it’s self-defeating. Imagine the perspective of the business leaders that you are presenting to. Are they in the meeting for the purpose of deciding whether or not HR adds value to the organization? No, they’re in the meeting to gain insights on how to improve the performance of the workforce. Don’t try to prove your worth directly. Focus on continuously improving your programs and sharing insights, and your value will shine through brightly.
  • Think about Talent Analytics in these 4 levels:
    Describe. Here we’re answering what actually occurred. For example, how many high performers exited the organization last month?
    You’re able to Explain why it occurred. The high performers left because they felt there were inadequate opportunities for advancement.
    You can Predict what will happen. Looking at the next 12 months, we are particularly vulnerable to exits among our high performing mid-level managers and our sales professionals with 3 or more years of tenure.
    What you’re ultimately aiming for is Control. In order to retain these at-risk high performers, it’s imperative that we reduce the time to promotion and reinforce the opportunities they have. We recommend expanding the number of paths to promotion and initiating a career coaching program for them. We estimate this will cost $2.5 million to institute, but will protect over $300 million in revenue.

    If you’re feeling stuck at levels 1 or 2, you can push toward Predict and Control by asking specific questions and then when you get the data back, ask yourself “So what?” Then ask it again. Keep asking “So what?” until you get to an action that you can recommend. Then monetize that action. Make a business case. Show the cost of not doing anything and the value of making that change.
  • In order to continually advance those levels, it’s vital to invest toward a sustainable talent analytics capability. We help organizations to advance in these 8 dimensions. If you’re missing any of them, you won’t be able to continually advance and reap the rewards of talent analytics. So, you need leadership to set the vision and allocate resources. You need to integrate analytics into your processes. Clarify how measurement fits into various roles (and who owns it) and build the data analytics skills of the team. Leverage standards and technology to establish a scalable, repeatable approach. And ensure that ultimately the results are being acted upon and you’re building a data-driven culture.
  • When we talk about building analytics into a process, it’s worth mapping out your talent processes and identifying decision points. Ensure that those decision points are supported by data. That data should include trends, benchmarks, alerts, and guidance. Automate it as much as possible. The process won’t likely wait for someone to be manually compiling data.
  • So hopefully all of what I’ve shared sounds good. Hopefully you want this. As organizations aim to implement this, we see 4 primary barriers to advancing talent analytics:
    Organizations will say they have no time or that it’s not a priority. The reality is that if you’re spending 100% of your time just churning through work with no measurement to tell you what’s working, you’re likely wasting a huge percentage of time. Take a step back and aim to devote 5% of your time and resources toward measuring the other 95%.
    People are afraid it’s too complex. I say it’s easy to start simple. Crawl walk run. Build your capabilities over time.
    Your data is likely in silos and disparate systems. Start to bridge those silos where it makes sense. Take the highest priority talent challenges and focusing on providing decision support around those. You don’t need to connect everything. Just start out with the connections that will provide the most value.
  • You will need technology to help you to scale those barriers and start on your path toward advancing talent analytics. Metrics that Matter is a talent analytics suite from KnowledgeAdvisors.
  • The 6 analytics editions of Metrics that Matter provide a good way to think about most pressing talent challenges. Think about which of these areas would be most vital to your organization to get insights for key questions.
    Is it Onboarding, where you’re driving retention and speed to performance for new hires?
    Is it Learning, where you’re developing the skills and improving workforce performance?
    Is it Leadership, where you’re improving the strategic vision and execution of managers and executives?
    Is it Capabilities, where you’re focused on bench strength and meeting future talent needs?
    Is it Engagement, where you’re focused on bringing out the best productivity, innovation, and loyalty of employees
    Or finally is it Performance, where you’re focused on aligning goals and efforts toward organizational priorities?
  • I’d like to do a quick poll to get a sense of what’s most important to you.
  • To go from analytics as a project to analytics as a process, we need automation. You need to be able to easily integrate with your Learning and Talent Management Systems. You need to automate data collection of surveys, 360s, and tests. You need to connect this data back to the demographics of employees and the projects, initiatives, and programs that are part of their lives. Then you combine this rich dataset with business efficiency and outcomes data, imported from key business systems, such as the CRM, ERP and Financial applications. Now all of your talent-related data is in one place, which then drives automated role-based reporting, dashboards, and executive summaries that are delivered to key stakeholders both within talent management and in the business.
  • Let’s look at a few examples of Talent Analytics in practice. We’ll start with a Talent Analytics dashboard. This is the first step toward running talent like a business. Trend your results over time, compare them to goals and benchmarks. Review the high-level performance overview and then drill-down into the details.
  • But we need to go a step further to make the Dashboards highly actionable, and that is to provide Dashboards unique to each key stakeholder. Imagine if everyone in your department had a Dashboard focused on their area of responsibility, with a balanced view of the efficiency, effectiveness, and outcomes of talent initiatives, and then your clients in the business have their own view into their most relevant talent metrics. This is an essential tool in instilling a culture of accountability and data-driven decision making.
  • In this first example, we have a large insurance company with an onerous new hire turnover problem. To tackle this, we worked with them to focus on 3 key metrics: effectiveness of the onboarding program, quality of hire, and the satisfaction and engagement of their new hires. To do so, we implemented automated 30, 60, and 90 day touchpoints and delivered targeted reporting to managers in the business and the owners of the different parts of the onboarding program. The most critical piece here were the alerts that trigger early intervention with new hires that were identified as flight risks. It was very tangible and actionable and saw great results.
  • In this Learning Analytics example, we have a business services company with a multi-million dollar annual L&D spend. They’ve automated post event and on-the-job follow up evaluations to learners and their managers, and they import business metrics on a monthly basis. These roll into operational and executive reporting to provide insights around program effectiveness, operational efficiency, and the linkage to business outcomes.
  • Our next example showcases what’s probably the most pressing challenge facing business today: the need to rapidly improve leadership effectiveness and build the next generation of leaders. First, we assessed current state of leadership utilizing 360s for current leaders and high potentials. Based on this, leaders were selected to take part in an extensive multi-modal leadership development program, which was measured through program evaluations and benchmarked against similar leadership programs from other technology companies. The leadership effectiveness rating and the changes based on the program were linked and correlated to key business outcomes for the organization, creating a model for future assessment and development.
  • Our next example features a focus on developing capabilities of a global Sales organization within a large biotech company. Competencies were assessed with 180s and 360s. Product knowledge was assessed and certified through scored tests. Gains in capabilities were then correlated back to quota attainment to identify the capabilities that mattered most and validate the impact of the program.
  • In this example of engagement analytics, a department of the US Government had a high level of turnover, especially among high performers, and they had little insight into the drivers. With an automated exit interview process, they were able to capture the root causes of turnover and categorize them by 15 different employee demographics. By developing profiles of employees and addressing the causes that were leading them to leave the organization, the department was able to increase retention by over 5%.
  • I’d like to close out today with the Top 5 Talent Metrics that you’re probably not focused enough on today. Some of these you may not be measuring at all.
  • Everyone agrees measuring quality of hire is a great thing to do, but most organizations don’t do it, because they find it to be too difficult. My recommendation is to leverage an automated approach to get manager or 360 feedback after the first 90 days on the job. This approach scales well and can apply to any job role.

    Then you can correlate those score back to the hiring source, qualifications of candidates, and who interviewed them. This should lead to more effective talent acquisition and selection processes, and ultimately better hires.
  • For Speed to Performance, you’re looking at the percentage of new hires reaching competency within a set number of weeks. This will differ by role and industry, but you’ll want to keep it as simple as possible within your organization.

    This can be assessed by the achievement of specific milestones, such as the first sale for a new sales person. Or it can leverage the same type of new hire 360 we just talked about for assessing quality of hire.

    Use this feedback to assess which roles in your organization need revamped onboarding programs.
  • The majority of work completed in most organizations is in the form of projects. And while most organizations can tell you what % of projects completed on time, almost none of them can tell you which projects achieved the outcomes they set out to achieve. What even more powerful about this is to use project assessments in a predictive manner about 1/3 of the way into project lifecycles to determine which projects need intervention before they fail to deliver desired results.
  • Most organizations are doing 360s for their leaders, but they don’t do enough with the results. Correlate the feedback to business performance and direct report engagement to determine which leadership traits provide the most value to the organization.
  • And finally, Quality of Turnover. Most organizations track voluntary vs. involuntary turnover, but that’s not all that helpful to the business. What we really want to know is are we keeping higher performers and are we helping recurring low performers to exit the organization one way or another. If you start to look at attrition in this way, I guarantee you’ll be surprised by certain departments, roles, and levels of tenure.
  • Let’s take our 2nd and final poll. Which of these 5 next generation talent metrics would provide the greatest impact to your organization?
  • When you think about getting starting, I can advocate for 2 rather different approaches.

    The first is The Quick Win. Select 1 specific question to answer and leverage a partner like KnowledgeAdvisors to help you to do it well.

    The second is to build a Strong Foundation. This is for an organization that has a strong commitment to improving in talent analytics and is ready to establish a long-term solution. In this case, we would focus on developing a 3-year strategy and building your team’s analytics skills and capabilities.
  • I hope that this was a valuable session for you today. I encourage you to reach out to me via email or give me a call to discuss talent analytics in your organization.

    At this time, we’ll take any questions from the audience. If we don’t have time to answer all the questions, I’ll be happy to follow up via email.

Transcript

  • 1. Talent Analytics HR.com 26 June 2014 Jeff Grisenthwaite VP, Client Successa CEB company
  • 2. Talent Analytics Agenda 1. Current State 2. Future Vision 3. Case Studies 4. Talent Metrics 5. Q&A
  • 3. Why is Talent Analytics Important? Company Perspective Department Perspective Personal Perspective
  • 4. Business Leaders Asking for Comprehensive Talent Metrics 29% 52% 41% 29% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 2009 2013 Currently Demand Will Demand Soon 2013 Whitepaper, Talent Analytics: The Crystal Ball for Business Performance, Mattox
  • 5. http://blogs.hbr.org/cs/2013/05/talent_management_boards_give.html From HBR article: Talent Management: Boards Give Their Companies an "F"
  • 6. How Do We . . . Improve Quality of Hire Improve Speed to Performance Build Leadership Capability Improve Bench Strength Improve Employee Engagement Align Effort to Business Outcomes
  • 7. Vision for Talent Analytics
  • 8. Vision for HR Traditional HR  Outsourced  Automated  Overhead Data-driven Talent Management  Strategic  Unique to Company  Competitive Advantage
  • 9. Vision for Executives Talent Investments Business Objectives
  • 10. Vision for Managers Action AlertsDecision Support Optimized Teams
  • 11. Vision for Employees Great job fit Engaged with new challenges Helpful performance feedback Continual growth Clear career path
  • 12. 2 Common Pitfalls Treating measurement as a PROJECT, not a PROCESS Trying to PROVE value, rather than continuously IMPROVE
  • 13. Levels of Talent Analytics What occurred? Describe Why did it occur? Explain What will happen? Predict How can we optimize results? Control 1 2 3 4 Push  by:  Focus on specific questions  Asking “So what?”  Stop reporting, Start prescribing actions  Monetize key decisions
  • 14. 8 Dimensions which Enable Sustainable Talent Analytics Capability Sustainable Analytics must:  Require leadership and governance (1)  Integrate analytics into end-to-end talent processes (2)  Clarify roles and assign accountabilities (3)  Build skills in measurement and evaluation (4)  Develop standards, common tools (5)  Implement a common technology platform to enable scalable measurement and reporting (6)  Ensure results are acted upon (7) An overarching goal is to build a culture in which data informs decisions and actions (8)
  • 15. Analytics Embedded into Process Business Strategy Workforce plan Recruit for gaps? Yes No B A Recruiting B L&D C Talent D Leadership E Engagement F Performance Source talent Job Offer Accept? Yes No Survey non-hires Competency/ Leadership review Needs Assessment? No Yes Design, Develop, Implement Evaluate programs Impact & Value? No Yes Continual review of business needs Review scrap learning factors Review workforce plan Build competency model Multi-rater assessment Report out gaps/ strengths A B F Create succession plans Trained Leaders? Yes No Collaborate w/ L&D for programs Engagement Survey Engaged Workers? Yes Validate Performance Gains No Implement Engagement programs Establish Performance goals Performance Appraisal Exceed Goals? No Yes Train for gaps Consider as High Potential D Performance Plan (PIP) Improved? No Employee turnover Yes Exit Interview Applicant Assessment Identify High Potentials
  • 16. Barriers to Advancing Talent Analytics  No time  Too complex  Siloed data  Disparate systems
  • 17. TALENT ANALYTICS SUITE
  • 18. Talent Analytics SUITE Onboarding EDITION Learning EDITION Leadership EDITION Engagement EDITION Capabilities EDITION Performance EDITION  1st Year Retention  Speed to Performance  Expertise & Skills  Workforce Performance  Manager Capability  Strategic Vision & Execution  Bench Strength  Talent for Future Success  Retention of Talent  Workforce Productivity  Goal Achievement  Organizational Alignment
  • 19. Poll Which of these talent development areas is most critical for your organization to improve analytics? (select one) o Onboarding o Learning o Leadership o Engagement o Capabilities / Performance
  • 20. Surveys Business Metrics  Employees  Events 360s  Competencies  Projects Tests  Assessment  Certification Integration Talent Systems Automate data collection Data Collection Analytics CRM TMS Finance ERP HRIS Accounting LMS HRIS TMS  Role-Based Reporting  Filtering & Automation  Dashboards  Executive Summaries Automated Analytics
  • 21. Talent Analytics Dashboard Example
  • 22. CEO CFO COO VP, Sales SVP, TM CLO HR Generalist Leadership Mgr. Instructor
  • 23. Onboarding Analytics Example Profile: Large Insurance Company Over 25% Turnover within 1st 90 Days Key Metrics:  Onboarding Effectiveness  Quality of Hire  New Hire Satisfaction Solution:  Automated 30, 60, 90-day new hire touchpoints  Targeted reporting to managers & program owners  Identified “flight risks” for early intervention Results:  93% of “flight risks” retained  73% reduction in measurement costs
  • 24. Learning Analytics Example Profile: Large Business Services Company Multi-Million $ Annual L&D Investment Key Metrics:  Program Effectiveness  L&D Operation Efficiency  Linkage to Business Outcomes Solution:  Automated post-class & on-the-job evaluations  Monthly imports of business metrics  Operational & executive reporting Results:  Strengthened partnership with business  High ranking on Training Top 125
  • 25. Leadership Analytics Example Profile: Large Technology Company 1000s of new leaders to develop Key Metrics:  Bench Strength  Leadership Effectiveness  Business Outcomes Solution:  Semi-Annual 360s of Emerging & New Leaders  Leadership Program Evaluation  Leadership-to- Business Outcomes Correlation Results:  Significant Leadership Effectiveness increase  Business Outcomes linked to leadership development
  • 26. Results:  Increased performance for 70% of sales force  Increased retention by 8% Capabilities Analytics Example Profile: Large Biotech Company Improve sales competencies Key Metrics:  Certifications  Quota Attainment  Sales Employee Retention Solution:  Annual sales competency assessments: 180s & 360s  Global, 15+ languages  Correlated competency gains to business outcomes
  • 27. Engagement Analytics Example Profile: U.S. Government Department High turnover, little insight into drivers Key Metrics:  Employee Engagement  Employee Retention  High Performer Retention Solution:  Automated Exit Interview surveys  Filtered & ranked by 15 employee demographics  Monthly management reporting Results:  Identified and addressed key drivers  Increased retention by 5.6%
  • 28. TOP FIVE Talent Metrics you’re not focused on
  • 29. Quality of Hire Correlate to: Source Qualifications Interviewers Revise Hiring Profiles Repurpose: Needs Assessment 90-Day New Hire 360 Score
  • 30. Speed to Performance Assessment varies by role Milestone achieved New Hire 360 Ranked by Onboarding Program Onboarding Assessments % of Hires Reaching Competency within X Weeks
  • 31. Project Outcomes Post-Project Assessment Rank by PM, Project Type Project Process Assessments Project Team 360s Project Assessment Score
  • 32. grooovy_easy Leadership Effectiveness Rank Leaders Use for Performance, HiPo Selection Correlate to: Leadership Styles Direct Report Engagement Business Outcomes Leadership 360 Composite Score
  • 33. Quality of Turnover Rank by Department Engagement Pulse Automated Exit Interviews 100% - Recurring Low Performers - Regrettable Losses
  • 34. Poll Which of these next generation talent metrics would provide the greatest impact to your organization? (select one) o Quality of Hire o Speed to Performance o Project Outcomes o Leadership Effectiveness o Quality of Turnover
  • 35. 2 Options to Get Started Option 1: Quick Win  Select 1 talent area to advance analytics  Select an expert partner  Leverage technology Option 2: Strong Foundation  Select an expert partner  Document 3-year strategy  Build in-house analytics roles & skills
  • 36. Thank You Jeff Grisenthwaite VP, Client Success +1 312.676.4450 jeffg@knowledgeadvisors.com knowledgeadvisors.com Contact me to:  Receive whitepaper  Talk to an expert  View a demo