Your SlideShare is downloading. ×
  • Like
Equação de Recorrência - I (Otimização)
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Now you can save presentations on your phone or tablet

Available for both IPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Equação de Recorrência - I (Otimização)

  • 1,820 views
Published

Otimização de equações de recorrência lineares a coeficientes constantes, homogêneas. …

Otimização de equações de recorrência lineares a coeficientes constantes, homogêneas.

Introdução, classificação, conceitos.

Published in Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
1,820
On SlideShare
0
From Embeds
0
Number of Embeds
4

Actions

Shares
Downloads
13
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Otimiza¸˜o de equa¸˜es de ca co recorrˆncia lineares e Jedson B. Guedeshttp://jedsonguedes.wordpress.com
  • 2. Neste texto ser´ apresentada uma maneira de se otimizar uma aequa¸˜o de recorrˆncia linear a coeficientes constantes, ca ehomogˆnea. eExemplos: cn = cn−1 + 3cn−3 − 2cn−5 un = un−1 + un−2 rn+1 = rn + rn−2
  • 3. Passos para otimiza¸˜o - Polinˆmio Caraceter´ ca o ıstico Seja un = a1 un−1 + a2 un−2 + . . . + ak un−k , n≥k com ai constante, i=1...k e supondo conhecidos os k primeiros termos u0 , . . . , uk−1 . O polinˆmio caracter´ o ıstico de (un ) ´ definido como e p(x) = x k − a1 x k−1 − a2 x k−2 − . . . − ak x 0 k = ordem da recorrˆncia e
  • 4. Passos para otimiza¸˜o - Polinˆmio Caraceter´ ca o ıstico 1un − a1 un−1 − . . . − ak un−k = 0 Destacados em azul os coeficientes dos x k , x k−1 , ..., x k−k , respectivamente.
  • 5. Passos para otimiza¸˜o - Polinˆmio Caraceter´ ca o ıstico ´ Pelo Teorema Fundamental da Algebra, sabemos que a equa¸˜o ca caracter´ ıstica de um polinˆmio p(x) ´: o e p(x) = (x − r1 )m1 (x − r2 )m2 . . . (x − rp )mp , p≤k sendo r1 , r2 , . . . , rp as p ra´ distintas de p(x). ızes Com mi = multiplicidade de ri .
  • 6. Passos para otimiza¸˜o - O somat´rio! ca o Utilizaremos o seguinte somat´rio para otimizar equa¸˜es de o co recorrˆncia lineares a coeficientes constantes, homogˆneas. e e p un = Qj (n)rjn j=1 onde Qj (n) ´ um polinˆmio em n “geral” de grau ≤ mj − 1 e r e o indica uma raiz.
  • 7. Passos para otimiza¸˜o - O somat´rio! ca o Os coeficientes de Qj (n) s˜o obtidos a partir de um sistema linear a constru´ com os valores dos termos iniciais da recorrˆncia. ıdo e A partir da´ ´ preciso basicamente resolver tal sistema e substituir ı, e os valores encontrados, realizando as trocas de vari´veis a necess´rias. a
  • 8. Exemplo Otimizar a seguinte equa¸˜o de recorrˆncia: ca e un = 5un−1 − 8un−2 + 4un−3 , n≥3 u0 = 0, u1 = 1 e u2 = 2
  • 9. Exemplo (1) Achar (un ); O grau ´ 3. Precisaremos, pois, mais a frente, dos trˆs primeiros e e valores de (un ). Sabemos que u0 = 0, u1 = 1 e u2 = 2. Aplicando tais valores na recorrˆncia dada, achamos os seguintes termos de e (un ): un = 5un−1 − 8un−2 + 4un−3 ⇓ u3 = 5u3−1 − 8u3−2 + 4u3−3 ⇓ u3 = 5u2 − 8u1 + 4u0 ⇓ u3 = 5 · 2 − 8 · 1 + 4 · 0 ⇓ u3 = 2
  • 10. Exemplo Assim, se continuarmos o processo, acharemos: (un ) = {0, 1, 2, 2, −2, . . . } Fazer isto ´ aconselh´vel por ajudar a verificar facilmente se h´ um e a a erro.
  • 11. Exemplo (2) Construir o polinˆmio caracter´ o ıstico p(x); De forma suscinta, pode-se dizer que para montar o polinˆmio o caracter´ ıstico p(x) come¸amos colocando a inc´gnita, aqui c o chamada de x, elevada ` ordem da equa¸˜o de recorrˆncia. a ca e Neste caso, n=3. Assim, o primeiro termo de p(x) ser´ x 3 . a
  • 12. Exemplo A partir disto, as inc´gnitas seguintes ter˜o sempre como expoente o a o grau anterior decrescido de uma unidade. E seus coeficientes, ser˜o a (−1)×(o coeficiente do respectivo termo da eq. de recorrˆncia). e
  • 13. Exemplo Neste exemplo, 5un−1 − 8un−2 + 4un−3 . O coeficiente de un−1 ´ 5. e Multiplicando-o por (-1), descobrimos que a pr´xima parcela do o polinˆmio ser´ −5x o a 2. Utiliza-se racioc´ an´logo aos demais. Desta forma, temos, ınio a neste caso, p(x) = x 3 − 5x 2 + 8x − 4
  • 14. Exemplo Este polinˆmio, por´m, n˜o est´ na forma o e a a p(x) = (x − r1 )m1 (x − r2 )m2 . . . (x − rp )mp , p≤k
  • 15. Exemplo Para o deixarmos assim, basta dividi-lo por (x − ri ), em que ri ´ e uma de suas ra´ ızes. p(x) ← p(x)/(x − ri ) A multiplicidade de cada raiz ´ que dir´ o expoente de cada termo e a (x − ri ).
  • 16. Exemplo Facilmente verifica-se que 1 ´ raiz de p(x). e Quando dividirmos este polinˆmio por (x − 1) teremos como o quociente outro polinˆmio: o x 2 − 4x + 4 E como resto: 0. Assim, 1 ´ mesmo raiz de p(x) = x 3 − 5x 2 + 8x − 4, e sua e multiplicidade ´ 1. e
  • 17. Exemplo Seguindo o processo, dividiremos este novo polinˆmio por (x − ri ). o Vale salientar que este ri ´ uma raiz do novo polinˆmio. e o
  • 18. Exemplo O n´mero 2 ´ raiz de x 2 − 4x + 4. u e Dividindo, pois, x 2 − 4x + 4 por (x − 2), encontramos como quociente x − 2 e resto 0. O n´mero 2, portanto, ´ raiz. u e Novamente seguindo em frente com o processo, procuramos por uma raiz de x − 2 e encontramos o n´mero 2 novamente. O u n´mero 2 ´ raiz duas vezes do polinˆmio inicial. u e o Assim, ele tem multiplicidade 2.
  • 19. Exemplo Temos, portanto p(x) = (x − 1)1 · (x − 2)2 .
  • 20. Exemplo p n 3) Agora, usando un = j=1 Qj (n)rj , chegamos a ter un = Q1 (n) · 1n + Q2 (n) · 2n
  • 21. Exemplo Lembremos que p un = Qj (n)rjn j=1 e que Qj (n) ´ um polinˆmio em n “geral” de grau ≤ mj − 1 e r e o indica uma raiz. (4) Reescrevamos cada polinˆmio Qj (n) usando λi . o Q1 (n) = λ0 Q2 (n) = λ1 · n1 + λ2 Assim, un pode ser escrito da seguinte forma: un = λ0 · 1n + (λ1 · n + λ2 ) · 2n
  • 22. Exemplo (5) Monte um sistema de equa¸˜es. co Usando os valores iniciais dos primeiros termos  λ0 + (λ1 · 0 + λ2 ) · 20 = 0, para n=0  λ0 + (λ1 · 1 + λ2 ) · 21 = 1, para n=1 λ0 + (λ1 · 2 + λ2 ) · 22 = 2, para n=2 
  • 23. Exemplo (6) Resolvendo este sistema de equa¸˜es, encontramos: co   λ0 = −2 1 λ = −2  1 λ2 = 2
  • 24. Exemplo (7) Subsitituindo os valores dos λ’s, n un = −2 + (− + 2) · 2n 2
  • 25. Exemplo Trocando em mi´dos, a equa¸˜o acima ´ idˆntica ` inicial. Assim, u ca e e a n un = 5un−1 − 8un−2 + 4un−3 ≡ un = −2 + (− + 2) · 2n 2 Desta forma, se quero achar o 16o termo da sequˆncia (n=16), e n˜o ´ preciso achar os termos u15 , u14 e u13 . a e
  • 26. Pronto! F´cil, n˜o? a a
  • 27. Exerc´ ıcios Otimizar a seguinte recorrˆncia: e rn+1 = rn − 2rn−2 r1 = 1 r2 = 1 r3 = 0
  • 28. Exerc´ ıcios ´ E poss´ otimizar a seguinte recorrˆncia apenas com as ıvel e informa¸˜es dadas abaixo? co Se sim, otimize-a. Se n˜o, explique o porquˆ. a e cn = cn−1 + 3cn−3 − 2cn−5 c1 = 0 c3 = 2 c5 = 3
  • 29. Exerc´ ıcios Encontre o termo geral para a sequˆncia de Fibonacci. e (Cada termo da sequˆncia de Fibonacci ´ conseguido somando-se e e os dois termos imediatamente anteriores. Os termos iniciais s˜o 0 a e 1.)
  • 30. Bibliografia e referˆncias e Arquivo pessoal do Jedson: Anota¸˜es das aulas do prof. co Rafael, UFC - DEMA, Matem´tica Finita (2011) a Ronald L. Graham, Donald E. Knuth, and Oren Patashnik: Matem´tica concreta, Reading, Massachusetts: a Addison-Wesley (1994)