V diagram por inverter control


Published on

This presentation show National instruments platform to design, prototype and validate algorithms and solutions for inverter control used in hybrid vehicles, wind turbines, etc

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

V diagram por inverter control

  1. 1. Design, Prototyping and Test of Power Electronics i R L PWM + + + - Vsup vm - id - Javier Gutierrez Business Development Manager
  2. 2. Typical Application Ba?ery  Stack,   Solar  Array   DC   Management   DC   System   Transformer   Converter/Rec<fier   Inverter/Drive   AC   DC   GRID   DC   AC   Control     Systems   Power  System   Inverter/Converter/Drive   Motor/Generator  
  3. 3. NI Power Electronics Tool Chain Test Design Cells HIL Prototype Testing Deploy NI sbRIO-9606 NI GPIC Mezzanine Card DC+ VA (AC) DC VB (AC) M/G POWER M/G BUS DC- VC (AC) Energy Source Power Inverter Output Filter Stage 3-Phase AC System
  4. 4. Business Benefits Reduce your engineering cost, risk and Profitability development time Focus on your core competency and value Product differentiation (not DSP board design) Incorporate the latest technologies while On-time delivery reusing software investments Ship fully tested, supported commercial Product quality embedded systems Empower your control experts to do Development efficiency embedded development
  5. 5. Technical Benefits•  LabVIEW development tool chain –  Deployment-ready commercial embedded system for high- volume grid-tied inverter and motor/generator drive applications –  High level graphical system design platform enables rapid development of differentiated, high performance products –  Complete, industry proven LabVIEW tool chain and drivers for real-time OS, reconfigurable FPGA, and inverter control I/O board –  Available IP block libraries, reference design examples and integration with common simulation environments•  FPGA-based control system –  FPGA-based system for silicon level reconfigurability, lifetime field upgradability, IP protection and true parallel execution in dedicated hardware with 25 nanosecond timing resolution –  Xilinx Spartan-6 LX45 FPGA with 22.6 GMACs DSP LabVIEW FPGA graphical development* performance for advanced control, custom PWM, protection interlocks, inter-board communication protocols, GPS timestamping, … * NI Power Electronics Library included with NI SoftMotion Module 2011 f1 or higher
  6. 6. Technical Benefits•  Measurement and signal processing capabilities –  DMA data scope capabilities for high speed waveform capture and transient event recording of physical I/O and internal register signals –  Real-time power analysis and transient event recording –  400 MHz PowerPC processor with VxWorks OS for hard real- time multi-threaded floating point signal processing, networking, data logging, …•  Flexibility –  Expandable for synchronized control of large, multilevel inverters –  Software-defined device– install once, upgrade remotely –  Smart grid utility communication protocol support (DNP3, IEC 60870, IEC 61850, Modbus, …), remote client dashboards, SCADA systems and remote firmware upgrade tools LabVIEW Real-Time graphical user interface –  Options for depopulation, current AI, 16-bit calibrated AI, real- time clock battery, conformal coating, top/bottom/right-angle connectors
  7. 7. NI Embedded Control & Monitoring Platform Suppor/ng   Products  &     Services     IP  for    control,     Vision   Analysis,  comm,  …   RIO  Pla(orm   LabVIEW LabVIEW Real-Time LabVIEW FPGA Alliance  &   Mo<on   Design  Partners   I/O Proc. FPGA I/O I/O Industrial  buses,   Services  and   communica<on   Training   3rd-­‐Party   HMIs   Products   WSN  
  8. 8. NI RIO Technology Application IP   LabVIEW   Middleware     Signal  Processing  IP     Driver  APIs   LabVIEW  Real-­‐Time     Control  IP   Device  Drivers   Third-­‐Party  IP   LabVIEW  FPGA I/O  Drivers   I/O   I/O   Processor   FPGA   I/O   Custom  I/O   CompactRIO  &  Single-­‐Board  RIO   PXI,PC  RIO  (R  Series,  FlexRIO)   Value   Value   Ultra  Rugged   Performance   High  Performance  
  9. 9. Real-Time BLDC/PMSM Motor Simulation ControllerRequires solving complex equations in microseconds
  10. 10. NI Power Electronics Tool Chain Test Design Cells HIL Prototype Testing Deploy
  11. 11. LabVIEW Tools for Signal Processing, Analysis, and Control Advanced Signal Digital Filter Design Control Design and Processing Simulation Module•  Wavelets •  FIR/IIR filter design/analysis, • Model construction, conversion,• Time-series analysis quantization and reduction • Time and frequency response (independent component •  Fixed-point modeling, fixed-point • Dynamic characteristics analysis, principal component simulation, code generation • Classical control design analysis, model-based spectral (FPGA /ANSI C), … • root locus, PID, lead/lag ... analysis, … ) • State-space control/estimation• Time-frequency analysis (Gabor, • LQR, LQG, pole placement, STFT, … ) Kalman filter ... 11
  12. 12. LabVIEW FPGA Power Electronics IP FPGA-to-FPGA Output Motion Communication, CORDIC Trig Trajectory Synchronization Functions Space Vector Splining PWM JMAG RT State Space H-Bridge Multichannel Simulator Digital Logic Logic PID Fixed Point Signal Generators Protection Loop Math Interlocks StructuresSignal Processing Hall 1,3-Phase I/F DMA Data Control FFT, Resampling, PLL Streaming Zero Crossing Encoder Digital Voltage, I/F Matrix*Vector Filters DC, RMS, Period Current Multiply Measurements Triggers Look Up Park, Clarke IEC Power Quality, Table Transforms Phasor Measurements Input ni.com/ipnet
  13. 13. NI Power Electronics IP Library*•  New officially supported IP blocks for power electronics control, including Trapezoidal and Space Vector commutation for three phase inverters and PMSM/BLDC motor/generators! Typical Field Oriented Control Architecture for PMSM Motor/Generator * Included with NI SoftMotion Module 2011 f1 or higher
  14. 14. NI Power Electronics IP Library •  Complete reference design examples for Field Oriented (Space Vector) and Trapezoidal Commutation •  Plug and play support for the NI 9502 BLDC/PMSM drive module and AKM brushless servo motors.
  15. 15. Power Electronics - Design 15
  16. 16. NI Power Electronics Tool Chain Test Design Cells HIL Prototype Testing Deploy
  17. 17. NI  CompactRIO  FPGA-­‐based  Pla(orm     Environmental   •   -­‐40  to  70  °C  temperature  range   •   50g  shock,  5g  vibra<on   Real-Time Low  Power  Consump/on   FPGA Processor •   9  to  35  VDC  power,  7-­‐10  W  typical  •   Reconfigurable  FPGA  for  high-­‐speed  and  custom  I/O  <ming,  triggering,  and  control  •   I/O  modules  with  built-­‐in  signal  condi<oning  for  connec<on  to  sensors/actuators  •   Real-­‐/me  processor  for  reliable  measurement,  analysis,  connec<vity,  and  control  
  18. 18. NI  Single-­‐Board  RIO  Embedded  Control  &  Acquisi/on   Real-Time Processor Networking/Peripherals 400 MHz processor for floating-point control, 10/100 Ethernet port analysis, and logging RS232 Serial port Reconfigurable FPGA Customized timing and processing of I/OLabVIEW•  Graphical software for rapiddevelopment•  Program processor, FPGA and I/ Small Size, Low PowerO with one tool 21 x 9 cm. (8.2 x 3.7 in.)•  Integrate existing C/VHDL 19-30 VDC power, (7-10 W typ.) Expansion I/O Connect up to three C Series modules for additional I/O (strain, TC, comm., motion, etc…) Onboard Analog and Digital I/O 110 DIO, Up to 32-ch AI, up to 4-ch AO, Up to 32-ch of 24 V DIO
  19. 19. LabVIEW FPGA vs VHDL 66 Pages ~4000 lines Counter Analog I/O Streaming
  20. 20. NI  RIO  Hardware  Plaaorm   CompactRIO  &  Single-­‐Board  RIO   PXI/PC  RIO   Value   Value   Ultra  Rugged   Performance   High  Performance   Processor  Performance     Up  to  400MHz   Up  to  800  MHz   Up  to  1.33  GHz  Dual-­‐Core   Up  to  2.26  GHz  Quad-­‐Core   Up  to  43,661  logic  cells,                     Up  to  110,592  logic  cells,                    Up  to  147,443  logic  cells,                         Up  to  94,208  logic  cells,                                 FPGA  Performance   up  to  58  mul<pliers   up  to  64  mul<pliers   up  to  180  mul<pliers   up  to  640  mul<pliers   Analog  I/O  Speed   Up  to  1  MS/s   Up  to  1  MS/s   Up  to  1  MS/s   Up  to  250  MS/s   Opera<ng  System   Real-­‐Time  OS   Real-­‐Time  OS   Window/Real-­‐Time  OS   Windows/Real-­‐Time  OS   -­‐20  to  55°  C*,                         -­‐40  to  70°  C,                       0  to  55°  C,                                   0  to  55°  C,                                               Ruggedness   passively  cooled   passively  cooled   passively  cooled     ac<vely  cooled   Size   Starts  at  17.8x9.3x8.7  cm.3*     Starts  at  18x9.3x8.7cm.3     Starts  at  40.4x13.4x8.7  cm.3     Starts  at  25.7x21.4x18.4  cm.3     •  In-­‐vehicle  logging   •  Smart  grid  analyzer   •  Machine  Condi<on   •  Machine  Vision   •  Hardware-­‐in-­‐the-­‐Loop  (HIL)   •  Environmental  Monitoring   Monitoring   •  Power  Distribu<on/Control   Test   •  Mobile  robo<cs   •  Industrial  Machine   •  ECU  Prototyping   •  Medical  Imaging   •  Medical  diagnos<cs  &   Target  Applica<on   Control   •  Analy<cal  Instruments   •  High-­‐end  Simula<on   device  control   Examples   •  Special  Purpose  Machines   •  Oil  &  Gas  Monitoring   •  Turbine  Control   •  Protocol  Aware  Test   •  Power  Monitoring   •  Industrial  Robo<cs   •  Wireless  Test   (SPM)   •  Structural  Monitoring   •  Rapid  Control  Prototyping   •  Soiware  Defined  Radio   •  Chemical  Process  Control   •  Automated  Welding   •  Big  physics  &  research   •  Signal  Intelligence   •  Mo<on  control   Control  *Single-­‐Board  RIO  versions  are  available  that  operate  from  -­‐40  to  85°  C  and  start  at  10.3x9.7x2.4  cm3    
  21. 21. High-Performance Multicore CompactRIO Dual-Core 1.33GHz 2GB DDR3 Processor RAM Spartan-6 CPU Expansion USB & Serial 32GB cFast LX150 FPGA Module Connectivity Storage VGA GigabitGraphics Ethernet 8 Slots of C MXI-Express for C Series IO Series Expansion Specifications for cRIO-9082 21
  22. 22. Rapid Control Prototyping (RCP)•  Recommended Software §  NI Power Electronics IP Library (included with NI SoftMotion 2011 f1) §  NI Power Measurement Suite (pioneer program) §  NI MultiSim (co-simulation pioneer program) High-Performance Multicore CompactRIO §  NI Veristand (for control prototyping and real-time HIL simulation) §  NI Simulation Interface Toolkit 22
  23. 23. RPC Demo Controller 23
  24. 24. Field Oriented Motor Control: Selex-Galileo•  Field-Orientated Control of a Three-Phase Brushless Permanent Magnet Motor §  Rapid development of next generation motor control systems §  Increases peak power to squeeze extra performance from existing motors §  As FPGAs increase in capacity, the role evolves from motor control to full servo system control•  Key Enabling Technologies §  NI LabVIEW FPGA, NI PXI Reconfigurable I/O hardware “Using the NI PXI-7831R FPGA, we have demonstrated a new technology to our customer with minimal time and equipment investment.“ - Brian Mann, Selex-Galileo (formerly BAE) case study 24
  25. 25. NI Power Electronics Tool Chain Test Design Cells HIL Prototype Testing Deploy
  26. 26. NI Single-Board RIO General Purpose Inverter Controller (GPIC) CONTROL SYSTEM DC+ VA (AC) DC VB (AC) M/GPOWER M/G BUS DC- VC (AC)Energy Source Power Inverter Output Filter Stage 3-Phase AC System
  27. 27. NI  Single-­‐Board  RIO  960x   LabVIEW Tool Chain Reconfigurable FPGA Silicon level reconfigurability, lifetime upgradability,•  Rapid commercialization of true parallel execution in dedicated hardwaredifferentiated, high performanceproducts RIO Mezzanine Connector (RMC)•  Complete, industry proven High density, high bandwidth connector givesgraphical system design tools direct access to FPGA and processor I/O•  Available IP block libraries andreference design examples•  Fully integrated support for Real-Time Processorprocessor, FPGA , I/O and 400 MHz PowerPC for floating-point control, analysis, logging and network communicationnetworking in single language•  Integrate existing C, VHDL, 3.8”simulation or text-based mathcode Networking Peripherals Ethernet, RS-232, CAN, USB 4” Modbus, DNP3, HTTPS and SSL support Small Size, Low Power 10.3 x 9.6 cm (4 x 3.8 in.) 9-30 VDC power ni.com/singleboard
  28. 28. Top Mount ConnectorsMechanical Design 7.080 [179.83]•  Sturdy 100-mil header connectors with high retention force (non-latching) 4.700 [119.38]•  Support for bottom, top and right-angle connector orientations•  Mating board options: 1.747 –  Ribbon cable to gate drive board GPIC Mezzanine Card sbRIO-9606 [44.37] –  Connector interface PCB with custom cable harness –  Signal conditioning PCB with custom HS DO Expansion I/O cable harness –  Fiber optic interface PCB GP DO SS AI –  Directly mate to gate drive board GP AI, AO Contactor DO GP DI ENET, RS-232, CAN, USB
  29. 29. Typical Stack1. NI Single-Board RIO sbRIO-96062. NI GPIC RIO Mezzanine Card (bottom orientation connectors)3. Custom Connector I/F PCB (not provided by NI) To SEMIKRON To Application SKiiP 3 Specific I/O
  30. 30. Mechanical Design Bottom Mount Connectors 7.080 [179.83]High Speed Digital Output •  12-ch HS DO (18-pins, 6 GND)(Gate Drive) •  1 VPWR_IN (1-pin)(20-pin 100 mil header) •  1-pin reservedGeneral Purpose and •  24-ch GP DO (28-pins, 4 GND) 4.700Contactor Digital Output •  4-ch Contactor DO (8-pins, 4 [119.38](40-pin 100 mil header) GND) •  4-pins reservedFPGA and Processor •  16-ch +3.3 V FPGA IO (24-pins,Expansion I/O 8 GND)(50-pin 100 mil header) •  +3.3 V FPGAPWR_IN (1-pin) 1.747 •  +5 V SYSPWR_OUT (1-pin) GPIC Mezzanine Card sbRIO-9606 [44.37] •  24-pins reservedGeneral Purpose Digital •  24-ch GP DI (26-pins, 2Input VPWR_IN)(26-pin 100 mil header)High Speed Simultaneous •  16-ch Differential SS AI (32 Expansion I/OAI, General Purpose pins) HS DOScanned AI , General •  8-ch Scanned GP AI (9-pins,1Purpose AO COM) SS AI(60-pin 100 mil header) •  8-ch GP AO (9-pins, 1 COM) GP DO GP AI, AO •  10-pins reserved Contactor DO GP DI ENET, RS-232, CAN, USB
  31. 31. Typical Configuration SB-­‐RIO  9606 Enet Other  systems MPC5125 Processor HMI RS-­‐232 CAN Spartan  6 CAN Ba?ery FPGA or  Vehicle USB 9-­‐30  V Inverter  Controller  RMC Gate  Drive   Digital  I/O Analog  I/O   Expansion  I/O   High  Speed   24  sourcing  DI 16  Ch.  ±10V  SS  AI   16  Ch.  3.3  V  DIO   12  ch.  DO 24  sinking  DO   8  Ch.  0-­‐5  V  Mux  AI   Ext.  PS Ext.  PS 4  ch.  relay  DO 8  Ch.  0-­‐5  V  AO 5-­‐24  V 5-­‐24  V Driver Addi<onal  I/O:   U Current  Sensors Voltage  Sensors DC  In Semikron V AC  Out Temperature  Sensors  SKiiP Status  Signals or  SKAII Control  Signals W
  32. 32. Software Hierarchy ElementsRemote Client Dashboard Live Trend, Log File Settings Firmware HMI UtilityWaveform Meter Viewer Config. Update Panel SCADAReal-Time Processor TCP, HTTPS RS-232 DNP3 Supervisory Power Event Dashboard Health HMI SCADA Logic Analysis Record Comm. Monitor Comm. Comm.Field Programmable Gate Array PCI, DMA Sensor Clarke, SpaceDMA Data Protection PID Control Pulse Width Decoding, Park Vector Scope Interlocks Loops Modulation Filtering Transforms ModulationGPIC Mezzanine Card RMCRaw FPGA Scanned Simultaneous, General Contactor General High & uP I/O AI, AO Differential AI Purpose DI Relay DO Purpose DO Speed DO FPGA-FPGA Temperature, Phase I/V, IGBT Error, AC, DC, Pilot Relays, Gate Drivers,Comm & Synch, Monitoring, DC I/V, Contactor Aux, Precharge Faults, Fans, Fiber TX GPS, Fiber I/F Debugging Commands E-Stop, Sensors Contactors Resets, LEDs
  33. 33. Intelligent gridAdvanced RTUs, Smart Distribution Switches •  Houston field tests early in 2010 –  Advanced analytics for distribution automation –  Development and introduction of advanced switching features –  Embedded electrical power measurements and monitoring –  Wireless communication for configuration and file transfer –  Remote updates, configuration and firmware upgrades Distribution Switch Analytics (NI Smart Grid Analyzer) • Rated Through 38kV • 833 Samples/Cycle, 24-bit Resolution • Vacuum Interruption Technology • Advanced Embedded Analytics • Integrated CTs & Voltage Sensors • Data Storage, 1000+ event captures • Remote upgrade • Multi Protocol Communications
  34. 34. NI Power Electronics Tool Chain Test Design Cells HIL Prototype Testing Deploy
  35. 35. NI power electronics HIL investments Real-Time Power Simulation Ba?ery  Stack,   (Cracked ECU or Full Power Simulator) Solar  Array   DC   Management   DC   System   Transformer   Converter/Rec<fier   Inverter/Drive   AC   DC   GRID   DC   AC   Physical Control Board Control     System   Power  System   Inverter/Converter/Drive   Motor/Generator  
  36. 36. Electric Motor HIL Simulation•  Benefits same as any HIL §  Early functional tests §  Test under any situation at no-risk (e.g. failure) §  Reproducible and automated test•  Differences §  High Speed Dynamics •  Extremely high sampling frequency (1 µsec) •  Special requirements for capturing digital signals §  Power Electronics •  Requires special interfacing •  ECUs provide actuation power
  37. 37. Electric Motor HIL Interfaces•  Three types §  Signal Level •  Cracked ECU or separate power electronics stage •  6-7 Gate Drive Signals •  2-3 current values •  Rotor position (Hall/Encoder/Resolver) §  Power Level •  Power electronics §  Mechanical Level •  Mechanical set-up with load motors
  38. 38. Signal Level HIL•  Advantages §  No real power application •  Low cost •  Safe •  Can test any motor parameters -> 2 kW to 400 kW §  Full access to model •  Can model all physical effects §  Mechanical §  Power Electronics •  Same model for offline/on-line simulation•  Disadvantages §  Typically ECUs will need to be cracked §  Testing of power stage not possible
  39. 39. Motor SimulationWhy so fast? §  Switching frequencies are on the order of 20 KHz (Necessary for smooth winding currents) §  Switching frequencies may vary with time §  Sampling frequency 10x (~5 µsec) Simulation now quasi-continuous Better stability High computational demand requires FPGA
  40. 40. Real-time power simulation challenges & solutions•  Simulation of discontinuous switch mode power systems with active and passive switching components –  Use piecewise state-space models with coefficients stored in FPGA RAM•  Very high speed discrete real-time simulations –  Use first order state-space format for numerical stability•  Fixed point math –  Use parallel connections when possible- avoid higher order blocks connected in series –  Create a test bench simulation to validate fixed point math before compiling to FPGA•  Nonlinear models –  Use non-linear differential equations or look-up tables based on FEA•  Stiff system (combined high and low bandwidth components) –  Use parallel loops, filter the lower speed signals when passing to the faster loops
  41. 41. FPGA Implementation
  42. 42. Real-Time BLDC/PMSM Motor Simulation Motor Param FET (6) Trq FPGA hall (3) µP I/O UUT (BLDC) tach Vbus
  43. 43. RPC Demo Controller
  44. 44. HIL Testing of Wind Turbine Control System Software   “The  modular  architecture  allows  us  to  scale-­‐up  the  system  to  meet  the  growing   requirements  of  rapidly  evolving  wind  energy  technology.”              –  Samir  Bico,  Siemens  Wind  Power  A/S
  45. 45. A New Era: Inverter Real-Time Virtual Prototype System Parameters IGBTs: SEMIKRON SKM 50 GB 123D, 600 V, 80 A DC – link voltage: Vdc = 400 V Fundamental Freq = 60 Hz PWM (carrier) Freq = 3 KHz Output Filter: Lf = 800 µH Cf = 500 µF Load: Lload = 2 mH Rload = 5 Ω Simulation loop rate of 3.57 MHz > 3000X Acceleration
  46. 46. Development of State-Space Model Apply Kirchoff’s current and voltage laws Final equation set scaled for more accurate FXP handling I = iI0 V=vV0
  47. 47. Partners – JMAG to LV FPGA Integration JMAG-RT model JMAG FEA • RTT file; look-up table • Binary Converter IL • Reads RTT file NI H • DLL Ld(Id,Iq), Lq(Id,Iq) • For NI’s motor model
  48. 48. Creating High Fidelity Models NI VeriStand Real- Time Test Software Windows PC LabVIEW Real-Time LabVIEW FPGA
  49. 49. PXI  Pla(orm  –  Rugged,  Industrial   R  Series     Modular   NI  Intel     PXI  Express   Timing,  Triggering     PXI  DAQ   Instruments:   Quad  core  CPU   Bus   &Synchroniza<on   5M  Gate  FPGA   Digi<zer,  DMM   Windows  and/or   RT  OS   LabVIEW   Sound  and  Vibra<on   Toolkit,  Vision   Module  …   NI-­‐DAQmx,     NI-­‐Scope…  
  50. 50. NI  FlexRIO  –  Speed  and  Flexibility  FlexRIO  Adapter  Module   FlexRIO  FPGA  Module  -­‐  PXI  &  PXIe  •   Interchangeable  I/O   •   Up  to  132  channels  •   Customizable  by  users   •   Up  to  1  Gb/s  per  pair  •   Module  Development  Kit   •   Up  to  128  MB  of  DDR2  DRAM  
  51. 51. Resource Usage and Timing of CurrentImplementation (7965R)• Total Slices: 37.9% (5585 out of 14720)• Slice Registers: 25.6% (15070 out of 58880)• Slice LUTs: 27.3% (16057 out of 58880)• DSP48s: 6.2% (40 out of 640)Inverter Calculation time: 28 ticks of 100 MHz clock(0.5% resolution with respect to 20 kHz PWM switching frequency)
  52. 52. Key Items for HILSProduct name ・16-bit 12ch simultaneous analog ±12V input•  HKS-9609 with 50MS/s sampling rate ・16-bit 12ch ±12V simultaneous analog output with 50MS/s update rate ・16ch digital input and 16ch digital output at 50MHz
  53. 53. HILS Configuration Driver side PXI as drive hardware HKS-9609HKS-9609 as I/O connection HKS-9612 as motor control Controller side 54
  54. 54. NI Power Electronics Tool Chain Test Design Cells HIL Prototype Testing Deploy
  55. 55. Power Level Motor Simulation Gate signals PhaseDSP/µC Feedback signals CurrentControl (eg; hall/encoder) Power Amp Encoder SET PXI/FPGA Current feedback VirtualComps Simulator ECU
  56. 56. Partners: Motor Emulation
  57. 57. NI’s Role in Power Electronics Applications Inverters Motor Drives Renewable Energy Electric Vehicles Power Electronics Energy Storage Control Distribution Switches PMU HIL Validation Power Power Metering Functional Test Electronics Test Monitoring Power Analyzer Performance Characterization Fault Prediction
  58. 58. Questions? i R L PWM ++ +- Vsup vm - id - Javier.gutierrez@ni.com